Interesting Presentations at Snowbird

Here are a few of presentations interesting me at the snowbird learning workshop (which, amusingly, was in Florida with AIStat).

  1. Thomas Breuel described machine learning problems within OCR and an open source OCR software/research platform with modular learning components as well has a 60Million size dataset derived from Google‘s scanned books.
  2. Kristen Grauman and Fei-Fei Li discussed using active learning with different cost labels and large datasets for image ontology. Both of them used Mechanical Turk as a labeling system, which looks to become routine, at least for vision problems.
  3. Russ Tedrake discussed using machine learning for control, with a basic claim that it was the way to go for problems involving a medium Reynold’s number such as in bird flight, where simulation is extremely intense.
  4. Yann LeCun presented a poster on an FPGA for convolutional neural networks yielding a factor of 100 speedup in processing. In addition to the graphics processor approach Rajat has worked on, this seems like an effective approach to deal with the need to compute many dot products.

Decision by Vetocracy

Few would mistake the process of academic paper review for a fair process, but sometimes the unfairness seems particularly striking. This is most easily seen by comparison:

Paper Banditron Offset Tree Notes
Problem Scope Multiclass problems where only the loss of one choice can be probed. Strictly greater: Cost sensitive multiclass problems where only the loss of one choice can be probed. Often generalizations don’t matter. That’s not the case here, since every plausible application I’ve thought of involves loss functions substantially different from 0/1.
What’s new Analysis and Experiments Algorithm, Analysis, and Experiments As far as I know, the essence of the more general problem was first stated and analyzed with the EXP4 algorithm (page 16) (1998). It’s also the time horizon 1 simplification of the Reinforcement Learning setting for the random trajectory method (page 15) (2002). The Banditron algorithm itself is functionally identical to One-Step RL with Traces (page 122) (2003) in Bianca‘s thesis with the epsilon greedy strategy and a multiclass perceptron with update scaled by the importance weight.
Computational Time O(k) per example where k is the number of choices O(log k) per example Lower bounds on the sample complexity of learning in this setting are a factor of k worse than for supervised learning, implying that many more examples may be needed in practice. Consequently, learning algorithm speed is more important than in standard supervised learning.
Analysis Incomparable. An online regret analysis showing that if a small hinge loss predictor exists, a bounded number of mistakes occur. Also, an algorithm independent analysis of the fully realizable case. Incomparable. A learning reduction analysis showing how the regret of any base classifier bounds policy regret. Also contains a lower bound and comparable analysis of all plausible alternative reductions.
Experiments 1 dataset, comparing with no other approaches to solving the problem. 13 datasets, comparing with 2 other approaches to solve the problem.
Outcome Accepted at ICML Rejected at ICML, NIPS, UAI, and NIPS.

The reviewers of the Banditron paper made the right call. The subject is interesting, and analysis of a new learning domain is of substantial interest. Real advances in machine learning often come as new domains of application. The talk was well attended and generated substantial interest. It’s also important to remember the reviewers of the two papers probably did not overlap, so there was no explicit preference for A over B.

Why was the Offset Tree rejected? One of these rejections is easily explained as a fluke—we ran into a reviewer at UAI who believes that learning by memorization is the way to go. I, and virtually all machine learning people, disagree but some reviewers at UAI aren’t interested or expert in machine learning.

The striking thing about the other 3 rejects is that they all contain a reviewer who doesn’t read the paper. Instead, the reviewer asserts that learning reductions are bogus because for an alternative notion of learning reduction, made up by the reviewer, an obviously useless approach yields a factor of 2 regret bound. I believe this is the same reviewer each time, because the alternative theorem statement drifted over the reviews fixing bugs we pointed out in the author response.

The first time we encountered this review, we assumed the reviewer was just cranky that day—maybe we weren’t quite clear enough in explaining everything as it’s always difficult to get every detail clear in new subject matter. I have sometimes had a very strong negative impression of a paper which later turned out to be unjustified upon further consideration. Sometimes when a reviewer is cranky, they change their mind after the authors respond, or perhaps later, or perhaps never but you get a new set of reviewers the next time.

The second time the review came up, we knew there was a problem. If we are generous to the reviewer, and taking into account the fact that learning reduction analysis is a relatively new form of analysis, the fear that because an alternative notion of reduction is vacuous our notion of reduction might also be vacuous isn’t too outlandish. Fortunately, there is a way to completely address that—we added an algorithm independent lower bound to the draft (which was the only significant change in content over the submissions). This lower bound conclusively proves that our notion of learning reduction is not vacuous as is the reviewer’s notion of learning reduction.

The review came up a third time. Despite pointing out the lower bound quite explicitly, the reviewer simply ignored it. This more-or-less confirms our worst fears. Some reviewer is bidding for the paper with the intent to torpedo review it. They are uninterested in and unwiling to read the content itself.

Shouldn’t author feedback address this? Not if the reviewer ignores it.

Shouldn’t Double Blind reviewing help? Not if the paper only has one plausible source. The general problem area and method of analysis were freely discussed on hunch.net. We withheld public discussion of the algorithm itself for much of the time (except for a talk at CMU) out of respect for the review process.

Why doesn’t the area chair/program chair catch it? It took us 3 interactions to get it, so it seems unrealistic to expect someone else to get it in one interaction. In general, these people are strongly overloaded and the reviewer wasn’t kind enough to boil down the essence of the stated objection as I’ve done above. Instead, they phrase it as an example and do not clearly state the theorem they have in mind or distinguish the fact that the quantification of that theorem differs from the quantification of our theorems. More generally, my observation is that area chairs rarely override negative reviews because:

  1. It risks their reputation since defending a criticized work requires the kind of confidence that can only be inspired by a thorough personal review they don’t have time for.
  2. They may offend the reviewer they invited to review and personally know.
  3. They figure that the average review is similar to the average perception/popularity by the community anyways.
  4. Even if they don’t agree with the reviewer, it’s hard to fully discount the review in their consideration.

I’ve seen these effects create substantial mental gymnastics elsewhere.

Maybe you just ran into a cranky reviewer 3 times randomly Maybe so. However, the odds seem low enough and the 1/2 year cost of getting another sample high enough, that going with the working hypothesis seems indicated.

Maybe the writing needs improving. Often that’s a reasonable answer for a rejection, but in this case I believe not. We’ve run the paper by several people, who did not have substantial difficulties understanding it. They even understand the draft well enough to make a suggestion or two. More generally, no paper is harder to read than the one you picked because you want to reject it.

What happens next? With respect to the Offset Tree, I’m hopeful that we eventually find reviewers who appreciate an exponentially faster algorithm, good empirical results, or the very tight and elegant analysis, or even all three. For the record, I consider the Offset Tree a great paper. It remains a substantial advance on the state of the art, even 2 years later, and as far as I know the Offset Tree (or the Realizable Offset Tree) consistently beat all reasonable contenders both in prediction and computational performance. This is rare and precious, as many papers tradeoff one for the other. It yields a practical algorithm applicable to real problems. It substantially addresses the RL to classification reduction problem. It also has the first nonconstant algorithm independent lower bound for learning reductions.

With respect to the reviewer, I expect remarkably little. The system is designed to protect reviewers, so they have virtually no responsibility for their decisions. This reviewer has a demonstrated capability to sabotage the review process at ICML and NIPS and a demonstrated willingness to continue doing so indefinitely. The process of bidding for papers and making up reasons to reject them seems tedious, but there is no fundamental reason why they can’t continue doing so for several decades if they remain active in academia.

This experience has substantially altered my understanding and appreciation of the review process at conferences. The bidding mechanism commonly used, coupled with responsibility-free reviewing is an invitation to abuse. A clever abusive reviewer can sabotage perhaps 5 papers per conference (out of 8 reviewed), while maintaining a typical average score. While I don’t believe most people choose papers with intent to sabotage, the capability is there and used by at least one person and possibly others. If, for example, 5% of reviewers are willing to abuse the process this way and there are 100 reviewers, every paper must survive 5 vetoes. If there are 200 reviewers, every paper must survive 10 vetoes. And if there are 400 reviewers, every paper must survive 20 vetoes. This makes publishing any paper that offends someone difficult. The surviving papers are typically inoffensive or part of a fad strong enough that vetoes are held back. Neither category is representative of high quality decision making. These observations suggest that the conference with the most reviewers tend strongly toward faddy and inoffensive papers, both of which often lack impact in the long term. Perhaps this partly explains why NIPS is so weak when people start citation counting. Conversely, this would suggest that smaller conferences and workshops have a natural advantage. Similarly, the reviewing style in theory conferences seems better—the set of bidders for any paper is substantially smaller, implying papers must survive fewer vetos.

This decision making process can be modeled as a group of n decision makers, each of which has the opportunity to veto any action. When n is relatively small, this decision making process might work ok, depending on the decision makers, but as n grows larger, it’s difficult to imagine a worse decision making process. The closest representatives outside of academia I know are deeply bureacratic governments and other large organizations where many people must sign off on something before it takes place. These vetocracies are universally frustrating to interact with. A reasonable conjecture is that any decision making process with a large veto number has poor characteristics.

A basic question is: Is a vetocracy inevitable for large organizations? I believe the answer is no. The basic observation is that the value of n can be logarithmic in the number of participants in an organization rather than linear, as per reviewing under a bidding process. An essential force driving vetocracy creation is a desire to offload responsibility for decisions, so there is no clear decision maker. A large organization not deciding by vetocracy must have a very different structure, with clearly dilineated responsibility.

NIPS provides an almost perfect natural experiment in it’s workshop organization, which involves the very same community of people and subject matter, yet works in a very different manner. There are one or two workshop chairs who are responsible for selecting amongst workshop proposals, after which the content of the workshop is entirely up to the workshop organizers. If a workshop is rejected, it’s clear who is at fault, and if a workshop presentation is rejected, it is often clear by who. Some workshop chairs use a small set of reviewers, but even then the effective veto number remains small. Similarly, if a workshop ends up a flop, it’s relatively easy to see who to blame—either the workshop chair for not predicting it, or the organizers for failing to organize. I can’t think of a single time when I attended both the workshops and the conference that the workshops were less interesting than the conference. My understanding is that this observation is common. Given this discussion, it will be particularly interesting to see how the review process Michael and Leon setup for ICML this year pans out, as it is a system with notably more responsibility assignment than in previous years.

Journals end up looking relatively good with respect to vetocracy avoidance. The ones I’m familiar with have a chief editor who bears responsibility for routing papers to an action editor, who bears responsibility for choosing good reviewers. Every agent except the reviewers is often known by the authors, and the reviewers don’t act as additional vetoers in nearly as strong a manner as reviewers with the opportunity to bid.

This experience has also altered my view of blogging and research. On one hand, I’m very enthusiastic about research in general, and my research in particular, where we are regularly cracking conventionally impossible problems. On the other hand, it seems that some small number of people viewing a discussion silently decide they don’t like it, and veto it given the opportunity. It only takes one to turn strong paper into a years-long odyssey, so public discussion of research directions and topics in a vetocracy is akin to voluntarily wearing a “kick me” sign. While this a problem for me, I expect it to be even worse for the members of a vetocracy in the long term.

It’s hard to imagine any research community surviving without a serious online presence. When a prospective new researcher looks around at existing research, if they don’t find serious online discussion, they’ll assume it doesn’t exist under the “not on the internet so it doesn’t exist” principle. This will starve a field of new people. More generally, there is an opportunity to get feedback about research directions and problems much more rapidly than is otherwise possible, allowing us to avoid research on dead end topics which are pervasive. At some point, it may even seem that people not willing to discuss their research simply avoid doing so because it is critically lacking in one way or another. Since a vetocracy creates a substantial disincentive to discuss research directions online, we can expect that communities sticking with decision by vetocracy to be at a substantial disadvantage.

Predictive Analytics World

Carla Vicens and Eric Siegel contacted me about Predictive Analytics World in San Francisco February 18&19, which I wasn’t familiar with. A quick look at the agenda reveals several people I know working on applications of machine learning in businesses, covering deployed applications topics. It’s interesting to see a business-focused machine learning conference, as it says that we are succeeding as a field. If you are interested in deployed applications, you might attend.

Eric and I did a quick interview by email.

John >
I’ve mostly published and participated in academic machine learning conferences like ICML, COLT, and NIPS. When I look at the set of speakers and subjects for your conference I think “machine learning for business”. Is that your understanding of things? What I’m trying to ask is: what do you view as the primary goal for this conference?

Eric >
You got it. This is the business event focused on the commercial deployment of technology developed at the research conferences you named. Academics’ term, “machine learning,” is essentially synonymous with the business world’s “predictive modeling”. Predictive Analytics World focuses on business applications of this technology, such as response modeling, churn modeling, email targeting, product recommendations, insurance pricing, and credit scoring. PAW’s goal is to strengthen the business impact delivered by predictive analytics deployment, and establish new opportunities with predictive analytics. The conference delivers case studies, expertise and resources to this end.

The conference program is designed to speak the language of marketing and business professionals using or planning to use predictive analytics to solve business challenges — but for the hands-on practitioner or analytical expert focused on commercial deployment who wishes to speak this same language, it’s an equally valuable event.

John >
People at academic conferences would hope that technology developed there can transfer into business use. In your experience, does this happen? And how fast or difficult is it?

Eric >
The best way to catalyze commercial deployment is to show the people it really works outside “the lab” – which is why PAW’s program is packed primarily with named case studies of commercial deployment. These success stories answer your question with a resounding “yes” that the core technology developed academically is indeed put to use.

But predictive analytics has not yet been broadly adopted across all industries, although success stories show at least initial reach in each vertical. So, sure, as one who previously wore a researcher’s hat, commercial deployment can feel slow; having solved the hardest theoretical, mathematical or statistical problems, the rest should go smoothly, right? Not exactly. The main challenges come in ramping up the business “consumer” on the technology so they see its value, positioning the technology in a way that provides business value, and, on the integration side, in preparing corporate data for predictive modeling (that’s a doozy!) and in integrating predict scores into existing systems and processes. These things take time.

John >
Sometimes people working in the academic world don’t have a good understanding of what the real problems are. Do you have a sense of which areas of research are underemphasized in the academic world?

Eric >
To reach commercial success in deploying predictive analytics for the business applications I listed above, the main challenges are on the process and non-analytical integration side, rather than core machine learning technology; its good enough. So, I don’t consider there to be glaring ommissions in the capabilities of core machine learning (I taught the machine learning graduate course at Columbia University and still consider Tom Mitchell’s textbook to be my bible).

On the other hand, there are always places where “real-world” data is going to bring researchers’ attention to as-yet-unsolved problems. A perfect example is the Netflix Prize, the current leader of which (and winner of the recent Progress Prize) will be speaking at PAW-09 – see here.

Interesting Papers at SODA 2009

Several talks seem potentially interesting to ML folks at this year’s SODA.

  1. Maria-Florina Balcan, Avrim Blum, and Anupam Gupta, Approximate Clustering without the Approximation. This paper gives reasonable algorithms with provable approximation guarantees for k-median and other notions of clustering. It’s conceptually interesting, because it’s the second example I’ve seen where NP hardness is subverted by changing the problem definition subtle but reasonable way. Essentially, they show that if any near-approximation to an optimal solution is good, then it’s computationally easy to find a near-optimal solution. This subtle shift bears serious thought. A similar one occurred in our ranking paper with respect to minimum feedback arcset. With two known examples, it suggests that many more NP-complete problems might be finessed into irrelevance in this style.
  2. Yury Lifshits and Shengyu Zhang, Combinatorial Algorithms for Nearest Neighbors, Near-Duplicates, and Small-World Design. The basic idea of this paper is that actually creating a metric with a valid triangle inequality inequality is hard for real-world problems, so it’s desirable to have a datastructure which works with a relaxed notion of triangle inequality. The precise relaxation is more extreme than you might imagine, implying the associated algorithms give substantial potential speedups in incomparable applications. Yuri tells me that a cover tree style “true O(n) space” algorithm is possible. If worked out and implemented, I could imagine substantial use.
  3. Elad Hazan and Satyen Kale Better Algorithms for Benign Bandits. The basic idea of this paper is that in real-world applications, an adversary is less powerful than is commonly supposed, so carefully taking into account the observed variance can yield an algorithm which works much better in practice, without sacrificing the worst case performance.
  4. Kevin Matulef, Ryan O’Donnell, Ronitt Rubinfeld, Rocco Servedio, Testing Halfspaces. The basic point of this paper is that testing halfspaces is qualitatively easier than finding a good half space with respect to 0/1 loss. Although the analysis is laughably far from practical, the result is striking, and it’s plausible that the algorithm works much better than the analysis. The core algorithm is at least conceptually simple: test that two correlated random points have the same sign, with “yes” being evidence of a halfspace and “no” not.
  5. I also particularly liked Yuval Peres‘s invited talk The Unreasonable Effectiveness of Martingales. Martingale’s are endemic to learning, especially online learning, and I suspect we can tighten and clarify several arguments using some of the techniques discussed.

Adversarial Academia

One viewpoint on academia is that it is inherently adversarial: there are finite research dollars, positions, and students to work with, implying a zero-sum game between different participants. This is not a viewpoint that I want to promote, as I consider it flawed. However, I know several people believe strongly in this viewpoint, and I have found it to have substantial explanatory power.

For example:

  1. It explains why your paper was rejected based on poor logic. The reviewer wasn’t concerned with research quality, but rather with rejecting a competitor.
  2. It explains why professors rarely work together. The goal of a non-tenured professor (at least) is to get tenure, and a case for tenure comes from a portfolio of work that is undisputably yours.
  3. It explains why new research programs are not quickly adopted. Adopting a competitor’s program is impossible, if your career is based on the competitor being wrong.

Different academic groups subscribe to the adversarial viewpoint in different degrees. In my experience, NIPS is the worst. It is bad enough that the probability of a paper being accepted at NIPS is monotonically decreasing in it’s quality. This is more than just my personal experience over a number of years, as it’s corroborated by others who have told me the same. ICML (run by IMLS) used to have less of a problem, but since it has become more like NIPS over time, it has inherited this problem. COLT has not suffered from this problem as much in my experience, although it had other problems related to the focus being defined too narrowly. I do not have enough experience with UAI or KDD to comment there.

There are substantial flaws in the adversarial viewpoint.

  1. The adversarial viewpoint makes you stupid. When viewed adversarially, any idea has crippling disadvantages and no advantages. Contorting your viewpoint enough to make this true damages your ability to conduct research. In short, it promotes poor mental hygiene.
  2. Many activities become impossible. Doing research is in general extremely hard, so there are many instances where working with other people can allow you to do things which are otherwise impossible.
  3. The previous two disadvantages apply even more strongly for a community—good ideas are more likely to be missed, change comes slowly, and often with steps backward.
  4. At it’s most basic level, the assumption that research is zero-sum is flawed, because the process of research is not done in a closed system. If the rest of society at large discovers that research is valuable, then the budget increases.

Despite these disadvantages, there is a substantial advantage as well: you can materially protect and aid your career by rejecting papers, preventing grants, and generally discriminating against key people doing interesting but competitive work.

The adversarial viewpoint has a validity in proportion to the number of people subscribing to it. For those of us who would like to deemphasize the adversarial viewpoint, what’s unclear is: how?

One concrete thing is: use Arxiv. For a long time, physicists have adopted an Arxiv-first philosophy, which I’ve come to respect. Arxiv functions as a universal timestamp which decreases the power of an adversarial reviewer. Essentially, you avoid giving away the power to muddy the track of invention. I’m expecting to use Arxiv for essentially all my past-but-unpublished and future papers.

It is plausible that limiting the scope of bidding, as Andrew McCallum suggested at the last ICML, and as is effectively implemented at this ICML, will help. The system of review at journals might also help for the same reason. In my experience as an author, if an anonymous reviewer wants to kill a paper they usually succeed. Most area chairs or program chairs are more interested in avoiding conflict with the reviewer (who they picked and may consider a friend) than reading the paper to determine the illogic of the review (which is a difficult task that simply cannot be done for all papers). NIPS experimented with a reputation system for reviewers last year, but I’m unclear on how well it worked, as an author’s score for a review and a reviewer’s score for the paper may be deeply correlated, revealing little additional information.

Public discussion of research can help with this, because very poor logic simply doesn’t stand up under public scrutiny. While I hope to nudge people in this direction, it’s clear that most people aren’t yet comfortable with public discussion.