Interesting papers at ICML 2014

This year’s ICML had several papers which I want to read through more carefully and understand better.

  1. Chun-Liang Li, Hsuan-Tien Lin, Condensed Filter Tree for Cost-Sensitive Multi-Label Classification. Several tricks accumulate to give a new approach for addressing cost sensitive multilabel classification.
  2. Nikos Karampatziakis and Paul Mineiro, Discriminative Features via Generalized Eigenvectors. An efficient, effective eigenvalue solution for supervised learning yields compelling nonlinear performance on several datasets.
  3. Nir Ailon, Zohar Karnin, Thorsten Joachims, Reducing Dueling Bandits to Cardinal Bandits. An effective method for reducing dueling bandits to normal bandits that extends to contextual situations.
  4. Pedro Pinheiro, Ronan Collobert, Recurrent Convolutional Neural Networks for Scene Labeling. Image parsing remains a challenge, and this is plausibly a step forward.
  5. Cicero Dos Santos, Bianca Zadrozny, Learning Character-level Representations for Part-of-Speech Tagging. Word morphology is clearly useful information, and yet almost all ML-for-NLP applications ignore it or hard-code it (by stemming).
  6. Alekh Agarwal, Daniel Hsu, Satyen Kale, John Langford, Lihong Li, Robert Schapire, Taming the Monster: A Fast and Simple Algorithm for Contextual Bandits. Statistically efficient interactive learning is now computationally feasible. I wish this one had been done in time for the NIPS tutorial 🙂
  7. David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, Martin Riedmiller, Deterministic Policy Gradient Algorithms. A reduction in variance from working out the deterministic limit of policy gradient make policy gradient approaches look much more attractive.

Edit: added one that I forgot.

2011 ML symposium and the bears

The New York ML symposium was last Friday. Attendance was 268, significantly larger than last year. My impression was that the event mostly still fit the space, although it was crowded. If anyone has suggestions for next year, speak up.

The best student paper award went to Sergiu Goschin for a cool video of how his system learned to play video games (I can’t find the paper online yet). Choosing amongst the submitted talks was pretty difficult this year, as there were many similarly good ones.

By coincidence all the invited talks were (at least potentially) about faster learning algorithms. Stephen Boyd talked about ADMM. Leon Bottou spoke on single pass online learning via averaged SGD. Yoav Freund talked about parameter-free hedging. In Yoav’s case the talk was mostly about a better theoretical learning algorithm, but it has the potential to unlock an exponential computational complexity improvement via oraclization of experts algorithms… but some serious thought needs to go in this direction.

Unrelated, I found quite a bit of truth in Paul’s talking bears and Xtranormal always adds a dash of funny. My impression is that the ML job market has only become hotter since 4 years ago. Anyone who is well trained can find work, with the key limiting factor being “well trained”. In this environment, efforts to make ML more automatic and more easily applied are greatly appreciated. And yes, Yahoo! is still hiring too 🙂

KDD and MUCMD 2011

At KDD I enjoyed Stephen Boyd‘s invited talk about optimization quite a bit. However, the most interesting talk for me was David Haussler‘s. His talk started out with a formidable load of biological complexity. About half-way through you start wondering, “can this be used to help with cancer?” And at the end he connects it directly to use with a call to arms for the audience: cure cancer. The core thesis here is that cancer is a complex set of diseases which can be distentangled via genetic assays, allowing attacking the specific signature of individual cancers. However, the data quantity and complex dependencies within the data require systematic and relatively automatic prediction and analysis algorithms of the kind that we are best familiar with.

Some of the papers which interested me are:

  1. Kai-Wei Chang and Dan Roth, Selective Block Minimization for Faster Convergence of Limited Memory Large-Scale Linear Models, which is about effectively using a hard-example cache to speedup learning.
  2. Leland Wilkinson, Anushka Anand, and Dang Nhon Tuan, CHIRP: A New Classifier Based on Composite Hypercubes on Iterated Random Projections. The bar on creating new classifiers is pretty high. The approach here uses a combination of random projection and partition which appears to be compelling for some nonlinear and relatively high computation settings. They do a more thorough empirical evaluation than most papers.
  3. Zhuang Wang, Nemanja Djuric, Koby Crammer, and Slobodan Vucetic Trading Representability for Scalability: Adaptive Multi-Hyperplane Machine for Nonlinear Classification. The paper explores an interesting idea: having lots of weight vectors (effectively infinity) associated with a particular label, showing that algorithms on this representation can deal with lots of data as per linear predictors, but with superior-to-linear performance. The authors don’t use the hashing trick, but their representation is begging for it.
  4. Michael Bruckner and Tobias Scheffer, Stackelberg Games for Adversarial Prediction Problem. This is about email spam filtering, where the authors use a theory of adversarial equilibria to construct a more robust filter, at least in some cases. Demonstrating this on noninteractive data is inherently difficult.

There were also three papers that were about creating (or perhaps composing) learning systems to do something cool.

  1. Gideon Dror, Yehuda Koren, Yoelle Maarek, and Idan Szpektor, I Want to Answer, Who Has a Question? Yahoo! Answers Recommender System. This is about how to learn to route a question to the appropriate answerer automatically.
  2. Yehuda Koren, Edo Liberty, Yoelle Maarek, and Roman Sandler, Automatically Tagging Email by Leveraging Other Users’ Folders. This is about helping people organize their email with machine learning.
  3. D. Sculley, Matthew Eric Otey, Michael Pohl, Bridget Spitznagel, John Hainsworth, Yunkai Zhou, Detecting Adversarial Advertisements in the Wild. The title is an excellent abstract here, and there are quite a few details about the implementation.

I also attended MUCMD, a workshop on the Meaningful Use of Complex Medical Data shortly afterwards. This workshop is about the emergent area of using data to improve medicine. The combination of electronic health records, the economic importance of getting medicine right, and the relatively weak use of existing data implies there is much good work to do.

This finally gave us a chance to discuss radically superior medical trial designs based on work in exploration and learning 🙂

Jeff Hammerbacher‘s talk was a hilarilously blunt and well stated monologue about the need and how to gather data in a usable way.

Amongst the talks on using medical data, Suchi Saria‘s seemed the most mature. They’ve constructed a noninvasive test for problem infants which is radically superior to the existing Apgar score according to leave-one-out cross validation.

From the doctor’s side, there was discussion of the deep balkanization of data systems within hospitals, efforts to overcome that, and the (un)trustworthiness of data. Many issues clearly remain here, but it also looks like serious progress is being made.

Overall, the workshop went well, with the broad cross-section of talks providing quite a bit of extra context you don’t normally see. It left me believing that a community centered on MUCMD is rising now, with attendant workshops, conferences, etc… to be expected.

Interesting thing at UAI 2011

I had a chance to attend UAI this year, where several papers interested me, including:

  1. Hoifung Poon and Pedro Domingos Sum-Product Networks: A New Deep Architecture. We’ve already discussed this one, but in a nutshell, they identify a large class of efficiently normalizable distributions and do learning with it.
  2. Yao-Liang Yu and Dale Schuurmans, Rank/norm regularization with closed-form solutions: Application to subspace clustering. This paper is about matrices, and in particular they prove that certain matrices are the solution of matrix optimizations. I’m not matrix inclined enough to fully appreciate this one, but I believe many others may be, and anytime closed form solutions come into play, you get 2 order of magnitude speedups, as they show experimentally.
  3. Laurent Charlin, Richard Zemel and Craig Boutilier, A Framework for Optimizing Paper Matching. This is about what works in matching papers to reviewers, as has been tested at several previous NIPS. We are looking into using this system for ICML 2012.

In addition I wanted to comment on Karl Friston‘s invited talk. At the outset, he made a claim that seems outlandish to me: The way the brain works is to minimize surprise as measured by a probabilistic model. The majority of the talk was not actually about this—instead it was about how probabilistic models can plausibly do things that you might not have thought possible, such as birdsong. Nevertheless, I think several of us in the room ended up stuck on the claim in questions afterward.

My personal belief is that world modeling (probabilistic or not) is a useful subroutine for intelligence, but it could not possibly be the entirety of intelligence. A key reason for this is the bandwidth of our senses—we simply take in too much information to model everything with equal attention. It seems critical for the efficient functioning of intelligence that only things which might plausibly matter are modeled, and only to the degree that matters. In other words, I do not model the precise placement of items on my desk, or even the precise content of my desk, because these details simply do not matter.

This argument can be made in another way. Suppose for the moment that all the brain does is probabilistic modeling. Then, the primary notion of failure to model is “surprise”, which is low probability events occurring. Surprises (stumbles, car wrecks, and other accidents) certainly can be unpleasant, but this could be correct if modeling is a subroutine as well. The clincher is that there are many unpleasant things which are not surprises, including keeping your head under water, fasting, and self-inflicted wounds.

Accounting for the unpleasantness of these events requires more than probabilistic modeling. In other words, it requires rewards, which is why reinforcement learning is important. As a byproduct, rewards also naturally create a focus of attention, addressing the computational efficiency issue. Believing that intelligence is just probabilistic modeling is another example of simple wrong answer.

ICML 2011 and the future

Unfortunately, I ended up sick for much of this ICML. I did manage to catch one interesting paper:

Richard Socher, Cliff Lin, Andrew Y. Ng, and Christopher D. Manning Parsing Natural Scenes and Natural Language with Recursive Neural Networks.

I invited Richard to share his list of interesting papers, so hopefully we’ll hear from him soon. In the meantime, Paul and Hal have posted some lists.

the future

Joelle and I are program chairs for ICML 2012 in Edinburgh, which I previously enjoyed visiting in 2005. This is a huge responsibility, that we hope to accomplish well. A part of this (perhaps the most fun part), is imagining how we can make ICML better. A key and critical constraint is choosing things that can be accomplished. So far we have:

  1. Colocation. The first thing we looked into was potential colocations. We quickly discovered that many other conferences precomitted their location. For the future, getting a colocation with ACL or SIGIR, seems to require more advanced planning. If that can be done, I believe there is substantial interest—I understand there was substantial interest in the joint symposium this year. What we did manage was achieving a colocation with COLT and there is an outside chance that a machine learning summer school will precede the main conference. The colocation with COLT is in both time and space, with COLT organized as (essentially) a separate track in a nearby building. We look forward to organizing a joint invited session or two with the COLT program chairs.
  2. Tutorials. We don’t have anything imaginative here, except for pushing for quality tutorials, probably through a mixture of invitations and a call. There is a small chance we’ll be able to organize a machine learning summer school as a prequel, which would be quite cool, but several things have to break right for this to occur.
  3. Conference. We are considering a few tinkerings with the conference format.
    1. Shifting a conference banquet to be during the workshops, more tightly integrating the workshops.
    2. Having 3 nights of posters (1 per day) rather than 2 nights. This provides more time/poster, and avoids halving talks and posters appear on different days.
    3. Having impromptu sessions in the evening. Two possibilities here are impromptu talks and perhaps a joint open problems session with COLT. I’ve made sure we have rooms available so others can organize other things.
    4. We may go for short presentations (+ a poster) for some papers, depending on how things work out schedulewise. My opinions on this are complex. ICML is traditionally multitrack with all papers having a 25 minute-ish presentation. As a mechanism for research, I believe this is superior to a single track conference of a similar size because:
      1. Typically some talk of potential interest can always be found by participants avoiding the boredom problem which comes up at a single track conference
      2. My experience is that program organizers have a limited ability to foresee which talks are of most interest, commonly creating a misallocation of attention.

      On the other hand, there are clearly limits to the number of tracks that are reasonable, and I feel like ICML (especially with COLT cotimed) is near the upper limit. There are also some papers which have a limited scope of interest, for which a shorter presentation is reasonable.

  4. Workshops. A big change here—we want to experiment with 2 days of workshops rather than 1. There seems to be demand for it, as the number of workshops historically is about 10, enough that it’s easy to imagine people commonly interested in 2 workshops. It’s also the case that NIPS has had to start rejecting a substantial fraction of workshop submissions for space reasons. I am personally a big believer in workshops as a mechanism for further research, so I hope this works out well.
  5. Journal integration. I tend to believe that we should be shifting to a journal format for ICML papers, as per many past discussions. After thinking about this the easiest way seems to be simply piggybacking on existing journals such as JMLR and MLJ by essentially declaring that people could submit there first, and if accepted, and not otherwise presented at a conference, present at ICML. This was considered too large a change, so it is not happening. Nevertheless, it is a possible tweak that I believe should be considered for the future. My best guess is that this would never displace the baseline conference review process, but it would help some papers that don’t naturally fit into a conference format while keeping quality high.
  6. Reviewing. Drawing on plentiful experience with what goes wrong, I think we can create the best reviewing system for conferences. We are still debating exact details here while working through what is possible in different conference systems. Nevertheless, some basic goals are:
    1. Double Blind [routine now] Two identical papers with different authors should have the same chance of success. In terms of reviewing quality, I think double blind makes little difference in the short term, but the public commitment to fair reviewing makes a real difference in the long term.
    2. Author Feedback [routine now] Author feedback makes a difference in only a small minority of decisions, but I believe its effect is larger as (a) reviewer quality improves and (b) reviewer understanding improves. Both of these are silent improvers of quality. Somewhat less routine, we are seeking a mechanism for authors to be able to provide feedback if additional reviews are requested, as I’ve become cautious of the late-breaking highly negative review.
    3. Paper Editing. Geoff Gordon tweaked AIStats this year to allow authors to revise papers during feedback. I think this is helpful, because it encourages authors to fix clarity issues immediately, rather than waiting longer. This helps with some things, but it is not a panacea—authors still have to convince reviewers their paper is worthwhile, and given the way people are first impressions are lasting impressions.
    4. Multisource reviewing. We want all of the initial reviews to be assigned by good yet different mechanisms. In the past, I’ve observed that the source of reviewer assignments can greatly bias the decision outcome, all the way from “accept with minor revisions” to “reject” in the case of a JMLR submission that I had. Our plan at the moment is that one review will be assigned by bidding, one by a primary area chair, and one by a secondary area chair.
    5. No single points of failure. When Bob Williamson and I were PC members for learning theory at NIPS, we each came to a decisions given reviews and then reconciled differences. This made a difference on about 5-10% of decisions, and (I believe) improved overall quality a bit. More generally, I’ve seen instances where an area chair has an unjustifiable dislike for a paper and kills it off, which this mechanism avoids.
    6. Speed. In general, I believe speed and good decision making are antagonistic. Nevertheless, we believe it is important to try to do the reviewing both quickly and well. Doing things quickly implies that we can push the submission deadline back later, providing authors more time to make quality papers. Key elements of doing things well fast are: good organization (that’s all on us), light loads for everyone involved (i.e. not too many papers), crowd sourcing (i.e. most decisions made by area chairs), and some amount of asynchrony. Altogether, we believe at the moment that two weeks can be shaved from our reviewing process.
  7. Website. Traditionally at ICML, every new local organizer was responsible for creating a website. This doesn’t make sense anymore, because substantial work is required there, which can and should be amortized across the years so that the website can evolve to do more for the community. We plant to create a permanent website, based around some combination of icml.cc and machinelearning.org. I think this just makes sense.
  8. Publishing. We are thinking about strongly encouraging authors to use arxiv for final submissions. This provides a lasting backing store for ICML papers, as well as a mechanism for revisions. The reality here is that some mistakes get into even final drafts, so a way to revise for the long term is helpful. We are also planning to videotape and make available all talks, although a decision between videolectures and Weyond has not yet been made.

Implementing all the changes above is ambitious, but I believe feasible and that each is individually beneficial and to some extent individually evaluatable. I’d like to hear any thoughts you have on this. It’s also not too late if you have further suggestions of your own.