Online convex optimization at COLT

At ICML 2003, Marty Zinkevich proposed the online convex optimization setting and showed that a particular gradient descent algorithm has regret O(T0.5) with respect to the best predictor where T is the number of rounds. This seems to be a nice model for online learning, and there has been some significant follow-up work.

At COLT 2006 Elad Hazan, Adam Kalai, Satyen Kale, and Amit Agarwal presented a modification which takes a Newton step guaranteeing O(log T) regret when the first and second derivatives are bounded. Then they applied these algorithms to portfolio management at ICML 2006 (with Robert Schapire) yielding some very fun graphs.

Regularization = Robustness

The Gibbs-Jaynes theorem is a classical result that tells us that the highest entropy distribution (most uncertain, least committed, etc.) subject to expectation constraints on a set of features is an exponential family distribution with the features as sufficient statistics. In math,

argmax_p H(p)
s.t. E_p[f_i] = c_i

is given by e^{\sum \lambda_i f_i}/Z. (Z here is the necessary normalization constraint, and the lambdas are free parameters we set to meet the expectation constraints).

A great deal of statistical mechanics flows from this result, and it has proven very fruitful in learning as well. (Motivating work in models in text learning and Conditional Random Fields, for instance. ) The result has been demonstrated a number of ways. One of the most elegant is the “geometric” version here.

In the case when the expectation constraints come from data, this tells us that the maximum entropy distribution is exactly the maximum likelihood distribution in the exponential family. It’s a surprising connection and the duality it flows from appears in a wide variety of work. (For instance, Martin Wainwright’s approximate inference techniques rely (in essence) on this result.)

In practice, we know that Maximum Likelihood with a lot of features is bound to overfit. The traditional trick is to pull a sleight of hand in the derivation. We start with the primal entropy problem, move to the dual, and in the dual add a “prior” that penalizes the lambdas. (Typically an l_1 or l_2 penalty or constraint.) This game is played in a variety of papers, and it’s a sleight of hand because the penalties don’t come from the motivating problem (the primal) but rather get tacked on at the end. In short: it’s a hack.

So I realized a few months back, that the primal (entropy) problem that regularization relates to is remarkably natural. Basically, it tells us that regularization in the dual corresponds directly to uncertainty (mini-max) about the constraints in the primal. What we end up with is a distribution p that is robust in the sense that it maximizes the entropy subject to a large set of potential constraints. More recently, I realized that I’m not even close to having been the first to figure that out. Miroslav Dudík, Steven J. Phillips and Robert E. Schapire, have a paper that derives this relation and then goes a step further to show what performance guarantees the method provides. It’s a great paper and I hope you get a chance to check it out:

Performance guarantees for regularized maximum entropy density estimation.

(Even better: if you’re attending ICML this year, I believe you will see Rob Schapire talk about some of this and related material as an invited speaker.)

It turns out the idea generalizes quite a bit. In Robust design of biological experiments. P. Flaherty, M. I. Jordan and A. P. Arkin show a related result where regularization directly follows from a robustness or uncertainty guarantee. And if you want the whole, beautiful framework you’re in luck. Yasemin Altun and Alex Smola have a paper (that I haven’t yet finished, but at least begins very well) that generalizes the regularized maximum entropy duality to a whole class of statistical inference procedures. If you’re at COLT, you can check this out as well.

Unifying Divergence Minimization and Statistical Inference via Convex Duality

The deep, unifying result seems to be what the title of the post says: robustness = regularization. This viewpoint makes regularization seem like much less of a hack, and goes further in suggesting just what range of constants might be reasonable. The work is very relevant to learning, but the general idea goes beyond to various problems where we only approximately know constraints.

IJCAI is out of season

IJCAI is running January 6-12 in Hyderabad India rather than a more traditional summer date. (Presumably, this is to avoid melting people in the Indian summer.)

The paper deadline(June 23 abstract / June 30 submission) are particularly inconvenient if you attend COLT or ICML. But on the other hand, it’s a good excuse to visit India.

Explorations of Exploration

Exploration is one of the big unsolved problems in machine learning. This isn’t for lack of trying—there are many models of exploration which have been analyzed in many different ways by many different groups of people. At some point, it is worthwhile to sit back and see what has been done across these many models.

  • Reinforcement Learning (1). Reinforcement learning has traditionally focused on Markov Decision Processes where the next state s’ is given by a conditional distribution P(s’|s,a) given the current state s and action a. The typical result here is that certain specific algorithms controlling an agent can behave within e of optimal for horizon T except for poly(1/e,T,S,A) “wasted” experiences (with high probability). This started with E3 by Satinder Singh and Michael Kearns. Sham Kakade’s thesis has significant discussion. Extensions have typically been of the form “under extra assumptions, we can prove more”, for example Factored-E3 and Metric-E3. (It turns out that the number of wasted samples can be less than the number of bits required to describe an MDP.) A weakness of all these results is that they rely upon (a) assumptions which are often false for real applications, (b) state spaces are too large, and (c) make a gurantee that is rather weak. Good performance is only guaranteed after suffering the possibly catastrophic consequences of exploration.
  • Reinforcement Learning (2). Several recent papers have been attempting to analyze reinforcement learning via reduction. To date, all results are either nonconstructive or involve the use of various hints (oracle access to an optimal policy, the distribution over states of an optimal policy etc…) which short-circuit the need to explore. Obviously, these hints are not always available for real-world problems.
  • Reinforcement Learning (3). Much of the rest of reinforcement learning has something to do with exploration, but it’s difficult to summarize succinctly.
  • Online Learning. The n-armed bandit setting can be thought of as an MDP with one state and many actions. In some variants, there is even an adversary who chooses the payoffs of the arms in a non-stochastic manner. The typical result here says that you can compete well with the best constant action after some wasted actions. The exact number of wasted actions varies with the precise setting, but it is typically linear in the number of actions. This work can be traced back to (at least) Gittins indices which (unfortunately) don’t seem to have a good description available on the internet.
  • Active Learning(1) The common current use of this term has to do with “selective sampling”=choosing unlabeled samples to label so as to minimize the number of labels required to learn a good predictor (typically a classifier). A typical result has the form: Given that your classifier comes from restricted class C and the labeled data distribution obeys some constraint, the number of adaptively labeled samples required O(log (1/e)) where e is the error rate. (It turns out that the even noisy distributions are allowed.) The constraints on distributions and hypothesis spaces required to achieve these speedups are often severe.
  • Active Learning(2) Membership query learning is another example. The distinguishing difference with respect to selective sampling is that the a labeled can be requested for any unlabeled point (not just those drawn according to some natural distribution). Several relatively strong results hold for membership query learning, but there is a significant drawback: it seems that the ability to query for a label on an arbitrary point is not very natural. For example, imagine query whether a text document is about sports or politics when the text is generated at random.
  • Active Learning(3) Experimental design (which is mostly based in statistics), is often about finding the extrema of some function rather than generalization. Often, the data generating distribution is assumed to come from some specific parametric family. Unfortunately, my knowledge is sketchy here.

The striking thing about all of these models is that they fail to apply to typical real world problems. This failure is either by design (making assumptions which are simply rarely met), by failure to prove interesting results, or both.

And yet, many of the pieces are here. Active learning deals with generalization, online learning can deal with adversarial situations, and reinforcement learning deals with the situation where your choices influence what you can later learn. At a high level, there is much room for research here by design of a new model of exploration, new theoretical statements, or both.

I’ve been told “exploration is too hard”, and that’s a good warning to bear in mind, but I’m still hopeful for progress.

Server Shift, Site Tweaks, Suggestions?

Hunch.net has shifted to a new server, and wordpress has been updated to the latest version. If anyone notices difficulties associated with this, please comment. (Note that DNS updates can take awhile so the shift may not yet be complete.)
More generally, this is a good time to ask for suggestions. What would make this blog more useful?