The New York ML symposium was last Friday. There were 303 registrations, up a bit from last year. I particularly enjoyed talks by Bill Freeman on vision and ML, Jon Lenchner on strategy in Jeopardy, and Tara N. Sainath and Brian Kingsbury on deep learning for speech recognition. If anyone has suggestions or thoughts for next year, please speak up.
I also attended Strata + Hadoop World for the first time. This is primarily a trade conference rather than an academic conference, but I found it pretty interesting as a first time attendee. This is ground zero for the Big data buzzword, and I see now why. It’s about data, and the word “big” is so ambiguous that everyone can lay claim to it. There were essentially zero academic talks. Instead, the focus was on war stories, product announcements, and education. The general level of education is much lower—explaining Machine Learning to the SQL educated is the primary operating point. Nevertheless that’s happening, and the fact that machine learning is considered a necessary technology for industry is a giant step for the field. Over time, I expect the industrial side of Machine Learning to grow, and perhaps surpass the academic side, in the same sense as has already occurred for chip design. Amongst the talks I could catch, I particularly liked the Github, Zillow, and Pandas talks. Ted Dunning also gave a particularly masterful talk, although I have doubts about the core Bayesian Bandit approach(*). The streaming k-means algorithm they implemented does look quite handy.
(*) The doubt is the following: prior elicitation is generally hard, and Bayesian techniques are not robust to misspecification. This matters in standard supervised settings, but it may matter more in exploration settings where misspecification can imply data starvation.