An AI Miracle Malcontent

The stark success of OpenAI’s GPT4 model surprised me shifting my view from “really good autocomplete” (roughly inline with intuitions here) to a dialog agent exhibiting a significant scope of reasoning and intelligence. Some of the MSR folks did a fairly thorough study of capabilities which seems like a good reference. I think of GPT4 as an artificial savant: super-John capable in some language-centric tasks like style and summarization with impressive yet more limited abilities in other domains like spatial and reasoning intelligence.

And yet, I’m unhappy with mere acceptance because there is a feeling that a miracle happened. How is this not a miracle, at least with hindsight? And given this, it’s not surprising to see folks thinking about more miracles. The difficulty with miracle thinking is that it has no structure upon which to reason for anticipation of the future, prepare for it, and act rationally. Given that, I wanted to lay out my view in some detail and attempt to understand enough to de-miracle what’s happening and what may come next.

Deconstructing The Autocomplete to Dialog Miracle
One of the ironies of the current situation is that an organization called “OpenAI” created AI and isn’t really open about how they did it. That’s an interesting statement about economic incentives and focus. Nevertheless, back when they were publishing, the Instruct GPT paper suggested something interesting: that reinforcement learning on a generative model substrate was remarkably effective—good for 2 to 3 orders of magnitude improvement in the quality of response with a tiny (in comparison to language sources for next word prediction) amount of reinforcement learning. My best guess is that this was the first combination of 3 vital ingredients.

  1. Learning to predict the next word based on vast amounts of language data from the internet. I have no idea how much, but wouldn’t be surprised if it’s a million lifetimes of reading generated by a billion people. That’s a vast amount of information there with deeply intermixed details about the world and language.
    1. Why not other objectives? Well, they wanted something simple so they could maximize scaling. There may indeed be room for improvement in choice of objective.
    2. Why language? Language is fairy unique amongst information in that it’s the best expression of conscious thought. There is thought without language (yes, I believe animals think in various ways), but you can’t really do language without thought.
  2. The use of a large deep transformer model (pseudocode here) to absorb all of this information. Large here presumably implies training on many GPUs with both data and model parallelism. I’m sure there are many fine engineering tricks here. I’m unclear on the scale, but expect the answer is more than thousands and less than millions.
    1. Why transformer models? At a functional level, they embed ‘soft attention’ (=ability to look up a value with a key in a gradient friendly way). At an optimization level, they are GPU-friendly.
    2. Why deep? The drive to minimize word prediction error in the context of differentiable depth creates a pressure to develop useful internal abstractions.
  3. Reinforcement learning on a small amount of data which ‘awakens’ a dialog agent. With the right prompt (=prefix language) engineering a vanilla large language model can address many tasks as the information is there, but it’s awkward and clearly not a general purpose dialog agent. At the same time, the learned substrate is an excellent representation upon which to apply RL creating a more active agent while curbing an inherited tendency to mimic internet flamebait.
    1. Why reinforcement learning? One of the oddities of language is that there is more than one way of saying things. Hence, the supervised learning view that there is a right answer and everything else is wrong sets up inherent conflicts in the optimization. Hence, “reinforcement learning from human feedback” pairs inverse reinforcement learning to discover a reward function and basic reinforcement learning to achieve better performance. What’s remarkable about this is that the two-step approach is counter to the information processing inequality.

The overall impression that I’m left with is something like the “ghost of the internet”. If you ask the internet for the answer to a question on the best forum available and get an answer, it might be in the ballpark of as useful and as correct as that which GPT4 provides (notably, in seconds). Peter Lee’s book on the application to medicine is pretty convincing. There are pluses and minuses here—GPT4’s abstraction of language tasks like summarization and style appear super-human, or at least better than I can manage. For commonly discussed content (e.g. medicine) it’s fairly solid, but for less commonly discussed content (say, Battletech fan designs) it becomes sketchy as the internet gives out. There are obviously times when it errs (often egregiously in a fully confident way), but that’s also true in internet forums. I specifically don’t trust GPT4 with math and often find it’s reasoning and abstraction abilities shaky, although it’s deeply impressive that they exist at all. And driving a car is out because it’s a task that you can’t really describe.

What about the future?
There’s been a great deal about the danger of AI discussed recently, and quite a mess of misexpectations about where we are.

  1. Is GPT4 and future variants the answer to [insert intelligence-requiring problem here]? GPT4 seems most interesting as a language intelligence. It’s clearly useful as an advisor or a brainstormer. The meaning of “GPT5” isn’t clear, but I would expect substantial shifts in core algorithms/representations are necessary for mastering other forms of intelligence like memory, skill formation, information gathering, and optimized decision making.
  2. Are generative models the end of consensual reality? Human societies seem to have a systematic weakness in that people often prefer a consistent viewpoint even at the expense of fairly extreme rationalization. That behavior in large language models is just looking at our collective behavior through a mirror. Generative model development (both language and video) do have a real potential to worsen this. I believe we should be making real efforts as a society to harden and defend objective reality in a multiple ways. This is not specifically about AI, but it would address a class of AI-related concerns and improve society generally.
  3. Is AI about to kill everyone? Yudkowski’s editorial gives the impression that a Terminator style apocalypse is just around the corner. I’m skeptical about the short term (the next several years), but the longer term requires thought.
    1. In the short term there are so many limitations of even GPT4 (even though it’s a giant advance) that I both lack the imagination to see a path to “everyone dies” and I expect it would be suicidal for an AI as well. GPT4, as an AI, is using the borrowed intelligence of the internet. Without that source it’s just an amalgamation of parameters of no interesting capabilities.
    2. For the medium term, I think there’s a credible possibility that drone warfare becomes ultralethal inline with this imagined future. You can already see drone warfare in the Ukraine-Russia war significantly increasing the lethality of a battlefield. This requires some significant advances, but nothing seems outlandish. Counterdrone technology development and limits on usage inline with other war machines seems prudent.
    3. For the longer term, Vinge’s classical singularity essay is telling here as he lays out the inevitability of developing intelligence for competitive reasons. Economists are often fond of pointing out how job creation has accompanied previous mechanization induced job losses and yet my daughter points out how we keep increasing the amount of schooling children must absorb to be capable members of society. It’s not hard to imagine a desolation of jobs in a decade or two where AIs can simply handle almost all present-day jobs and most humans can’t skill-up to be economically meaningful. Our society is not prepared for this situation—it seems like a quite serious and possibly inevitable possibility. Positive models for a nearly-fully-automated society are provided by Star Trek and Iain Banks although science fiction is very far from a working proposal for a working society.
    4. I’m skeptical about a Lawnmower Man like scenario where a superintelligence suddenly takes over the world. In essence, cryptographic barriers are plausibly real, even to a superintelligence. As long as that’s so, the thing to watch out for is excessive concentrations of power without oversight. We already have a functioning notion of super-human intelligence in organizational intelligence and are familiar with techniques for restraining organizational intelligence into useful-for-society channels. Starting with this and improving seems reasonable.

2 Replies to “An AI Miracle Malcontent”

  1. Well argued. One point about the information processing inequality: Not sure if you have seen Sebastien Bubeck talk about GPT4’s pink unicorn in TikZ. Basically, there’s evidence that RLHF, in the process of making the LLM easier to prompt, makes the model less capable.

  2. In the InstructGPT paper, at least, there was an attempt to keep the log loss perf while tuning with RL—it’s listed as “PPO-ptx”. So, a natural question is: Which RL is being done? My expectation is that the PPO-ptx approach is somewhat more complex to apply.

Comments are closed.