By: Stefanie Jegelka and Ameet Talwalkar (ICML21 Communication Chairs)
With ICML 2021 underway, we wanted to briefly highlight the upcoming invited talks. A general theme of the invited talks this year is “machine learning for science.” The Program Chairs (Marina Meila and Tong Zhang) have invited world-renowned scientists from various disciplines to discuss their problems and the corresponding machine learning challenges. By exposing the machine learning community to these fascinating problems, we hope that we can help to further expand the applicability of machine learning to a wide range of scientific domains.
- Daphne Koller (Tuesday, July 20th at 8am PDT): Dr. Koller is a pioneer in the field of machine learning, and is currently the Founder and CEO of Insitro, which leverages machine learning for drug discovery. She was the Rajeev Motwani Professor of Computer Science at Stanford University, where she served on the faculty for 18 years. She was the co-founder, co-CEO and President of Coursera, and the Chief Computing Officer of Calico, an Alphabet company in the healthcare space. She received the MacArthur Foundation Fellowship in 2004, was awarded the ACM Prize in Computing in 2008, and was recognized as one of TIME Magazine’s 100 most influential people in 2012.
- Xiao Cunde and Dahe Qin (Tuesday, July 20th at 8pm PDT): Dr. Cunde is a glaciologist and Deputy Director of the Institute of the Climate System, Chinese Academy of Meteorological Sciences. He has worked in the fields of polar glaciology and meteorology since 1997. His major research focus has been ice core studies relating to paleo-climate and paleo-environment, and present day cold region meteorological and glaciological processes that impact environmental and climatic changes. Dr. Qin is the Former Director of the China Meteorological Administration. He is a glaciologist and the first Chinese ever to cross the South Pole. He was a member of the 1989 International Cross South Pole Expedition and has published numerous ground-breaking articles, using evidence gathered from his Antarctic expeditions.
- Esther Duflo (Wednesday, July 21st at 8am PDT): Dr. Duflo is the Abdul Latif Jameel Professor of Poverty Alleviation and Development Economics in the Department of Economics at MIT and a co-founder and co-director of the Abdul Latif Jameel Poverty Action Lab (J-PAL). In her research, she seeks to understand the economic lives of the poor, with the aim to help design and evaluate social policies. She has worked on health, education, financial inclusion, environment and governance. In 2019, she received a Nobel Prize in Economic Sciences “for their experimental approach to alleviating global poverty”. In particular, she and co-authors have introduced a new approach to obtaining reliable answers about the best ways to fight global poverty.
- Edward Chang (Wednesday, July 21st at 8pm PDT): Dr. Chang is a Professor in the Department of Neurological Surgery at the UCSF Weill Institute for Neurosciences. He is a neurosurgeon and uses machine learning to understand brain functions. His research focuses on the brain mechanisms for speech, movement and human emotion. He co-directs the Center for Neural Engineering and Prostheses, a collaborative enterprise of UCSF and UC Berkeley. The center brings together experts in engineering, neurology and neurosurgery to develop state-of-the-art biomedical technology to restore function for patients with neurological disabilities such as paralysis and speech disorders.
- Cecilia Clementi (Thursday, July 22nd at 8am PDT): Dr. Clementi is a Professor of Chemistry, and Chemical and Biomolecular Engineering, and Senior Scientist in the Center for Theoretical Biological Physics at Rice University, and an Einstein Fellow at FU Berlin. She researches strategies to study complex biophysical processes on long timescales, and she is an expert in the simulation of biomolecules using large-scale ML. Her group designs multiscale models, adaptive sampling approaches, and data analysis tools, and uses both data-driven methods and theoretical formulations.
To register for the conference and check out these talks, please visit: https://icml.cc/.
Well explained and informative ML Article. Thanks for Sharing.