With a worldwide recession on, my impression is that the carnage in research has not been as severe as might be feared, at least in the United States. I know of two notable negative impacts:
- It’s quite difficult to get a job this year, as many companies and universities simply aren’t hiring. This is particularly tough on graduating students.
- Perhaps 10% of IBM research was fired.
In contrast, around the time of the dot com bust, ATnT Research and Lucent had one or several 50% size firings wiping out much of the remainder of Bell Labs, triggering a notable diaspora for the respected machine learning group there. As the recession progresses, we may easily see more firings as companies in particular reach a point where they can no longer support research.
There are a couple positives to the recession as well.
- Both the implosion of Wall Street (which siphoned off smart people) and the general difficulty of getting a job coming out of an undergraduate education suggest that the quality of admitted phd students may increase. In half a decade when they start graduating, we might have some new and very creative ideas.
- The latest stimulus bill includes substantial additional research funding. This is particularly welcome news for those at universities, because it will compensate for other cutbacks which may be necessary there as endowments or state funding fall. It’s also particularly good for young researchers at universities who just got a position or succeed this year, as the derivative on research funding particularly impacts them.
There are two effects going on: Does a recession cause us to refocus on other possibly better ideas? Or does it cause us to focus on short term survival? The first effect helps research while the second effect does not. By far, most of the money invested by governments to fight the recession has gone towards survival, but a small fraction in the US is going towards other possibly better ideas, with a portion of that going towards research.
We could hope for a larger fraction of money heading towards new ideas, rather than rescuing old, but there is a basic issue: the apparatus for creation and use of new ideas in the US is simply too small—it may not be able to effectively use more funding. In order to justify further funding for research, we may need to be more creative than simply “give us more”.
However, this is easy. Throughout much of the 1900s, Bell Labs created many inventions which are fundamental to modern society, including the transistor, C(++), Unix, the laser, information theory, etc… In my view the vital ingredients for success are:
- Access to cutting edge problems. Even extraordinarily intelligent researchers can simply end up working on the wrong problem. Without direct access to and knowledge of such problems researchers can end up inventing their own, which occasionally works out well, but more often does not.
- Free time. This is both obvious and yet a common failure mode. Researchers at universities have many more demands on their time, including teaching, fundraising, mentoring, and running a university. Similarly, researchers at corporations can be sucked into patching an existing system rather than thinking about the best way to really solve a problem.
- Concentration. Two researchers working together can often manage much more than one apart, as each can bring relevant expertise and viewpoints necessary to solve a problem. This remains true up to the point where communication becomes a substantial overhead, which in my experience is about 5, but which we might imagine technology helps improve.
Bell Labs managed to satisfy all three of these desiderata. Some research universities manage to achieve at least access and concentration to some extent, but hidden difficulties exist. For example, professors often don’t work with other professors, because they are both too busy with students and they must make a case for tenure based on work which is unambiguously their own. I’m not extremely familiar with existing national labs, but I believe they often fail at (a)—at least research at national labs have had relatively little impact on newer fields such as computer science.
So, my suggestion would be funding research in modes which satisfy all three desiderata. The natural and easy way to do this is by the government partially subsidizing basic research at those corporations which have decided to fund basic research. In computer science at least, this includes Microsoft, IBM, Yahoo, Google, and what’s left of Bell Labs at ATnT and Alcatel. While this is precisely the conclusion you might expect from someone doing research at one of these places, it’s also what you would expect of someone intensely interested in research who sought out the best environment for research. In economic terms, these companies have for reasons of their own decided to provide a public good. As long as we are interested, as a nation, or as a civilization, in subsidizing this public good, it is desirable to do this as efficiently as possible.
Some people might think that basic research done at a university is inherently more desirable than the same in industry. I don’t see any reason for this. For example, it seems that patentable research is about as likely to be patented at a university as elsewhere, and hence equally restricted for public use over the duration of a patent. Other people might think that basic research only really happens at universities or national labs, but that simply doesn’t agree with history.
Given this, it’s odd that the rules for NSF funding, which is the premier source of funding for basic science in the US, generally requires university participation on proposals. This restriction naturally makes it easier for researchers at universities to acquire grant money than researchers not at universities. I don’t understand why this restriction is desirable from the viewpoint of a government wanting to effectively subsidize research.