Machine Learning (Theory)

5/30/2009

Many ways to Learn this summer

There are at least 3 summer schools related to machine learning this summer.

  1. The first is at University of Chicago June 1-11 organized by Misha Belkin, Partha Niyogi, and Steve Smale. Registration is closed for this one, meaning they met their capacity limit. The format is essentially an extended Tutorial/Workshop. I was particularly interested to see Valiant amongst the speakers. I’m also presenting Saturday June 6, on logarithmic time prediction.
  2. Praveen Srinivasan points out the second at Peking University in Beijing, China, July 20-27. This one differs substantially, as it is about vision, machine learning, and their intersection. The deadline for applications is June 10 or 15. This is also another example of the growth of research in China, with active support from NSF.
  3. The third one is at Cambridge, England, August 29-September 10. It’s in the MLSS series. Compared to the Chicago one, this one is more about the Bayesian side of ML, although effort has been made to create a good cross section of topics. It’s also more focused on tutorials over workshop-style talks.

5/24/2009

2009 ICML discussion site

Mark Reid has setup a discussion site for ICML papers again this year and Monica Dinculescu has linked it in from the ICML site. Last year’s attempt appears to have been an acceptable but not wild success as a little bit of fruitful discussion occurred. I’m hoping this year will be a bit more of a success—please don’t be shy :-)

I’d like to also point out that ICML‘s early registration deadline has a few hours left, while UAI‘s and COLT‘s are in a week.

5/19/2009

CI Fellows

Tags: CS,Funding,Machine Learning jl@ 3:37 pm

Lev Reyzin points out the CI Fellows Project. Essentially, NSF is funding 60 postdocs in computer science for graduates from a wide array of US places to a wide array of US places. This is particularly welcome given a tough year for new hires. I expect some fraction of these postdocs will be in ML. The time frame is quite short, so those interested should look it over immediately.

5/17/2009

Server Update

Tags: Meta jl@ 3:32 pm

The hunch.net server has been updated. I’ve taken the opportunity to upgrade the version of wordpress which caused cascading changes.

  1. Old threaded comments are now flattened. The system we used to use (Brian’s threaded comments) appears incompatible with the new threading system built into wordpress. I haven’t yet figured out a workaround.
  2. I setup a feedburner account.
  3. I added an RSS aggregator for both Machine Learning and other research blogs that I like to follow. This is something that I’ve wanted to do for awhile.
  4. Many other minor changes in font and format, with some help from Alina.

If you have any suggestions for site tweaks, please speak up.

5/8/2009

Computability in Artificial Intelligence

Normally I do not blog, but John kindly invited me to do so. Since computability issues play a major role in Artificial Intelligence and Machine Learning, I would like to take the opportunity to comment on that and raise some questions.

The general attitude is that AI is about finding efficient smart algorithms. For large parts of machine learning, the same attitude is not too dangerous. If you want to concentrate on conceptual problems, simply become a statistician. There is no analogous escape for modern research on AI (as opposed to GOFAI rooted in logic).

Let me show by analogy why limiting research to computational questions is bad for any field.

Except in computer science, computational aspects play little role in the development of fundamental theories: Consider e.g. set theory with axiom of choice, foundations of logic, exact/full minimax for zero-sum games, quantum (field) theory, string theory, … Indeed, at least in physics, every new fundamental theory seems to be less computable than previous ones. Of course, once a subject has been formalized, further research (a) analyzes the structure of the theory and (b) tries to compute efficient approximations. Only in (b) do computational aspects play a role.

So my question is: Why are computational questions so prevalent in AI research? Here are some unconvincing arguments I’ve heard:

A) Because AI is a subfield of computer science, and the task of computer scientists is to find (efficient) algorithms for well-defined problems?

I think it does not do any (real-world) problem any good to confine it to computer science. Of course, philosophers and cognitive scientists also care about AI, but where are the mathematicians?

B) Because formalizing AI and finding efficient smart programs goes hand-in-hand? Separating these two issues would lead to no, or at best to results which are misleading or useless in the construction of intelligent machines?

I am not aware of any convincing argument that separating the issues of “axiomatizing a field” and “finding efficient solutions” will (likely) fail for AI. The examples above of other fields actually indicate the opposite. Of course, interaction is important to avoid both sides running wild. For instance, von Neumann’s minimax solution for games, albeit infeasible for most games, is the cornerstone of most practical approximations.

C) Because there is some deep connection between intelligence and computation which can not be disentangled?

Sure, you could say that intelligence is by definition about computationally efficient decision making. This is as unconvincing as argument (A). Pointing out that the human brain is a computational device is quite useful in many ways, but doesn’t proves (C) either. Of course, ultimately we want a “fast” smart algorithm. How is AI different from wanting a fast algorithm computing primes, which you derive from a non-algorithmic definition of primes; or drawing fractals?

D) Because AI is trivial if computational issues are ignored? All conceptual problems have already been solved?

Many have expressed ideas that some form of exhaustive search over all possible solutions and picking the “best” one does the job. This works essentially for exactly those problems that are well-defined. For instance, optimal minimax play of a zero-sum game or solving NP complete problems are conceptually trivial, i.e. if computation time is ignored. But in general AI and machine learning, there is not a universally agreed-upon objective function. The Turing test is informal (involves a human judge in the loop), maximizing expected reward (the true distribution is not known, so expectation w.r.t. to what?), etc. The AIXI model, briefly discussed at this blog, is the first complete and formal such criterion, for which, let me phrase it that way, no flaw has yet been identified. Shane Legg’s award-winning thesis gives an informal introduction and contains lots of discussion.

Conceptual and computational problems in AI should be studied jointly as well as separately, but the latter is not (yet) fashionable. When AI was more logic oriented, some good logicians helped develop the foundations of “deductive” AI. Where are the researchers giving modern “inductive” AI its foundation? I am talking about generic learning agents, not classifying i.i.d. data. Reinforcement learners? Well, most of the hard results are from adaptive control theorists, but it’s reassuring to see parts of these communities merging. It’s a pity that so few mathematicians are interested in AI. A field “mathematical AI” with the prestige of “mathematical physics” would be exciting. As a start: 40% of the COLT & ALT papers on generic learning agents, 30% induction, 20% time-series forecasting, 10% i.i.d. Currently it’s reversed.

Older Posts »

Powered by WordPress