Machine Learning (Theory)


FAQ on ICML 2019 Code Submission Policy

ICML 2019 has an option for supplementary code submission that the authors can use to provide additional evidence to bolster their experimental results. Since we have been getting a lot of questions about it, here is a Frequently Asked Questions for authors.

1. Is code submission mandatory?

No. Code submission is completely optional, and we anticipate that high quality papers whose results are judged by our reviewers to be credible will be accepted to ICML, even if code is not submitted.

2. Does submitted code need to be anonymized?

ICML is a double blind conference, and we expect authors to put in reasonable effort to anonymize the submitted code and institution. This means that author names and licenses that reveal the organization of the authors should be removed.

Please note that submitted code will not be made public — eg, only the reviewers, Area Chair and Senior Area Chair in charge will have access to it during the review period. If the paper gets accepted, we expect the authors to replace the submitted code by a non-anonymized version or link to a public github repository.

3. Are anonymous github links allowed?

Yes. However, they have to be on a branch that will not be modified after the submission deadline. Please enter the github link in a standalone text file in a submitted zip file.

4. How will the submitted code be used for decision-making?

The submitted code will be used as additional evidence provided by the authors to add more credibility to their results. We anticipate that high quality papers whose results are judged by our reviewers to be credible will be accepted to ICML, even if code is not submitted. However, if something is unclear in the paper, then code, if submitted, will provide an extra chance to the authors to clarify the details. To encourage code submission, we will also provide increased visibility to papers that submit code.

5. If code is submitted, do you expect it to be published with the rest of the supplementary? Or, could it be withdrawn later?

We expect submitted code to be published with the rest of the supplementary. However, if the paper gets accepted, then the authors will get a chance to update the code before it is published by adding author names, licenses, etc.

6. Do you expect the code to be standalone? For example, what if it is part of a much bigger codebase?

We expect your code to be readable and helpful to reviewers in verifying the credibility of your results. It is possible to do this through code that is not standalone — for example, with proper documentation.

7. What about pseudocode instead of code? Does that count as code submission?

Yes, we will count detailed pseudocode as code submission as it is helpful to reviewers in validating your results.

8. Do you expect authors to submit data?

We understand that many of our authors work with highly sensitive datasets, and are not asking for private data submission. If the dataset used is publicly available, there is no need to provide it. If the dataset is private, then the authors can submit a toy or simulated dataset to illustrate how the code works.

9. Who has access to my code?

Only the reviewers, Area Chair and Senior Area Chair assigned to your paper will have access to your code. We will instruct reviewers, Area Chair and Senior Area Chair to keep the code submissions confidential (just like the paper submissions), and delete all code submissions from their machine at the end of the review cycle. Please note that code submission is also completely optional.

10. I would like to revise my code/add code during author feedback. Is this permitted?

Unfortunately, no. But please remember that code submission is entirely optional.

The detailed FAQ as well other Author and Style instructions are available here.

Kamalika Chaudhuri and Ruslan Salakhutdinov
ICML 2019 Program Chairs


ICML 2019: Some Changes and Call for Papers

The ICML 2019 Conference will be held from June 10-15 in Long Beach, CA — about a month earlier than last year. To encourage reproducibility as well as high quality submissions, this year we have three major changes in place.

There is an abstract submission deadline on Jan 18, 2019. Only submissions with proper abstracts will be allowed to submit a full paper, and placeholder abstracts will be removed. The full paper submission deadline is Jan 23, 2019.

This year, the author list at the paper submission deadline (Jan 23) is final. No changes will be permitted after this date for accepted papers.

Finally, to foster reproducibility, we highly encourage code submission with papers. Our submission form will have space for two optional supplementary files — a regular supplementary manuscript, and code. Reproducibility of results and easy accessibility of code will be taken into account in the decision-making process.

Our full Call for Papers is available here.

Kamalika Chaudhuri and Ruslan Salakhutdinov
ICML 2019 Program Chairs


Reinforcement Learning Platforms

If you are interested in building an industrial Reinforcement Learning platform, we are hiring a data scientist and multiple developers as a followup to last year’s hiring. Please apply if interested as this is a real chance to be a part of building the future :-)


ICML Board and Reviewer profiles

The outcome of the election for the IMLS (which runs ICML) adds Emma Brunskill and Hugo Larochelle to the board. The current members of the board (and the reason for board membership) are:

President Elect is a 2-year position with little responsibility, but I decided to look into two things. One is the website which seems relatively difficult to navigate. Ideas for how to improve are welcome.

The other is creating a longitudinal reviewer profile. I keenly remember the day after reviews were due when I was program chair (in 2012) which left a panic-inducing number of unfinished reviews. To help with this, I’m planning to create a profile of reviewers which program chairs can refer to in making decisions about who to ask to review. There are a number of ways to do this wrong which I’m avoiding with the following procedure:

  1. After reviews are assigned, capture the reviewer/paper assignment. Call this set A.
  2. After reviews are due, capture the completed & incomplete reviews for papers. Call these sets B & C respectively.
  3. Strip the paper ids from B (completed reviews) turning it into a multiset D of reviewers completed reviews.
  4. Compute C-A (as a set difference) then turn it into a multiset E of reviewers incomplete reviews.
  5. Store D & E for long term reference.

This approach:

  • Is objectively defined. Approaches based on subjective measurements seem both fraught with judgment issues and inconsistent. Consider for example the impressive variation we all see in review quality.
  • Does not record a review as late for reviewers who are assigned a paper late in the process via step (1) and (4). We want to encourage reviewers to take on the unusual but important late tasks that arrive.
  • Does not record a review as late for reviewers who discover they are inappropriate after assignment and ask for reassignment. We want to encourage reviewers to look at their papers early and, if necessary, ask for a paper to be reassigned early.
  • Preserves anonymity of paper/reviewer assignments for authors who later become program chairs. The conversion into a multiset removes the paper id entirely.

Overall, my hope is that several years of this will provide a good and useful tool enabling program chairs and good (or at least not-bad) reviewers to recognize each other.


Vowpal Wabbit 8.5.0 & NIPS tutorial

Yesterday, I tagged VW version 8.5.0 which has many interactive learning improvements (both contextual bandit and active learning), better support for sparse models, and a new baseline reduction which I’m considering making a part of the default update rule.

If you want to know the details, we’ll be doing a mini-tutorial during the Friday lunch break at the Extreme Classification workshop at NIPS. Please join us if interested.

Edit: also announced at the Learning Systems workshop

Older Posts »

Powered by WordPress