Machine Learning (Theory)


Conference on Digitial Experimentation

I just attended CODE. The set of people interested in digital experimentation have very diverse backgrounds encompassing theory, machine learning, social science, economics, and industry so this seems like a good subject for a new conference. I hope it continues.

I found several talks interesting.

  • Eytan Bakshy talked about PlanOut which is language/platform for flexibly specifying experiments.
  • Ron Kohavi talked about EXP which is a heavily used A/B testing platform.
  • Susan Athey talked about long term vs short term metrics which seems both important to address, a constant problem, and not yet systematically solved.

There was a panel about the ongoing Facebook experimentation controversy. The issue here is complex. My understanding is that Facebook users have some expected ownership of the content they create, and hence aren’t comfortable with the content being used in unexpected ways. On the other hand, experimentation is so necessary to the functioning of all large modern internet sites that banning it or slowing down the process by a factor of a million (as some advocated) would badly degrade the future of these sites in practice.

My belief is that what’s lacking is education and trust. W.r.t. education, people need to understand that experimentation is unavoidable when trying to figure out how to optimize an enormously complex system, as there is just no other way to systematically make 1000 right decisions as is necessary for basic things like choosing the best homepage/search result/etc… W.r.t. trust, companies are not particularly good at creating trust in general, but finding the right mechanism for doing so seems critical. I would point out Vanguard as a company that managed to successfully create trust by design.


Interesting papers at ICML 2014

This year’s ICML had several papers which I want to read through more carefully and understand better.

  1. Chun-Liang Li, Hsuan-Tien Lin, Condensed Filter Tree for Cost-Sensitive Multi-Label Classification. Several tricks accumulate to give a new approach for addressing cost sensitive multilabel classification.
  2. Nikos Karampatziakis and Paul Mineiro, Discriminative Features via Generalized Eigenvectors. An efficient, effective eigenvalue solution for supervised learning yields compelling nonlinear performance on several datasets.
  3. Nir Ailon, Zohar Karnin, Thorsten Joachims, Reducing Dueling Bandits to Cardinal Bandits. An effective method for reducing dueling bandits to normal bandits that extends to contextual situations.
  4. Pedro Pinheiro, Ronan Collobert, Recurrent Convolutional Neural Networks for Scene Labeling. Image parsing remains a challenge, and this is plausibly a step forward.
  5. Cicero Dos Santos, Bianca Zadrozny, Learning Character-level Representations for Part-of-Speech Tagging. Word morphology is clearly useful information, and yet almost all ML-for-NLP applications ignore it or hard-code it (by stemming).
  6. Alekh Agarwal, Daniel Hsu, Satyen Kale, John Langford, Lihong Li, Robert Schapire, Taming the Monster: A Fast and Simple Algorithm for Contextual Bandits. Statistically efficient interactive learning is now computationally feasible. I wish this one had been done in time for the NIPS tutorial :-)
  7. David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, Martin Riedmiller, Deterministic Policy Gradient Algorithms. A reduction in variance from working out the deterministic limit of policy gradient make policy gradient approaches look much more attractive.

Edit: added one that I forgot.


An ICML proposal: yearly surveys

I’d like to propose that ICML conducts a yearly survey similar to the one from 2010 or 2012 which is reported to all.

The key reason for this is information: I expect everyone participating in ICML has some baseline interest in how ICML is doing. Everyone involved has personal anecdotal information, but we all understand that a few examples can be highly misleading.

Aside from satisfying everyone’s joint curiousity, I believe this could improve ICML itself. Consider for example reviewing. Every program chair comes in with ideas for how to make reviewing better. Some succeed, but nearly all are forgotten by the next round of program chairs. Making survey information available will help quantify success and correlate it with design decisions.

The key question to ask for this is “who?” The reason why surveys don’t happen more often is that it has been the responsibility of program chairs who are typically badly overloaded. I believe we should address this by shifting the responsibility to a multiyear position, similar to or the same as a webmaster. This may imply a small cost to the community (<$1/participant) for someone’s time to do and record the survey, but I believe it’s a worthwhile cost.

I plan to bring this up with IMLS board in Beijing, but would like to invite any comments or thoughts.


ICML 2012 videos lost

A big ouch—all the videos for ICML 2012 were lost in a shuffle. Rajnish sends the below, but if anyone can help that would be greatly appreciated.


Sincere apologies to ICML community for loosing 2012 archived videos

What happened: In order to publish 2013 videos, we decided to move 2012 videos to another server. We have a weekly backup service from the provider but after removing the videos from the current server, when we tried to retrieve the 2012 videos from backup service, the backup did not work because of provider-specific requirements that we had ignored while removing the data from previous server.

What are we doing about this: At this point, we are still looking into raw footage to find if we can retrieve some of the videos, but following are the steps we are taking to make sure this does not happen again in future:
(1) We are going to create a channel on Vimeo (and potentially on YouTube) and we will publish there the p-in-p- or slide-versions of the videos. This will be available by the beginning of Oct 2013.
(2) We are going to provide download links from TechTalks so that the slide-version (of p-in-p- version if availbale) of the videos can be directly downloaded by viewers.This feature will be available by Aug 4th 2013.
(3) Of course we are now creating regular backups that do not depend on our service provider.

How can you help: If you have downloaded from TechTalks the ICML 2012 videos using external tools, we will really appreciate if you can provide us the videos, please email at .

Thank you,


The Benefits of Double-Blind Review

This post is a (near) transcript of a talk that I gave at the ICML 2013 Workshop on Peer Review and Publishing Models. Although there’s a PDF available on my website, I’ve chosen to post a slightly modified version here as well in order to better facilitate discussion.

Disclaimers and Context

I want to start with a couple of disclaimers and some context.

First, I want to point out that although I’ve read a lot about double-blind review, this isn’t my research area and the research discussed in this post is not my own. As a result, I probably can’t answer super detailed questions about these studies.

I also want to note that I’m not opposed to open peer review — I was a free and open source software developer for over ten years and I care a great deal about openness and transparency. Rather, my motivation in writing this post is simply to create awareness of and to initiate discussion about the benefits of double-blind review.

Lastly, and most importantly, I think it’s essential to acknowledge that there’s a lot of research on double-blind review out there. Not all of this research is in agreement, in part because it’s hard to control for all the variables involved and in part because most studies involve a single journal or discipline. And, because these studies arise from different disciplines, they can be difficult to
track down — to my knowledge at least, there’s no “Journal of Double-Blind Review Research.” These factors make for a hard landscape to navigate. My goal here is therefore to draw your attention to some of the key benefits of double-blind review so that we don’t lose sight of them when considering alternative reviewing models.

How Blind Is It?

The primary motivation behind double-blind peer review — in which the identities of a paper’s authors and reviewers are concealed from each other — is to eliminate bias in the reviewing process by preventing factors other than scientific quality from influencing the perceived merit of the work under review. At this point in time, double-blind review is the de facto standard for machine learning conferences.

Before I discuss the benefits of double-blind review, however, I’d like to address one of its most commonly heard criticisms: “But it’s possible to infer author identity from content!” — i.e., that double-blind review isn’t really blind, so therefore there’s no point in implementing it. It turns out that there’s some truth to this statement, but there’s also a lot of untruth too. There are several studies that directly test this assertion by asking reviewers whether authors or institutions are identifiable and, if so, to record their identities and describe the clues that led to their identification.

The results are pretty interesting: when asked to guess the identities of authors or institutions, reviewers are correct only 25–42% of the time [1]. The most common identification clues are self-referencing and authors’ initials or institution identities in the manuscript, followed by reviewers’ personal knowledge [2, 3]. Furthermore, higher identification percentages correspond to journals in which papers are required to explicitly state the source of the data being studied [2]. This indicates that journals, not just authors, bear some responsibility for the degree of identification clues present and can therefore influence the extent to which review is truly double-blind.

Is It Necessary?

Another commonly heard criticism of double-blind review is “But I’m not biased!” — i.e., that double-blind review isn’t needed because factors other than scientific quality do not affect reviewers’ opinions anyway. It’s this statement that I’ll mostly be focusing on here. There are many studies that address this assertion by testing the extent to which peer review can be biased against new ideas, women, junior researchers, and researchers from less prestigious universities or countries other than the US. In the remainder of this post, I’m therefore going give a brief overview of these studies’ findings. But before I do that, I want to talk a bit more about bias.

Implicit Bias

I think it’s important to talk about bias because I want to make it very clear that the kind of bias I’m talking about is NOT necessarily ill-intentioned, explicit, or even conscious. To quote the AAUW’s report [4] on the under-representation of women in science, “Even individuals who consciously refute gender and science stereotypes can still hold that belief at an unconscious level. These unconscious beliefs or implicit biases may be more powerful than explicitly held beliefs and values simply because we are not aware of them.” Chapters 8 and 9 of this report provide a really great overview of recent research on implicit bias and negative stereotypes in the workplace. I highly recommend reading them — and the rest of the report for that matter — but for the purpose of this post, it’s sufficient to remember that “Less-conscious beliefs underlying negative stereotypes continue to influence assumptions about people and behavior. [Even] good people end up unintentionally making decisions that violate [...] their own sense of what’s correct [and] what’s good.”

Prestige and Familiarity

Perhaps the most well studied form of bias is the “Matthew effect,” originally introduced by Robert Merton in 1968 [5]. This term refers to the “rich-get-richer” phenomenon whereby well known, eminent researchers get more credit for their contributions than unknown researchers. Since 1968, there’s been a considerable amount of follow-on research investigating the extent to which the Matthew effect exists in science. In the context of peer review, reviewers may be more likely to recommend acceptance of incomplete or inferior papers if they are authored by more prestigious researchers.

Country of Origin

It’s also important to consider country of origin and international bias. There’s research [6] showing that reviewers from within the United States and reviewers from outside the United States evaluate US papers more favorably, with US reviewers showing a stronger preference for US papers than non-US reviewers. In contrast, US and non-US reviewers behaved near identically for non-US papers.


One of the most widely discussed pieces of recent work on double-blind review and gender is that of Budden et al. [1], whose research demonstrated that following the introduction of double-blind review by the journal Behavioral Ecology, there was a significant increase in papers authored by women. This pattern was not observed in a similar journal that instead reveals author information to reviewers. Although there’s been some controversy surrounding this work [7], mostly questioning whether the observed increase was indeed to do with the policy change or a more widely observed phenomenon, the original authors reanalyzed their data and again found that double-blind review favors increased representation of female authors [8].


Race has also been demonstrated to influence reviewers’ recommendations, albeit in the context of grant funding rather than publications. Even after controlling for factors such as educational background, country of origin, training, previous research awards, publication record, and employer characteristics, African-American applicants for National Institutes of Health R01 grants are 10% less likely than white applicants to be awarded research funding [9].

Stereotype Threat

I also want to talk briefly about stereotype threat. Stereotype threat is a phenomenon in which performance in academic contexts can be harmed by the awareness that one’s behavior might be viewed through the lens of a negative stereotype about one’s social group [10]. For example, studies have demonstrated that African-American students enrolled in college and female students enrolled in math and science courses score much lower on tests when they are reminded beforehand of their race or gender [10, 11]. In the case of female science students, simply having a larger ratio of men to women present in the testing situation can lower women’s test scores [4]. Several factors may contribute to this decreased performance, including the anxiety, reduced attention, and self-consciousness associated with worrying about whether or not one is confirming the stereotype. One idea that that hasn’t yet been explored in the context of peer review, but might be worth investigating, is whether requiring authors to reveal their identities during peer review induces a stereotype threat scenario.

Reviewers’ Identities

Lastly, I want to mention the identification of reviewers. Although there’s much less research on this side of the equation, it’s definitely worth considering the effects of revealing reviewer identities as well — especially for more junior reviewers. To quote Mainguy et al.’s article [12] in PLoS Biology, “Reviewers, and especially newcomers, may feel pressured into accepting a mediocre paper from a more established lab in fear of future reprisals.”


I want to conclude by reminding you that my goal in writing this post was to create awareness about the benefits of double-blind review. There’s a great deal of research on double-blind review and although it can be a hard landscape to navigate — in part because there are many factors involved, not all of which can be trivially controlled in experimental conditions — there are studies out there that demonstrate concrete benefits of double-blind review. Perhaps more importantly though, double-blind review promotes the PERCEPTION of fairness. To again quote Mainguy et al., “[Double-blind review] bears symbolic power that will go a long way to quell fears and frustrations, thereby generating a better perception of fairness and equality in global scientific funding and publishing.”


[1] Budden, Tregenza, Aarssen, Koricheva, Leimu, Lortie. “Double-blind review favours increased representation of female authors.” 2008.

[2] Yankauer. “How blind is blind review?” 1991.

[3] Katz, Proto, Olmsted. “Incidence and nature of unblinding by authors: our experience at two radiology journals with double-blinded peer review policies.” 2002.

[4] Hill, Corbett, St, Rose. “Why so few? Women in science, technology, engineering, and mathematics.” 2010.

[5] Merton. “The Matthew effect in science.” 1968.

[6] Link. “US and non-US submissions: an analysis of reviewer bias.” 1998.

[7] Webb, O’Hara, Freckleton. “Does double-blind review benefit female authors?” 2008.

[8] Budden, Lortie, Tregenza, Aarssen, Koricheva, Leimu. “Response to Webb et al.: Double-blind review: accept with minor revisions.” 2008.

[9] Ginther, Schaffer, Schnell, Masimore, Liu, Haak, Kington. “Race, ethnicity, and NIH research awards.” 2011.

[10] Steele, Aronson. “Stereotype threat and the intellectual test performance of African Americans.” 1995.

[11] Dar-Nimrod, Heine. “Exposure to scientific theories affects women’s math performance.” 2006,

[12] Mainguy, Motamedi, Mietchen. “Peer review—the newcomers’ perspective.” 2005.


Representative Reviewing

Tags: Conferences,Reviewing ,Workshop jl@ 10:09 am

When thinking about how best to review papers, it seems helpful to have some conception of what good reviewing is. As far as I can tell, this is almost always only discussed in the specific context of a paper (i.e. your rejected paper), or at most an area (i.e. what a “good paper” looks like for that area) rather than general principles. Neither individual papers or areas are sufficiently general for a large conference—every paper differs in the details, and what if you want to build a new area and/or cross areas?

An unavoidable reason for reviewing is that the community of research is too large. In particular, it is not possible for a researcher to read every paper which someone thinks might be of interest. This reason for reviewing exists independent of constraints on rooms or scheduling formats of individual conferences. Indeed, history suggests that physical constraints are relatively meaningless over the long term — growing conferences simply use more rooms and/or change formats to accommodate the growth.

This suggests that a generic test for paper acceptance should be “Are there a significant number of people who will be interested?” This question could theoretically be answered by sending the paper to every person who might be interested and simply asking them. In practice, this would be an intractable use of people’s time: We must query far fewer people and achieve an approximate answer to this question. Our goal then should be minimizing the approximation error for some fixed amount of reviewing work.

Viewed from this perspective, the first way that things can go wrong is by misassignment of reviewers to papers, for which there are two
easy failure modes available.

  1. When reviewer/paper assignment is automated based on an affinity graph, the affinity graph may be low quality or the constraint on the maximum number of papers per reviewer can easily leave some papers with low affinity to all reviewers orphaned.
  2. When reviewer/paper assignments are done by one person, that person may choose reviewers who are all like-minded, simply because
    this is the crowd that they know. I’ve seen this happen at the beginning of the reviewing process, but the more insidious case is when it happens at the end, where people are pressed for time and low quality judgements can become common.

An interesting approach for addressing the constraint objective would be optimizing a different objective, such as the product of affinities
rather than the sum. I’ve seen no experimentation of this sort.

For ICML, there are about 3 levels of “reviewer”: the program chair who is responsible for all papers, the area chair who is responsible for organizing reviewing on a subset of papers, and the program committee member/reviewer who has primary responsibility for reviewing. In 2012 tried to avoid these failure modes in a least-system effort way using a blended approach. We used bidding to get a higher quality affinity matrix. We used a constraint system to assign the first reviewer to each paper and two area chairs to each paper. Then, we asked each area chair to find one reviewer for each paper. This obviously dealt with the one-area-chair failure mode. It also helps substantially with low quality assignments from the constrained system since (a) the first reviewer chosen is typically higher quality than the last due to it being the least constrained (b) misassignments to area chairs are diagnosed at the beginning of the process by ACs trying to find reviewers (c) ACs can reach outside of the initial program committee to find reviewers, which existing automated systems can not do.

The next way that reviewing can go wrong is via biased reviewing.

  1. Author name bias is a famous one. In my experience it is real: well known authors automatically have their paper taken seriously, which particularly matters when time is short. Furthermore, I’ve seen instances where well-known authors can slide by with proof sketches that no one fully understands.
  2. Review anchoring is a very significant problem if it occurs. This does not happen in the standard review process, because the reviews of others are not visible to other reviewers until they are complete.
  3. A more subtle form of bias is when one reviewer is simply much louder or charismatic than others. Reviewing without an in-person meeting is actually helpful here, as it reduces this problem substantially.

Reviewing can also be low quality. A primary issue here is time: most reviewers will submit a review within a time constraint, but it may not be high quality due to limits on time. Minimizing average reviewer load is quite important here. Staggered deadlines for reviews are almost certainly also helpful. A more subtle thing is discouraging low quality submissions. My favored approach here is to publish all submissions nonanonymously after some initial period of time.

Another significant issue in reviewer quality is motivation. Making reviewers not anonymous to each other helps with motivation as poor reviews will at least be known to some. Author feedback also helps with motivation, as reviewers know that authors will be able to point out poor reviewing. It is easy to imagine that further improvements in reviewer motivation would be helpful.

A third form of low quality review is based on miscommunication. Maybe there is silly typo in a paper? Maybe something was confusing? Being able to communicate with the author can greatly reduce ambiguities.

The last problem is dictatorship at decision time for which I’ve seen several variants. Sometimes this comes in the form of giving each area chair a budget of papers to “champion”. Sometimes this comes in the form of an area chair deciding to override all reviews and either accept or more likely reject a paper. Sometimes this comes in the form of a program chair doing this as well. The power of dictatorship is often available, but it should not be used: the wiser course is keeping things representative.

At ICML 2012, we tried to deal with this via a defined power approach. When reviewers agreed on the accept/reject decision, that was the decision. If the reviewers disgreed, we asked the two area chairs to make decisions and if they agreed, that was the decision. It was only when the ACs disagreed that the program chairs would become involved in the decision.

The above provides an understanding of how to create a good reviewing process for a large conference. With this in mind, we can consider various proposals at the peer review workshop and elsewhere.

  1. Double Blind Review. This reduces bias, at the cost of decreasing reviewer motivation. Overall, I think it’s a significant long term positive for a conference as “insiders” naturally become more concerned with review quality and “outsiders” are more prone to submit.
  2. Better paper/reviewer matching. A pure win, with the only caveat that you should be familiar with failure modes and watch out for them.
  3. Author feedback. This improves review quality by placing a check on unfair reviews and reducing miscommunication at some cost in time.
  4. Allowing an appendix or ancillary materials. This allows authors to better communicate complex ideas, at the potential cost of reviewer time. A standard compromise is to make reading an appendix optional for reviewers.
  5. Open reviews. Open reviews means that people can learn from other reviews, and that authors can respond more naturally than in single round author feedback.

It’s important to note that none of the above are inherently contradictory. This is not necessarily obvious as proponents of open review and double blind review have found themselves in opposition at times. These approaches can be accommodated by simply hiding authors names for a fixed period of 2 months while the initial review process is ongoing.

Representative reviewing seems like the real difficult goal. If a paper is rejected in a representative reviewing process, then perhaps it is just not of sufficient interest. Similarly, if a paper is accepted, then perhaps it is of real and meaningful interest. And if the reviewing process is not representative, then perhaps we should fix the failure modes.

Edit: Crossposted on CACM.


COLT and ICML registration

Sebastien Bubeck points out COLT registration with a May 13 early registration deadline. The local organizers have done an admirable job of containing costs with a $300 registration fee.

ICML registration is also available, at about an x3 higher cost. My understanding is that this is partly due to the costs of a larger conference being harder to contain, partly due to ICML lasting twice as long with tutorials and workshops, and partly because the conference organizers were a bit over-conservative in various ways.


ML Symposium and Strata/Hadoop World

Tags: Conferences,Workshop jl@ 11:40 am

The New York ML symposium was last Friday. There were 303 registrations, up a bit from last year. I particularly enjoyed talks by Bill Freeman on vision and ML, Jon Lenchner on strategy in Jeopardy, and Tara N. Sainath and Brian Kingsbury on deep learning for speech recognition. If anyone has suggestions or thoughts for next year, please speak up.

I also attended Strata + Hadoop World for the first time. This is primarily a trade conference rather than an academic conference, but I found it pretty interesting as a first time attendee. This is ground zero for the Big data buzzword, and I see now why. It’s about data, and the word “big” is so ambiguous that everyone can lay claim to it. There were essentially zero academic talks. Instead, the focus was on war stories, product announcements, and education. The general level of education is much lower—explaining Machine Learning to the SQL educated is the primary operating point. Nevertheless that’s happening, and the fact that machine learning is considered a necessary technology for industry is a giant step for the field. Over time, I expect the industrial side of Machine Learning to grow, and perhaps surpass the academic side, in the same sense as has already occurred for chip design. Amongst the talks I could catch, I particularly liked the Github, Zillow, and Pandas talks. Ted Dunning also gave a particularly masterful talk, although I have doubts about the core Bayesian Bandit approach(*). The streaming k-means algorithm they implemented does look quite handy.

(*) The doubt is the following: prior elicitation is generally hard, and Bayesian techniques are not robust to misspecification. This matters in standard supervised settings, but it may matter more in exploration settings where misspecification can imply data starvation.


NYAS ML 2012 and ICML 2013

The New York Machine Learning Symposium is October 19 with a 2 page abstract deadline due September 13 via email with subject “Machine Learning Poster Submission” sent to Everyone is welcome to submit. Last year’s attendance was 246 and I expect more this year.

The primary experiment for ICML 2013 is multiple paper submission deadlines with rolling review cycles. The key dates are October 1, December 15, and February 15. This is an attempt to shift ICML further towards a journal style review process and reduce peak load. The “not for proceedings” experiment from this year’s ICML is not continuing.

Edit: Fixed second ICML deadline.


ICML survey and comments

Just about nothing could keep me from attending ICML, except for Dora who arrived on Monday. Consequently, I have only secondhand reports that the conference is going well.

For those who are remote (like me) or after the conference (like everyone), Mark Reid has setup the ICML discussion site where you can comment on any paper or subscribe to papers. Authors are automatically subscribed to their own papers, so it should be possible to have a discussion significantly after the fact, as people desire.

We also conducted a survey before the conference and have the survey results now. This can be compared with the ICML 2010 survey results. Looking at the comparable questions, we can sometimes order the answers to have scores ranging from 0 to 3 or 0 to 4 with 3 or 4 being best and 0 worst, then compute the average difference between 2012 and 2010.

Glancing through them, I see:

  1. Most people found the papers they reviewed a good fit for their expertise (-.037 w.r.t 2010). Achieving this was one of our subgoals in the pursuit of high quality decisions.
  2. Most people had sufficient time for doing reviews. This was something that we worried about significantly in shifting the paper deadline and otherwise massaging the schedule. Most people also thought the review period was sufficiently long and most reviews were high quality (+.023 w.r.t. 2010)
  3. About 1/4 of reviewers say that author response changed their mind on a paper and 2/3 of reviewers say discussion changed their mind on a paper. The expectation of decision impact from author response is reduced from 2010 (-.135). The existence of author response is overwhelmingly preferred.
  4. People generally found ICML reviewing the same or better than previous ICMLs (+.35 w.r.t. 2010) and other similar conferences (+.198 w.r.t. 2010) at the cost of being somewhat more work. A substantial bump in reviewing quality was a primary goal.
  5. The ACs spent substantially more time (43 hours on average) than PC members (28 hours on average). This agrees with our expectation—the set of ACs didn’t change even after we had a 50% increase in submissions. The AC load we had this year was probably too high and will need to be reduced somewhat for next year.
  6. 2/3 of authors prefer the option to revise a paper during author response.
  7. The choice of how to deal with increased submissions is deeply undecided, with a slight preference for short talk+poster as we did.
  8. Most people like having two workshop days or don’t care.
  9. There is a strong preference for COLT and UAI colocation with the next tier of preference for IJCAI, KDD, AAAI, and CVPR.


ICML acceptance statistics

Tags: Conferences,Reviewing jl@ 8:24 pm

People are naturally interested in slicing the ICML acceptance statistics in various ways. Here’s a rundown for the top categories.

18/66 = 0.27 in (0.18,0.36) Reinforcement Learning
10/52 = 0.19 in (0.17,0.37) Supervised Learning
9/51 = 0.18 not in (0.18, 0.37) Clustering
12/46 = 0.26 in (0.17, 0.37) Kernel Methods
11/40 = 0.28 in (0.15, 0.4) Optimization Algorithms
8/33 = 0.24 in (0.15, 0.39) Learning Theory
14/33 = 0.42 not in (0.15, 0.39) Graphical Models
10/32 = 0.31 in (0.15, 0.41) Applications (+5 invited)
8/29 = 0.28 in (0.14, 0.41]) Probabilistic Models
13/29 = 0.45 not in (0.14, 0.41) NN & Deep Learning
8/26 = 0.31 in (0.12, 0.42) Transfer and Multi-Task Learning
13/25 = 0.52 not in (0.12, 0.44) Online Learning
5/25 = 0.20 in (0.12, 0.44) Active Learning
6/22 = 0.27 in (0.14, 0.41) Semi-Supervised Learning
7/20 = 0.35 in (0.1, 0.45) Statistical Methods
4/20 = 0.20 in (0.1, 0.45) Sparsity and Compressed Sensing
1/19 = 0.05 not in (0.11, 0.42) Ensemble Methods
5/18 = 0.28 in (0.11, 0.44) Structured Output Prediction
4/18 = 0.22 in (0.11, 0.44) Recommendation and Matrix Factorization
7/18 = 0.39 in (0.11, 0.44) Latent-Variable Models and Topic Models
1/17 = 0.06 not in (0.12, 0.47) Graph-Based Learning Methods
5/16 = 0.31 in (0.13, 0.44) Nonparametric Bayesian Inference
3/15 = 0.20 in (0.7, 0.47) Unsupervised Learning and Outlier Detection
7/12 = 0.58 not in (0.08, 0.50) Gaussian Processes
5/11 = 0.45 not in (0.09, 0.45) Ranking and Preference Learning
2/11 = 0.18 in (0.09, 0.45) Large-Scale Learning
0/9 = 0.00 in [0, 0.56) Vision
3/9 = 0.33 in [0, 0.56) Social Network Analysis
0/9 = 0.00 in [0, 0.56) Multi-agent & Cooperative Learning
2/9 = 0.22 in [0, 0.56) Manifold Learning
4/8 = 0.50 not in [0, 0.5) Time-Series Analysis
2/8 = 0.25 in [0, 0.5] Large-Margin Methods
2/8 = 0.25 in [0, 0.5] Cost Sensitive Learning
2/7 = 0.29 in [0, 0.57) Recommender Systems
3/7 = 0.43 in [0, 0.57) Privacy, Anonymity, and Security
0/7 = 0.00 in [0, 0.57) Neural Networks
0/7 = 0.00 in [0, 0.57) Empirical Insights
0/7 = 0.00 in [0, 0.57) Bioinformatics
1/6 = 0.17 in [0, 0.5) Information Retrieval
2/6 = 0.33 in [0, 0.5) Evaluation Methodology

Update: See Brendan’s graph for a visualization.

I usually find these numbers hard to interpret. At the grossest level, all areas have significant selection. At a finer level, one way to add further interpretation is to pretend that the acceptance rate of all papers is 0.27, then compute a 5% lower tail and a 5% upper tail. With 40 categories, we expect to have about 4 violations of tail inequalities. Instead, we have 9, so there is some evidence that individual areas are particularly hot or cold. In particular, the hot topics are Graphical models, Neural Networks and Deep Learning, Online Learning, Gaussian Processes, Ranking and Preference Learning, and Time Series Analysis. The cold topics are Clustering, Ensemble Methods, and Graph-Based Learning Methods.

We also experimented with AIStats resubmits (3/4 accepted) and NFP papers (4/7 accepted) but the numbers were to small to read anything significant.

One thing that surprised me was how uniform decisions were as a function of average score in reviews. All reviews included a decision from {Strong Reject, Weak Reject, Weak Accept, Strong Accept}. These were mapped to numbers in the range {1,2,3,4}. In essence, average review score < 2.2 meant 0% chance of acceptance, and average review score > 3.1 meant acceptance. Due to discretization in the number of reviewers and review scores there were only 3 typical uncertain outcomes:

  1. 2.33. This was either 2 Weak Rejects+Weak Accept or Strong Reject+2 Weak Accepts or (rarely) Strong Reject+Weak Reject+Strong Accept. About 8% of these paper were accepted.
  2. 2.67. This was either Weak Reject+Weak Accept*2 or Strong Accept+2 Weak Rejects or (rarely) Strong Reject+Weak Accept+Strong Accept. About 48% of these paper were accepted.
  3. 3.0. This was commonly 3 Weak Accepts or Strong Accept+Weak Accept+Weak Reject or (rarely) 2 Strong Accepts + Strong Reject. About 90% of these papers were accepted.

One question I’ve always wondered is: How much variance is there in the accept/reject decision? In general, correlated assignment of reviewers can greatly increase the amount of variance, so one of our goals this year was doing as independent an assignment as possible. If you accept that as independence, we essentially get 3 samples for each paper where the average standard deviation of reviewer scores before author feedback and discussion is 0.64. After author feedback and discussion the standard deviation drops to 0.51. If we pretend that papers have an intrinsic value between 1 and 4 then think of reviews as discretized gaussian measurements fed through the above decision criteria, we get the following:

There are great caveats to this picture. For example, treating the AC’s decision as random conditioned on the reviewer average is a worst-case analysis. The reality is that ACs are removing noise from the few events that I monitored carefully, although it is difficult to quantify this. Similarly, treating the reviews observed after discussion as independent is clearly flawed. A reasonable way to look at it is: author feedback and discussion get us about 1/3 or 1/4 of the way to the final decision from the initial reviews.

Conditioned on the papers, discussion, author feedback and reviews, AC’s are pretty uniform in their decisions with ~30 papers where ACs disagreed on the accept/reject decision. For half of those, the ACs discussed further and agreed, leaving Joelle and I a feasible quantity of cases to look at (plus several other exceptions).

At the outset, we promised a zero-spof reviewing process. We actually aimed higher: at least 3 people needed to make a wrong decision for the ICML 2012 reviewing process to kick out a wrong decision. I expect this happened a few times given the overall level of quality disagreement and quantities involved, but hopefully we managed to reduce the noise appreciably.


ICML accepted papers and early registration

The accepted papers are up in full detail. We are still struggling with the precise program itself, but that’s coming along. Also note the May 13 deadline for early registration and room booking.


ICML: Behind the Scenes

This is a rather long post, detailing the ICML 2012 review process. The goal is to make the process more transparent, help authors understand how we came to a decision, and discuss the strengths and weaknesses of this process for future conference organizers.

Microsoft’s Conference Management Toolkit (CMT)
We chose to use CMT over other conference management software mainly because of its rich toolkit. The interface is sub-optimal (to say the least!) but it has extensive capabilities (to handle bids, author response, resubmissions, etc.), good import/export mechanisms (to process the data elsewhere), excellent technical support (to answer late night emails, add new functionalities). Overall, it was the right choice, although we hope a designer will look at that interface sometime soon!

Toronto Matching System (TMS)
TMS is now being used by many major conferences in our field (including NIPS and UAI). It is an automated system (developed by Laurent Charlin and Rich Zemel at U. Toronto) to match reviewers to papers, based on an analysis of each reviewer’s publications. TMS collects publications from reviewers, parses them into features and applies unsupervised or supervised learning techniques to predict the relevance of any target paper for any reviewer. We convinced TMS to integrate with CMT and funded Laurent’s work for that. Reviewers were asked to put in a publication list for TMS to parse. For those who failed to do so (after many reminders!), we manually added that information from public sources.

The Program Committee
Recruiting a program committee that is both large and highly qualified is difficult these days. We sent out 69 area chair invitations; 50 (highly qualified!) people accepted. Each of these area chairs was asked to nominate a list of potential reviewers. We sent out approximately 700 invitations for program committee members; 389 accepted. A number of additional PC members were recruited during the review process (most of them for 1-2 papers), for a total of 470 active PC members. In terms of seniority, the final PC contains about ~15% students, 80% researchers, 5% other.

The Surge (ICML + 50%)
The first big challenge came on the submission deadline. In the past few years, ICML had consistently received ~550-600 submissions. This year, we had a 50% increase, to 890 submissions. We had recruited a PC that could comfortably handle 700 papers. Dealing with an extra 200 papers was not an easy task.

About 10 submissions were rejected without review for various reasons (severe formatting issues, extra pages, non-anonymization).

An unsupervised version of TMS was used to generate a list of candidate papers for each reviewer and area chair. This was done working closely with the Laurent Charlin of TMS using validation on previous NIPS data. CMT did not have the functionality to show a good list of candidate papers to reviewers, so we crafted an interface to show this list and let reviewers use that in conjunction with CMT. Ideally, this will be better incorporated in CMT in the future.

When you ask a group of scientists to run a conference, you must expect a few experiments will take place…. And so we decided to assess the usefulness of TMS scoring for generating lists of papers to bid on. To do this, we (randomly) assigned PC members to 1 of 3 groups. One group saw a list purely based on TMS scores. Another group received a list based on the matching between their subject area and that of the paper (referred to as the “relevance” score in CMT). The third group received a list based on a mix of both TMS and relevance. Reviewers were allowed to bid on any paper (excluding those with which they had a conflict); the lists were provided to help them efficiently sort through the large number of papers. We then compared the set of bids for a reviewer, with the list of suggestions, and measured the correspondence.

The following is the Discounted Cumulative Gain (DCG) of each list with respect to the bidding scores, averaged separately for each group. Note that each group was only presented with their corresponding list and not the others.

Group: CMT Group: TMS Group: CMT+TMS
Sorting by CMT scores 6.11 out of 12.64 (48%) 4.98 out of 13.63 (36%) 4.87 out of 13.55 (35%)
Sorting by TMS score 4.06 out of 12.64 (32%) 6.43 out of 13.63 (47%) 5.72 out of 13.55 (42%)
Sorting by TMS+CMT 4.77 out of 12.64 (37%) 6.11 out of 13.63 (44%) 6.71 out of 13.55 (49%)

A micro-survey was also run to collect further information on how users liked their short list. 85% of the participants indicated that they have used the list interface provided to them. The following is the preference indicated by each group (~75 reviewers in each group, ~2% error):

Preferred CMT over list 15% 12% 8%
Preferred list+CMT 81% 83% 83%
Preferred list over CMT 4% 5% 9%

It is obvious from the above that most participants found the list useful in conjunction with CMT (suggesting that the list should be integrated inside CMT). We can also see that those who were presented with a list based on TMS scores were more likely to find the list useful.

Note that all of the above was done in a long hectic but fun weekend.

Imputing Missing Bids
CMT assumes that the reviewers are not willing to review a paper unless stated otherwise. It does not differentiate between an unseen (but potentially relevant) paper and a paper that has been seen and ignored. This is a real shortcoming when it comes to matching papers to reviewers, especially for those reviewers that did not bid often. To mitigate this problem, we used the click information on the shortlist presented to the reviewers to find out which papers have been observed and ignored. We then impute these cases as real non-willing bids.

Around 30 reviewers did not provide any bids (and many had only a few). This is problematic because the tools used to do the actual reviewer-paper matching tend to assign the papers without any bids to the reviewers who did not bid, regardless of the match in expertise.

Once the bidding information was in and imputation was done, we now had to fill in the rest of the paper-reviewer bidding matrix to mitigate the problem with sparse bidders. This was done, once again, through TMS, but this time using a supervised learning approach.

Using supervised learning was more delicate than expected. To deal with the wildly varying number of bids per person, we imputed zero bids, first from papers that were plausibly skipped over, and if necessary at random from papers not bid on such that each person had the same expected bid in the dataset. From this dataset, we held out a random bid per person, and then trained to predict well the heldout bid. Most optimization approaches performed poorly due to the number of features greatly exceeding the number of labels. The best approach we found used the online algorithms in Vowpal Wabbit with a mass personalized training method similar to the one discussed here. This trained predictor was used to predict bid values for the full paper-reviewer bid matrix.

Automated Area Chair and First Reviewer Assignment
Once we had the imputed paper-reviewer bidding matrix, CMT was used to generate the actual match between papers and area chairs, and (separately) between papers and reviewers. Each paper had two area chairs (sometimes called “meta-reviewers” in CMT) assigned to it, one primary, one secondary, by running two rounds of assignments (so that the primary was usually the “better” match). One reviewer per paper was also assigned automatically by CMT in a similar fashion. CMT provides proper load balancing, so that all area chairs and reviewers had similar loads.

Manual Checks of the Automated Assignments
Before finalizing the automated assignment, we manually looked through the list of papers to fix any potential problems that were not handled by the automated process. The two major cases were papers that did not go through the TMS system (authors did not agree to do so), and cases of poor primary-secondary meta-reviewer pairs (when the two area chairs are judged to be too close to offer independent assessment, e.g. working at the same institution, previous supervisor-student relationship).

Second and Third Reviewer Assignment
Once the initial assignments were announced, we asked the two area chairs for a given paper to each manually assign another reviewer from the PC. To help area chairs with this, we generated a shortlist of 10 recommended reviewers for each paper (using the estimated bid matrix and TMS score, with the CMT matching algorithm for load balancing of reviewer suggestions.) Area chairs were free to either use this list, or select from the complete program committee, or alternately, they could seek an outside reviewer which was then added to the PC, an option used 80 times. The load for each reviewer was restricted to at most 7 papers with exceptions when they agreed explicitly to more.

The second and third uses of TMS, including the new supervised learning system, lead to another long hectic weekend with Laurent, Mahdi, Joelle, and John all deeply involved.

Most papers received at least 3 full reviews in the first round. Reviewers could not see each others’ reviews until they submitted their own. ML-Journaled submissions (see double submission guide) were reviewed only by two area chairs. In a small number of regular submissions (less than 10), we received 2 very negative reviews and notified the third reviewer (who was usually late by this point!) that we would not need their review.

Authors’ Response
Authors were given a chance to respond to the reviews during a short feedback period. This is becoming a standard practice in machine learning conferences. Authors were also allowed to upload a new version of the paper. The motivation here is that in some cases, it is easier to show the changes directly in the paper, rather than discuss them separately.

Our analysis shows that authors’ responses and subsequent discussions by reviewers made significant changes to the scoring of papers. A total of ~35% of the papers had some change in their scores after the author feedback. The average score for ~50% of the papers went down, stayed the same for ~10%, and went up for the other ~40%. The variance on the scores decreased by ~20%, indicating some convergence in the decisions.

Final Decisions
To help us better decide on the quality of the papers, we asked the primary area chairs to provide a meta-review for each of their papers. For papers without unanimous review decisions (i.e. some reviews wanted to accept and some wanted to reject), we asked the secondary area chair to (independently) fill-in a meta-review, recommending whether to accept or reject the paper. A total of 1214 meta-reviews were provided. There were also 20 papers for which a 4th review was added in this period.

In all cases where the primary and secondary area chairs disagreed on the decision, the program chairs were directly involved, reviewing all the evidence (reviews, rebuttal, discussion, often the paper itself), and entering in a discussion (usually via email) with the area chairs, until a unanimous decision was achieved.
A total of 243 papers (27% of submissions) were accepted. Author notifications were sent out on April 30.


ICML author feedback is open

Tags: Conferences,Machine Learning jl@ 8:24 pm

as of last night, late.

When the reviewing deadline passed Wednesday night 15% of reviews were still missing, much higher than I expected. Between late reviews coming in, ACs working overtime through the weekend, and people willing to help in the pinch another ~390 reviews came in, reducing the missing mass to 0.2%. Nailing that last bit and a similar quantity of papers with uniformly low confidence reviews is what remains to be done in terms of basic reviews. We are trying to make all of those happen this week so authors have some chance to respond.

I was surprised by the quantity of late reviews, and I think that’s an area where ICML needs to improve in future years. Good reviews are not done in a rush—they are done by setting aside time (like an afternoon), and carefully reading the paper while thinking about implications. Many reviewers do this well but a significant minority aren’t good at scheduling their personal time. In this situation there are several ways to fail:

  1. Give early warning and bail.
  2. Give no warning and finish not-too-late.
  3. Give no warning and don’t finish.

The worst failure mode by far is the last one for Program Chairs and Area Chairs, because they must catch and fix all the failures at the last minute. I expect the second failure mode also impacts the quality of reviews because high speed reviewing of a deep paper often doesn’t work. This issue is one of community norms which can only be adjusted slowly. To do this, we’re going to pass a flake list for failure mode 3 to future program chairs who will hopefully further encourage people to schedule time well and review carefully.

If my experience is any guide, plenty of authors will feel disappointed by the reviews. Part of this is simply because it’s the first time the authors have had contact with people not biased towards agreeing with them, as almost all friends are. Part of this is the significant hurdle of communicating technical new things well. Part may be too-hasty reviews, as discussed above. And part of it may be that the authors simply are far more expert in their subject than reviewers.

In author responses, my personal tendency is to be blunter than most people when reviewers make errors. Perhaps “kind but clear” is a good viewpoint. You should be sympathetic to reviewers who have voluntarily put significant time into reviewing your paper, but you should also use the channel to communicate real information. Remotivating your paper almost never works, so concentrate on getting across errors in understanding by reviewers or answer their direct questions.

We did not include reviewer scores in author feedback, although we do plan to include them when the decision is made. Scores should not be regarded as final by any party, since author feedback and discussion can significantly alter a reviewer’s understanding of the paper. Encouraging reviewers to incorporate this additional information well before settling on a final score is one of my goals.

We did allow resubmission of the paper with the author response, similar to what Geoff Gordon did as program chair for AIStat. This solves two problems: It helps authors create a more polished draft, and it avoids forcing an overly constrained channel in the communication. If an equation has a bug, you can write it out bug free in mathematical notation rather than trying to describe by reference how to alter the equation in author response.

Please comment if you have further thoughts.


COLT/ICML Open Questions and ICML Instructions

Sasha is the open problems chair for both COLT and ICML. Open problems will be presented in a joint session in the evening of the COLT/ICML overlap day. COLT has a history of open sessions, but this is new for ICML. If you have a difficult theoretically definable problem in machine learning, consider submitting it for review, due March 16. You’ll benefit three ways:

  1. The effort of writing down a precise formulation of what you want often helps you understand the nature of the problem.
  2. Your problem will be officially published and citable.
  3. You might have it solved by some very intelligent bored people.

The general idea could easily be applied to any problem which can be crisply stated with an easily verifiable solution, and we may consider expanding this in later years, but for this year all problems need to be of a theoretical variety.

Joelle and I (and Mahdi, and Laurent) finished an initial assignment of Program Committee and Area Chairs to papers. We’ll be updating instructions for the PC and ACs as we field questions. Feel free to comment here on things of plausible general interest, but email us directly with specific concerns.



Tags: Conferences,Machine Learning jl@ 10:27 pm

The ICML paper deadline has passed. Joelle and I were surprised to see the number of submissions jump from last year by about 50% to around 900 submissions. A tiny portion of these are immediate rejects(*), so this is a much larger set of papers than expected. The number of workshop submissions also doubled compared to last year, so ICML may grow significantly this year, if we can manage to handle the load well. The prospect of making 900 good decisions is fundamentally daunting, and success will rely heavily on the program committee and area chairs at this point.

For those who want to rubberneck a bit more, here’s a breakdown of submissions by primary topic of submitted papers:

66 Reinforcement Learning
52 Supervised Learning
51 Clustering
46 Kernel Methods
40 Optimization Algorithms
39 Feature Selection and Dimensionality Reduction
33 Learning Theory
33 Graphical Models
33 Applications
29 Probabilistic Models
29 NN & Deep Learning
26 Transfer and Multi-Task Learning
25 Online Learning
25 Active Learning
22 Semi-Supervised Learning
20 Statistical Methods
20 Sparsity and Compressed Sensing
19 Ensemble Methods
18 Structured Output Prediction
18 Recommendation and Matrix Factorization
18 Latent-Variable Models and Topic Models
17 Graph-Based Learning Methods
16 Nonparametric Bayesian Inference
15 Unsupervised Learning and Outlier Detection
12 Gaussian Processes
11 Ranking and Preference Learning
11 Large-Scale Learning
9 Vision
9 Social Network Analysis
9 Multi-agent & Cooperative Learning
9 Manifold Learning
8 Time-Series Analysis
8 Large-Margin Methods
8 Cost Sensitive Learning
7 Recommender Systems
7 Privacy, Anonymity, and Security
7 Neural Networks
7 Empirical Insights into ML
7 Bioinformatics
6 Information Retrieval
6 Evaluation Methodology
<5 each Text Mining, Rule and Decision Tree Learning, Graph Mining, 
    Planning & Control, Monte Carlo Methods, Inductive Logic Programming & Relational Learning, 
    Causal Inference, Statistical and Relational Learning, NLP, Hidden Markov Models, 
    Game Theory, Robotics, POMDPs, Geometric Approaches, Game Playing, Data Streams, 
    Pattern Mining & Inductive Querying, Meta-Learning, Evolutionary Computation

(*) Deadlines are magical, because they galvanize groups of people to concentrated action. But, they have to be real deadlines to achieve this, which leads us to reject late submissions & format failures to keep the deadline real for future ICMLs. This is uncomfortably rough at times.


ICML Posters and Scope

Tags: Conferences,Machine Learning jl@ 10:21 pm

Normally, I don’t indulge in posters for ICML, but this year is naturally an exception for me. If you want one, there are a small number left here, if you sign up before February.

It also seems worthwhile to give some sense of the scope and reviewing criteria for ICML for authors considering submitting papers. At ICML, the (very large) program committee does the reviewing which informs final decisions by area chairs on most papers. Program chairs setup the process, deal with exceptions or disagreements, and provide advice for the reviewing process. Providing advice is tricky (and easily misleading) because a conference is a community, and in the end the aggregate interests of the community determine the conference. Nevertheless, as a program chair this year it seems worthwhile to state the overall philosophy I have and what I plan to encourage (and occasionally discourage).

At the highest level, I believe ICML exists to further research into machine learning, which I generally think of as turning observations into useful predictions. Research is greatly varied in general, but in all cases it involves answering an interesting question for which the answer was not previously known. Interesting questions are generally natural: they can be stated easily and other people plausibly encounter them. Interesting questions are generally also ones for which there are multiple plausible wrong answers. The definition of “interesting” is otherwise hard to pin down, because it is does and must change over time.

ICML is a broad conference which incorporates the interests of many different groups of people with different tastes in the research they prefer. It’s broad enough that most people don’t appreciate all the papers. That’s ok as long as there is some higher level appreciation for which directions of research benefit the community. Some common flavors are:

  1. ML for X In general, Machine Learning is a core field of study with many applications. Often, it’s a good idea to publish within a conference focused on that area, but particularly when no such conference exists, ICML is a solid choice for a place to publish. One example of this kind of thing is Machine Learning for Sustainability, where the CCC will be giving a few travel grants. Here the core question is typically “How?” Exhibiting new things that you can do with ML provides good reference points for what is possible, provides a sense of what works, and compelling new ideas about what to work on can be valuable to the community.

    There are several ways that papers of this sort can bounce. Perhaps X is insufficiently interesting, the results are unconvincing, or the method of solution is considered too straight-forward. I consider the first and second criteria sound, but am inclined toward leniency on the third, since there is often quite a bit of work in figuring out how to frame the problem so that the solution happens to be easy.

  2. New Algorithms Often, authors find that existing learning algorithms for solving some problem are lacking in some way, so they propose new better algorithms. This is plausibly the most common category of paper at ICML, so there is quite a bit of variety. The most straight-forward version proposes a new algorithm for a well-studied problem. For these papers it’s important to have an empirical comparison to existing baselines.

    It’s easy for an empirical comparison to go wrong. Some authors use synthetic datasets which do not seem significant to me, because good results on such datasets may not transfer to real-world problems well as the real world tends to be quite a bit more complex than the synthetic processes which are natural to program. Instead, it’s important to show good results on real datasets. One problem with relying on real datasets is dataset selection—choosing the dataset for which your algorithm seems to perform best. You can avoid this by choosing datasets in some clearly unbiased manner and by evaluating on many standard datasets. Another way to fail is with a poor choice of baseline. This is tricky, because three reviewers might consider three different baselines the most natural one. Asking around a bit when developing the paper might help here, but in the end this can be a tough judgement call: Is the paper convincing enough that people interested in solving the problem should use this algorithm?

    Another class of new algorithms papers is new algorithms for new areas of machine learning, blending into the previous category. Here, there typically are relatively few (perhaps just one) dataset available and there may be no (or only implausibly bad) baselines. For papers like this, one way I’ve seen difficulties is when authors are very invested in a particular approach to solving the problem. If you have defined the problem too narrowly, broadening the definition of the problem can help you see appropriate baselines. Another difficulty I’ve observed is reviewers used to the well-studied problems reject an interesting paper because (essentially) they assume that the authors left out a good baseline which does not exist. To prevent the first, authors who ask around might get some valuable early feedback. For the second, it’s a difficulty we are aware of and will consider asking reviewers to judge on the merits of ML for X.

  3. Algorithmic studies A relatively rare but potentially valuable form of paper is an algorithmic study. Here, the authors do not propose a new algorithm, but instead do a comprehensive empirical comparison of different algorithms. The standards here are quite high—the empirical comparison needs to be first-class to convince people, so the empirical comparison comments under new algorithms apply strongly.
  4. New Theory Good theory can enlighten us about what is (or might be) possible. It can also help us build robust learning algorithms, where we design learning algorithms so that they provably solve some large class of problems. I am personally most interested in theory that helps us design new learning algorithms, but broadly interested in what is possible. I’m most interested in the question answered, while the means (and language) should only be as complex as necessary so the theory can be understood as widely as possible.

    In many areas of CS theory, double blind reviewing is rare, so theory-oriented people may be unfamiliar with it. An important consequence is that complete proofs must be included either in the paper or supplemental material so that proof checking is fully feasible.

    Another way that I’ve seen theory papers run into trouble is when it is a post-hoc justification for an algorithm. In essence, authors who choose to analyze an existing algorithm are sometimes forced to make many unnatural assumptions for the theory to be correct. There generally isn’t an easy fix if you arrive at this point.

  5. n of the above It is common for ICML papers to be multicategory. At the extreme, you might have a new algorithm which solves a new X well, empirically and theoretically. Reviewers can fall into a trap where they are most interested in 1 of the 4 questions answered above, and find 1/4 of the paper devoted to their question relatively weak compared to the paper that devotes all the pages to the same question.

    We are aware of this, and will encourage it to be taken into account.

  6. The exception The set of papers I expect to see at ICML is more diverse than the above—there are often exceptions of one sort or another. For these exceptions, it often becomes a judgment call: Does this paper significantly further research into machine learning? Papers with little potential audience probably don’t while fun/interesting/useful things that we didn’t think of do.

Further comments or questions are welcome.



Tags: Conferences,Machine Learning jl@ 7:01 pm

By Shie and Nati

Following John’s advertisement for submitting to ICML, we thought it appropriate to highlight the advantages of COLT, and the reasons it is often the best place for theory papers. We would like to emphasize that we both respect ICML, and are active in ICML, both as authors and as area chairs, and certainly are not arguing that ICML is a bad place for your papers. For many papers, ICML is the best venue. But for many theory papers, COLT is a better and more appropriate place.

Why should you submit to COLT?

By-and-large, theory papers go to COLT. This is the tradition of the field and most theory papers are sent to COLT. This is the place to present your ground-breaking theorems and new models that will shape the theory of machine learning. COLT is more focused then ICML with a single track session. Unlike ICML, the norm in COLT is for people to sit through most sessions, and hear most of the talks presented. There is also often a lively discussion following paper presentations. If you want theory people to know of your work, you should submit to COLT.

Additionally, this year COLT and ICML are tightly co-located, with joint plenary sessions (i.e. some COLT papers will be presented in a plenary session to the entire combined COLT/ICML audience, as will some ICML papers), and many other opportunities for exposure to the wider ICML audience. And so, by submitting to COLT, you have the potential of reaching both the captive theory audience at COLT and the wider ML audience at ICML.

The advantages of sending to COLT:

  1. Rigorous review process.

    The COLT program committee is comprised entirely of established, mostly fairly senior, researchers. Program committee members read and review papers themselves, or potentially use a sub-reviewer that they know personally and carefully select for the paper, but still check and maintain responsibility for the review. Your paper will get reviewed by at least three program committee members, who will likely be experts on the topics covered by the paper. This is in contrast to ICML (and most other ML conferences) were area chairs (of similar seniority to the COLT program committee) only manage the review process, but reviewers are assigned based on load-balancing considerations and the primary reviewing is done by a very wide set of reviewers, frequently students, who are often not the most relevant experts.

    COLT reviews are typically detailed and technical details are checked. The reviewing process is less rushed and program committee members (and sub-reviewers were appropriate) are expected to do a careful job on each and every paper.

    All papers are then discussed by the program committee, and there is generally significant and meaningful discussions on papers. This also means the COLT reviewing process is far from having a “single point of failure”, as the paper will be carefully considered and argued for by multiple (senior) program committee members. We believe this yields a more consistently high quality program, with much less randomness in the paper selection process, which in turn translates to high respect for accepted COLT papers.

  2. COLT is not double blind, but also not exactly single blind. Program committee members have access to the author identities (as do area chairs in ICML), as this is essential in order to select sub-reviewers. However, the author names do not appear on the papers, both in order to reduce the effect of first impressions, and to allow program committee members to utilize reviewers who are truly blind to the author’s identities.

    It should be noted that the COLT anonimization guidelines are a bit more relaxed, which we hope makes it easier to create an anonimized version for conference submission (authors are still allowed to, and even encouraged, to post their papers online, with their names on them of course).

  3. COLT does not have a dedicated rebuttal phase. Frankly, with the higher quality, less random, reviews, we feel it is not needed, and the hassle to authors and program committee members is not worth it. However, the tradition in COLT, which we plan to follow, is to contact authors as needed during the review and discussion process to ask for clarification on issues that came up during review. In particular, if a concern is raised on the soundness or other technical aspect of a paper, the authors will be contacted to give them a chance to set things straight. But no, there is no generic author response where authors can argue and plead for acceptance.


Why ICML? and the summer conferences

Tags: Conferences,Machine Learning jl@ 11:09 pm

Here’s a quick reference for summer ML-related conferences sorted by due date:

Conference Due date Location Reviewing
KDD Feb 10 August 12-16, Beijing, China Single Blind
COLT Feb 14 June 25-June 27, Edinburgh, Scotland Single Blind? (historically)
ICML Feb 24 June 26-July 1, Edinburgh, Scotland Double Blind, author response, zero SPOF
UAI March 30 August 15-17, Catalina Islands, California Double Blind, author response

Geographically, this is greatly dispersed and the UAI/KDD conflict is unfortunate.

Machine Learning conferences are triannual now, between NIPS, AIStat, and ICML. This has not always been the case: the academic default is annual summer conferences, then NIPS started with a December conference, and now AIStat has grown into an April conference.

However, the first claim is not quite correct. NIPS and AIStat have few competing venues while ICML implicitly competes with many other conferences accepting machine learning related papers. Since Joelle and I are taking a turn as program chairs this year, I want to make explicit the case for ICML.

  1. COLT was historically a conference for learning-interested Computer Science theory people. Every COLT paper has a theorem, and few have experimental results. A significant subset of COLT papers could easily be published at ICML instead. ICML now has a significant theory community, including many pure theory papers and significant overlap with COLT attendees. Good candidates for an ICML submission are learning theory papers motivated by real machine learning problems (example: the agnostic active learning paper) or which propose and analyze new plausibly useful algorithms (example: the adaptive gradient papers). If you find yourself tempted to add empirical experiments to prove the point that your theory really works, ICML sounds like an excellent fit. Not everything is a good fit though—papers motivated by definitional aesthetics or tradition (Valiant style PAC learning comes to mind) may not be appreciated.

    There are two significant advantages to ICML over COLT. One is that ICML provides a potentially much larger audience which appreciates and uses your work. That’s substantially less relevant this year, because ICML and COLT are colocating and we are carefully designing joint sessions for the overlap day.

    The other is that ICML is committed to fair reviewing—papers are double blind so reviewers are not forced to take into account the author identity. Plenty of people will argue that author names don’t matter to them, but I’ve personally seen several cases as a reviewer where author identity affected the decision, typically towards favoring insiders or bigwigs at theory conferences as common sense would suggest. The double blind aspect of ICML reviewing is an open invitation to outsiders to submit to ICML.

  2. Many UAI papers could easily go to ICML because they are explicitly about machine learning or connections with machine learning. For example, pure prediction markets are a stretch for ICML, but connections between machine learning and prediction markets, which seem to come up in multiple ways, are a good fit. Bernhard‘s lab has done quite a bit of work on extracting causality from prediction complexity which could easily interest people at ICML. I’ve personally found some work on representations for learning algorithms, such as sum-product networks of first class interest. UAI has a definite subcommunity of hardcore Bayesians which is less evident at ICML. ICML as a community seems more pragmatist w.r.t. Bayesian methods: if they work well, that’s good. Of the comparators here, UAI seems the most similar in orientation to ICML to me.

    ICML provides a significantly larger potential audience and, due to it’s size, tends to be more diverse.

  3. KDD is a large conference (a bit larger than ICML by attendance) which, as I understand it, initially started from the viewpoint of database people trying to do interesting things with the data they had. The conference is generally one step more commercial/industrial than ICML. Significant parts of the academic track are about machine learning technology and could have been submitted to ICML instead. I was impressed by the double robust sampling work and the out of core learning paper is cool. And, I often enjoy the differential privacy in learning work. KDD attendees tends to be very pragmatic about what works, which is reinforced by yearly prediction challenges. I appreciate this viewpoint quite a bit.

    KDD doesn’t do double blind review, which was discussed above. To me, a more significant drawback of KDD is the ACM paywall. I was burned by this last summer. We decided to do a large scale learning survey based on the SUML compendium at KDD, but discovered too late that the video would be stuck behind the paywall, unlike our learning with exploration tutorial the year before. As I understand it, the year before ACM made them pay twice: once to videolectures and once to ACM, which was understandably judged unsustainable. The paywall is particularly rough for students who are not well-established, because it substantially limits their potential audience.

    This is not a problem at ICML 2012. Every prepared presentation will be videotaped and we will have every paper easily and publicly accessible along with it. The effort you put into the presentation will payoff over hundreds or thousands of additional online views.

  4. Area conferences. There are many other conferences which I think of as adjacent area conferences, including AAAI, ACL, SIGIR, CVPR and WWW which I have not attended enough or recently enough to make a real comparison with. Nevertheless, in each of these conferences, machine learning is a common technology. And sometimes new forms of machine learning technology are developed. Depending on many circumstances, ICML might be a good candidate for a place to send a paper on a new empirically useful piece of machine learning technology. Or not—the circumstances matter hugely.

Machine Learning has grown radically and gone industrial over the last decade, providing plenty of motivation for a conference on developing new core machine learning technology. Indeed, it is because of the power of ML that so much overlap exists. In most cases, the best place to send a paper is to the conference where it will be most appreciated. But, there is a real sense in which you create the community by participating in it. So, when the choice is unclear, sending the paper to a conference designed simultaneously for fair high quality reviewing and broad distribution of your work is a good call as it provides the most meaningful acceptance. For machine learning, that conference is ICML. Details of the ICML plan this year are here. We are on track.

As always, comments are welcome.


ML Symposium and ICML details

Everyone should have received notice for NY ML Symposium abstracts. Check carefully, as one was lost by our system.

The event itself is October 21, next week. Leon Bottou, Stephen Boyd, and Yoav Freund are giving the invited talks this year, and there are many spotlights on local work spread throughout the day. Chris Wiggins has setup 6(!) ML-interested startups to follow the symposium, which should be of substantial interest to the employment interested.

I also wanted to give an update on ICML 2012. Unlike last year, our deadline is coordinated with AIStat (which is due this Friday). The paper deadline for ICML has been pushed back to February 24 which should allow significant time for finishing up papers after the winter break. Other details may interest people as well:

  1. We settled on using CMT after checking out the possibilities. I wasn’t looking for this, because I’ve often found CMT clunky in terms of easy access to the right information. Nevertheless, the breadth of features and willingness to support new/better approaches to reviewing was unrivaled. We are also coordinating with Laurent, Rich, and CMT to enable their paper/reviewer recommendation system. The outcome should be a standardized interface in CMT for any recommendation system, which others can then code to if interested.
  2. Area chairs have been picked. The list isn’t sacred, so if we discover significant holes in expertise we’ll deal with it. We expect to start inviting PC members in a little while. Right now, we’re looking into invited talks. If you have any really good suggestions, they could be considered.
  3. CCC is interested in sponsoring travel costs for any climate/environment related ML papers, which seems great to us. In general, this seems like an area of growing interest.
  4. We now have a permanent server and the beginnings of the permanent website setup. Much more work needs to be done here.
  5. We haven’t settled yet on how videos will work. Last year, ICML experimented with Weyond with results here. Previously, ICML had used videolectures, which is significantly more expensive. If you have an opinion about cost/quality tradeoffs or other options, speak up.
  6. Plans for COLT have shifted slightly—COLT will start a day early, overlap with tutorials, then overlap with a coordinated first day of ICML conference papers.
Older Posts »

Powered by WordPress