Steve Smale and I have a debate about goals of learning theory.

Steve likes theorems with a dependence on unobservable quantities. For example, if *D* is a distribution over a space *X x [0,1]*, you can state a theorem about the error rate dependent on the variance, *E*_{(x,y)~D} (y-E_{y’~D|x}[y'])^{2}.

I dislike this, because I want to use the theorems to produce code solving learning problems. Since I don’t know (and can’t measure) the variance, a theorem depending on the variance does not help me—I would not know what variance to plug into the learning algorithm.

Recast more broadly, this is a debate between “declarative” and “operative” mathematics. A strong example of “declarative” mathematics is “a new kind of science”. Roughly speaking, the goal of this kind of approach seems to be finding a way to explain the observations we make. Examples include “some things are unpredictable”, “a phase transition exists”, etc…

“Operative” mathematics helps you make predictions about the world. A strong example of operative mathematics is Newtonian mechanics in physics: it’s a great tool to help you predict what is going to happen in the world.

In addition to the “I want to do things” motivation for operative mathematics, I find it less arbitrary. In particular, two reasonable people can each be convinced they understand a topic in ways so different that they do not understand the viewpoint. If these understandings are operative, the rest of us on the sidelines can better appreciate which understanding is “best”.