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What part of speech are the words?
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A demonstration

1 |w Despite
2 |w continuing
3 |w problems
1 |w in
4 |w its
5 |w newsprint
5 |w business
...

vw -b 24 -d wsj.train.vw -c –search_task sequence –search 45
–search_alpha 1e-8 –search_neighbor_features -1:w,1:w
–affix -1w,+1w -f foo.reg
vw -t -i foo.reg wsj.test.vw
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Is this word a name or not?
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How fast in evaluation?
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Entity Relation

Goal: find the Entities and then find their Relations
Method Entity F1 Relation F1 Train Time

Structured SVM 88.00 50.04 300 seconds
L2S 92.51 52.03 13 seconds

L2S uses ˜100 LOC.



Find dependency structure of sentences.
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Effect of Roll-in and Roll-out Policies

roll-out →
↓ roll-in Reference Half-n-half Learned

Reference Inconsistent

Learned .
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Effect of Roll-in and Roll-out Policies

roll-out →
↓ roll-in Reference Half-n-half Learned

Reference Inconsistent

Learned .

Theorem
Roll-in with ref:
0 cost-sensitive regret ⇒ unbounded joint regret
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Effect of Roll-in and Roll-out Policies

roll-out →
↓ roll-in Reference Half-n-half Learned

Reference Inconsistent

Learned Consistent
No local opt

Theorem
Roll-out with Ref:
0 cost-sensitive regret ⇒ 0 joint regret
(but not local optimality)



Effect of Roll-in and Roll-out Policies

roll-out →
↓ roll-in Reference Half-n-half Learned

Reference Inconsistent

Learned Consistent
No local opt Reinf. L.

Theorem
Ignore Ref:
⇒ Equivalent to reinforcement learning.



Effect of Roll-in and Roll-out Policies

roll-out →
↓ roll-in Reference Half-n-half Learned

Reference Inconsistent

Learned Consistent
No local opt

Consistent
Local Opt Reinf. L.

Theorem
Roll-out with p = 0.5 Ref and p = 0.5 Learned:
0 cost-sensitive regret ⇒ 0 joint regret + locally
optimal



AggreVaTe Regret Decomposition
πref = reference policy
π̄ = stochastic average learned policy
J(π) = expected loss of π.

Theorem

J(π̄)− J(πref) ≤

TEn,tEx∼Dt
π̂n

[
Qπref(x , π̂n)− Qπref(x , πref)

]
T = number of steps
π̂n = nth learned policy
D t
π̂n

= distribution over x at time t induced by π̂n
Qπ(x , π′) = loss of π′ at x then π to finish
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Proof
For all π let πt play π for rounds 1...t then play πref

for rounds t + 1...T . So πT = π and π0 = πref

(Telescoping sum)

since for all ,

So J(π̄)− J(πref)

= TEt,nEx∼Dt
π̂n

[
Qπref(x , π̂n)− Qπref(x , πref)
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Lines of Code
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How?

Sequential_RUN(examples)

1: for i = 1 to len(examples) do
2: prediction ← predict(examples[i ], examples[i ].label)
3: loss(prediction 6= examples[i ].label)
4: end for

Decoder + loss + reference advice



How?

Sequential_RUN(examples)

1: for i = 1 to len(examples) do
2: prediction ← predict(examples[i ], examples[i ].label)
3: loss(prediction 6= examples[i ].label)
4: end for

Decoder + loss + reference advice



RunParser(sentence)

1: stack S ← {Root}
2: buffer B ← [words in sentence]
3: arcs A ← ∅
4: while B 6= ∅ or |S | > 1 do
5: ValidActs ← GetValidActions(S ,B)
6: features ← GetFeat(S ,B ,A)
7: ref ← GetGoldAction(S ,B)
8: action ← predict(features, ref, ValidActs)
9: S ,B ,A ← Transition(S ,B ,A, action)

10: end while
11: loss(A[w ] 6= A∗[w ], ∀w ∈ sentence)
12: return output



Program/Search equivalence

Theorem: Every algorithm which:
1 Always terminates.
2 Takes as input relevant feature information X .
3 Make 0+ calls to predict.
4 Reports loss on termination.

defines a search space, and such an algorithm exists
for every search space.



It even works in Python

def _run(self, sentence):
output = []
for n in range(len(sentence)):

pos,word = sentence[n]
with self.vw.example(’w’: [word],

’p’: [prev_word]) as ex:
pred = self.sch.predict(examples=ex,

my_tag=n+1, oracle=pos,
condition=[(n,’p’), (n-1, ’q’)])

output.append(pred)
return output



Bugs you cannot have

1 Never train/test mismatch.

2 Never unexplained slow.
3 Never fail to compensate for cascading failure.
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1 Families of algorithms.
2 What’s missing from learning to search?



Imitation Learning

Use perceptron-like update when learned deviates
from gold standard.

Inc. P. Collins & Roark, ACL 2004.
LaSo Daume III & Marcu, ICML 2005.
Local Liang et al, ACL 2006.

Beam P. Xu et al., JMLR 2009.
Inexact Huang et al, NAACL 2012.

Train a classifier to mimic an expert’s behavior
DAgger Ross et al., AIStats 2011.
Dyna O Goldberg et al., TACL 2014.
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Learning to Search

When the reference policy is optimal
Searn Daume III et al., MLJ 2009.
Aggra Ross & Bagnell,

http://arxiv.org/pdf/1406.5979

When it’s not
LOLS Chang et al., ICML 2015.

Code in Vowpal Wabbit http://hunch.net/~vw

http://arxiv.org/pdf/1406.5979
http://hunch.net/~vw
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Inverse Reinforcement Learning

Given observed expert behavior, infer the underlying
reward function the expert seems to be optimizing

propose Kalman, 1968.
1st sol. Boyd, 1994.

from sample trajectories only
Ng & Russell, ICML 2000

for apprenticeship learning
Apprent. Abbeel & Ng, ICML 2004
Maxmar. Ratliff et al., NIPS 2005
MaxEnt Ziebart et al., AAAI 2008
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What’s missing? Automatic Search order

Learning to search ' dependency + search order.
Graphical models “work” given dependencies only.



What’s missing? The reference policy

A good reference policy is often nonobvious... yet
critical to performance.



What’s missing?
Efficient Cost-Sensitive Learning

When choosing 1-of-k things, O(k) time is not
exciting for machine translation.



What’s missing? GPU fun

Vision often requires a GPU. Can that be done?



How to optimize discrete joint loss?

1 Programming complexity.

Most complex
problems addressed independently—too complex
to do otherwise.

2 Prediction accuracy. It had better work well.
3 Train speed. Debug/development productivity +

maximum data input.
4 Test speed. Application efficiency
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