
Outline

1 Empirics
2 Analysis
3 Programming
4 Others and Issues

What part of speech are the words?

10-3 10-2 10-1 100 101 102 103

Training time (minutes)

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

Ac
cu

ra
cy

 (p
er

 w
or

d)

94.9
95.7

96.6
95.9 95.5

96.1

90.7

96.1

1s 10s 1m 10m 30m1h

POS Tagging (tuned hps)

OAA
L2S
L2S (ft)
CRFsgd

CRF++
StrPerc
StrSVM
StrSVM2

A demonstration

1 |w Despite
2 |w continuing
3 |w problems
1 |w in
4 |w its
5 |w newsprint
5 |w business
...

vw -b 24 -d wsj.train.vw -c –search_task sequence –search 45
–search_alpha 1e-8 –search_neighbor_features -1:w,1:w
–affix -1w,+1w -f foo.reg
vw -t -i foo.reg wsj.test.vw

A demonstration

1 |w Despite
2 |w continuing
3 |w problems
1 |w in
4 |w its
5 |w newsprint
5 |w business
...
vw -b 24 -d wsj.train.vw -c –search_task sequence –search 45
–search_alpha 1e-8 –search_neighbor_features -1:w,1:w
–affix -1w,+1w -f foo.reg
vw -t -i foo.reg wsj.test.vw

Is this word a name or not?

10-3 10-2 10-1 100 101

Training time (minutes)

0.60

0.65

0.70

0.75

0.80

F-
sc

or
e

(p
er

 e
nt

ity
)

73.6

79.8
79.2

76.575.976.5

78.3

1s 10s 1m 10m

Named Entity Recognition (tuned hps)

OAA
L2S
L2S (ft)
CRFsgd

CRF++
StrPerc
StrSVM2

How fast in evaluation?

NER

POS

0 100 200 300 400 500 600

563

365

520

404

24

5.7

98

13

5.6
14

5.3

Prediction (test-time) Speed

L2S
L2S (ft)
CRFsgd
CRF++
StrPerc
StrSVM
StrSVM2

Thousands of Tokens per Second

Entity Relation

Goal: find the Entities and then find their Relations
Method Entity F1 Relation F1 Train Time

Structured SVM 88.00 50.04 300 seconds
L2S 92.51 52.03 13 seconds

L2S uses ˜100 LOC.

Find dependency structure of sentences.

 70

 75

 80

 85

 90

 95

Ar* Bu Ch Da Du En Ja Po* Sl* Sw Avg

U
A

S
 (

h
ig

h
e
r=

b
e
tt

e
r)

language

L2S
Dyna
SNN

L2S uses ˜300 LOC.

Outline

1 Empirics
2 Analysis
3 Programming
4 Others and Issues

Effect of Roll-in and Roll-out Policies

roll-out →
↓ roll-in Reference Half-n-half Learned

Reference Inconsistent

Learned .

s1

s3

e4, 0
f

e3, 100eb

s2

e2, 10
d

e1, 0c

a

Effect of Roll-in and Roll-out Policies

roll-out →
↓ roll-in Reference Half-n-half Learned

Reference Inconsistent

Learned .

Theorem
Roll-in with ref:
0 cost-sensitive regret ⇒ unbounded joint regret

Effect of Roll-in and Roll-out Policies

roll-out →
↓ roll-in Reference Half-n-half Learned

Reference Inconsistent

Learned Consistent
No local opt

s1

s3

e4, 0
d

e3, 1+εcb

s2

e2, 1−ε
d

e1, 1c

a

Effect of Roll-in and Roll-out Policies

roll-out →
↓ roll-in Reference Half-n-half Learned

Reference Inconsistent

Learned Consistent
No local opt

Theorem
Roll-out with Ref:
0 cost-sensitive regret ⇒ 0 joint regret
(but not local optimality)

Effect of Roll-in and Roll-out Policies

roll-out →
↓ roll-in Reference Half-n-half Learned

Reference Inconsistent

Learned Consistent
No local opt Reinf. L.

Theorem
Ignore Ref:
⇒ Equivalent to reinforcement learning.

Effect of Roll-in and Roll-out Policies

roll-out →
↓ roll-in Reference Half-n-half Learned

Reference Inconsistent

Learned Consistent
No local opt

Consistent
Local Opt Reinf. L.

Theorem
Roll-out with p = 0.5 Ref and p = 0.5 Learned:
0 cost-sensitive regret ⇒ 0 joint regret + locally
optimal

AggreVaTe Regret Decomposition
πref = reference policy
π̄ = stochastic average learned policy
J(π) = expected loss of π.

Theorem

J(π̄)− J(πref) ≤

TEn,tEx∼Dt
π̂n

[
Qπref(x , π̂n)− Qπref(x , πref)

]
T = number of steps
π̂n = nth learned policy
D t
π̂n

= distribution over x at time t induced by π̂n
Qπ(x , π′) = loss of π′ at x then π to finish

AggreVaTe Regret Decomposition
πref = reference policy
π̄ = stochastic average learned policy
J(π) = expected loss of π.

Theorem

J(π̄)− J(πref) ≤

TEn,tEx∼Dt
π̂n

[
Qπref(x , π̂n)− Qπref(x , πref)

]
T = number of steps
π̂n = nth learned policy
D t
π̂n

= distribution over x at time t induced by π̂n
Qπ(x , π′) = loss of π′ at x then π to finish

Proof
For all π let πt play π for rounds 1...t then play πref

for rounds t + 1...T . So πT = π and π0 = πref

(Telescoping sum)

since for all ,

So J(π̄)− J(πref)

= TEt,nEx∼Dt
π̂n

[
Qπref(x , π̂n)− Qπref(x , πref)

]

Proof
For all π let πt play π for rounds 1...t then play πref

for rounds t + 1...T . So πT = π and π0 = πref

J(π)− J(πref)
=
∑T

t=1 J(πt)− J(πt−1) (Telescoping sum)

since for all ,

So J(π̄)− J(πref)

= TEt,nEx∼Dt
π̂n

[
Qπref(x , π̂n)− Qπref(x , πref)

]

Proof
For all π let πt play π for rounds 1...t then play πref

for rounds t + 1...T . So πT = π and π0 = πref

J(π)− J(πref)
=
∑T

t=1 J(πt)− J(πt−1) (Telescoping sum)

=
∑T

t=1 Ex∼Dt
π

[
Qπref(x , π)− Qπref(x , πref)

]
since for all π, t, J(π) = Ex∼Dt

π
Qπ(x , π)

So J(π̄)− J(πref)

= TEt,nEx∼Dt
π̂n

[
Qπref(x , π̂n)− Qπref(x , πref)

]

Proof
For all π let πt play π for rounds 1...t then play πref

for rounds t + 1...T . So πT = π and π0 = πref

J(π)− J(πref)
=
∑T

t=1 J(πt)− J(πt−1) (Telescoping sum)

=
∑T

t=1 Ex∼Dt
π

[
Qπref(x , π)− Qπref(x , πref)

]
since for all π, t, J(π) = Ex∼Dt

π
Qπ(x , π)

= TEtEx∼Dt
π

[
Qπref(x , π)− Qπref(x , πref)

]

So J(π̄)− J(πref)

= TEt,nEx∼Dt
π̂n

[
Qπref(x , π̂n)− Qπref(x , πref)

]

Proof
For all π let πt play π for rounds 1...t then play πref

for rounds t + 1...T . So πT = π and π0 = πref

J(π)− J(πref)
=
∑T

t=1 J(πt)− J(πt−1) (Telescoping sum)

=
∑T

t=1 Ex∼Dt
π

[
Qπref(x , π)− Qπref(x , πref)

]
since for all π, t, J(π) = Ex∼Dt

π
Qπ(x , π)

= TEtEx∼Dt
π

[
Qπref(x , π)− Qπref(x , πref)

]
So J(π̄)− J(πref)

= TEt,nEx∼Dt
π̂n

[
Qπref(x , π̂n)− Qπref(x , πref)

]

Outline

1 Empirics
2 Analysis
3 Programming
4 Others and Issues

Lines of Code

 1

 10

 100

 1000

CRFSGD CRF++ S-SVM Search

li
n

e
s
 o

f
c
o

d
e

 f
o

r
P

O
S

How?

Sequential_RUN(examples)

1: for i = 1 to len(examples) do
2: prediction ← predict(examples[i], examples[i].label)
3: loss(prediction 6= examples[i].label)
4: end for

Decoder + loss + reference advice

How?

Sequential_RUN(examples)

1: for i = 1 to len(examples) do
2: prediction ← predict(examples[i], examples[i].label)
3: loss(prediction 6= examples[i].label)
4: end for

Decoder + loss + reference advice

RunParser(sentence)

1: stack S ← {Root}
2: buffer B ← [words in sentence]
3: arcs A ← ∅
4: while B 6= ∅ or |S | > 1 do
5: ValidActs ← GetValidActions(S ,B)
6: features ← GetFeat(S ,B ,A)
7: ref ← GetGoldAction(S ,B)
8: action ← predict(features, ref, ValidActs)
9: S ,B ,A ← Transition(S ,B ,A, action)

10: end while
11: loss(A[w] 6= A∗[w], ∀w ∈ sentence)
12: return output

Program/Search equivalence

Theorem: Every algorithm which:
1 Always terminates.
2 Takes as input relevant feature information X .
3 Make 0+ calls to predict.
4 Reports loss on termination.

defines a search space, and such an algorithm exists
for every search space.

It even works in Python

def _run(self, sentence):
output = []
for n in range(len(sentence)):

pos,word = sentence[n]
with self.vw.example(’w’: [word],

’p’: [prev_word]) as ex:
pred = self.sch.predict(examples=ex,

my_tag=n+1, oracle=pos,
condition=[(n,’p’), (n-1, ’q’)])

output.append(pred)
return output

Bugs you cannot have

1 Never train/test mismatch.

2 Never unexplained slow.
3 Never fail to compensate for cascading failure.

Bugs you cannot have

1 Never train/test mismatch.
2 Never unexplained slow.

3 Never fail to compensate for cascading failure.

Bugs you cannot have

1 Never train/test mismatch.
2 Never unexplained slow.
3 Never fail to compensate for cascading failure.

Outline

1 Empirics
2 Analysis
3 Programming
4 Others and Issues

1 Families of algorithms.
2 What’s missing from learning to search?

Imitation Learning

Use perceptron-like update when learned deviates
from gold standard.

Inc. P. Collins & Roark, ACL 2004.
LaSo Daume III & Marcu, ICML 2005.
Local Liang et al, ACL 2006.

Beam P. Xu et al., JMLR 2009.
Inexact Huang et al, NAACL 2012.

Train a classifier to mimic an expert’s behavior
DAgger Ross et al., AIStats 2011.
Dyna O Goldberg et al., TACL 2014.

Imitation Learning

Use perceptron-like update when learned deviates
from gold standard.

Inc. P. Collins & Roark, ACL 2004.
LaSo Daume III & Marcu, ICML 2005.
Local Liang et al, ACL 2006.

Beam P. Xu et al., JMLR 2009.
Inexact Huang et al, NAACL 2012.

Train a classifier to mimic an expert’s behavior
DAgger Ross et al., AIStats 2011.
Dyna O Goldberg et al., TACL 2014.

Learning to Search

When the reference policy is optimal
Searn Daume III et al., MLJ 2009.
Aggra Ross & Bagnell,

http://arxiv.org/pdf/1406.5979

When it’s not
LOLS Chang et al., ICML 2015.

Code in Vowpal Wabbit http://hunch.net/~vw

http://arxiv.org/pdf/1406.5979
http://hunch.net/~vw

Learning to Search

When the reference policy is optimal
Searn Daume III et al., MLJ 2009.
Aggra Ross & Bagnell,

http://arxiv.org/pdf/1406.5979

When it’s not
LOLS Chang et al., ICML 2015.

Code in Vowpal Wabbit http://hunch.net/~vw

http://arxiv.org/pdf/1406.5979
http://hunch.net/~vw

Learning to Search

When the reference policy is optimal
Searn Daume III et al., MLJ 2009.
Aggra Ross & Bagnell,

http://arxiv.org/pdf/1406.5979

When it’s not
LOLS Chang et al., ICML 2015.

Code in Vowpal Wabbit http://hunch.net/~vw

http://arxiv.org/pdf/1406.5979
http://hunch.net/~vw

Inverse Reinforcement Learning

Given observed expert behavior, infer the underlying
reward function the expert seems to be optimizing

propose Kalman, 1968.
1st sol. Boyd, 1994.

from sample trajectories only
Ng & Russell, ICML 2000

for apprenticeship learning
Apprent. Abbeel & Ng, ICML 2004
Maxmar. Ratliff et al., NIPS 2005
MaxEnt Ziebart et al., AAAI 2008

Inverse Reinforcement Learning

Given observed expert behavior, infer the underlying
reward function the expert seems to be optimizing

propose Kalman, 1968.
1st sol. Boyd, 1994.

from sample trajectories only
Ng & Russell, ICML 2000

for apprenticeship learning
Apprent. Abbeel & Ng, ICML 2004
Maxmar. Ratliff et al., NIPS 2005
MaxEnt Ziebart et al., AAAI 2008

Inverse Reinforcement Learning

Given observed expert behavior, infer the underlying
reward function the expert seems to be optimizing

propose Kalman, 1968.
1st sol. Boyd, 1994.

from sample trajectories only
Ng & Russell, ICML 2000

for apprenticeship learning
Apprent. Abbeel & Ng, ICML 2004
Maxmar. Ratliff et al., NIPS 2005
MaxEnt Ziebart et al., AAAI 2008

Inverse Reinforcement Learning

Given observed expert behavior, infer the underlying
reward function the expert seems to be optimizing

propose Kalman, 1968.
1st sol. Boyd, 1994.

from sample trajectories only
Ng & Russell, ICML 2000

for apprenticeship learning
Apprent. Abbeel & Ng, ICML 2004
Maxmar. Ratliff et al., NIPS 2005
MaxEnt Ziebart et al., AAAI 2008

What’s missing? Automatic Search order

Learning to search ' dependency + search order.
Graphical models “work” given dependencies only.

What’s missing? The reference policy

A good reference policy is often nonobvious... yet
critical to performance.

What’s missing?
Efficient Cost-Sensitive Learning

When choosing 1-of-k things, O(k) time is not
exciting for machine translation.

What’s missing? GPU fun

Vision often requires a GPU. Can that be done?

How to optimize discrete joint loss?

1 Programming complexity.

Most complex
problems addressed independently—too complex
to do otherwise.

2 Prediction accuracy. It had better work well.
3 Train speed. Debug/development productivity +

maximum data input.
4 Test speed. Application efficiency

How to optimize discrete joint loss?

1 Programming complexity.

Most complex
problems addressed independently—too complex
to do otherwise.

2 Prediction accuracy. It had better work well.
3 Train speed. Debug/development productivity +

maximum data input.
4 Test speed. Application efficiency

How to optimize discrete joint loss?

1 Programming complexity. Most complex
problems addressed independently—too complex
to do otherwise.

2 Prediction accuracy. It had better work well.
3 Train speed. Debug/development productivity +

maximum data input.
4 Test speed. Application efficiency

How to optimize discrete joint loss?

1 Programming complexity. Most complex
problems addressed independently—too complex
to do otherwise.

2 Prediction accuracy. It had better work well.

3 Train speed. Debug/development productivity +
maximum data input.

4 Test speed. Application efficiency

How to optimize discrete joint loss?

1 Programming complexity. Most complex
problems addressed independently—too complex
to do otherwise.

2 Prediction accuracy. It had better work well.
3 Train speed. Debug/development productivity +

maximum data input.

4 Test speed. Application efficiency

How to optimize discrete joint loss?

1 Programming complexity. Most complex
problems addressed independently—too complex
to do otherwise.

2 Prediction accuracy. It had better work well.
3 Train speed. Debug/development productivity +

maximum data input.
4 Test speed. Application efficiency

