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A comparison is virtually impossible

Prediction performance varies wildly depending on the
problem–method pair.

But we can try: use Input complexity/time.

⇒ No credit for creating complexity then reducing it. (Ouch!)

Most interesting results reported. Some cases require creative
best-effort summary.
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Unsupervised Learning
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Supervised Training
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Supervised Testing (but not training)
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My Flow Chart for Learning Optimization

1 Choose an efficient effective algorithm

2 Use compact binary representations.

3 If (Computationally Constrained)

4 then GPU
5 else

1 If few learning steps
2 then Map-Reduce AllReduce
3 else Research Problem.
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Restricted Boltzmann Machine learning CRN11 Chapter 18

Goal: Learn weights which predict hidden state given features that
can predict features given hidden state *

Hidden

Observed

1 Number of parameters = hidden*observed = quadratic pain

2 An observed useful method for creating relevant features for
supervised learning.

(*) Lots of extra details here.
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RBM parallelization

GPU = hundreds of weak processors doing vector operations on
shared memory.

1 Activation levels of hidden node i is sig(
∑

j wijxj).

A GPU is
perfectly designed for a dense matrix/vector dot product.

2 Given activation levels, hidden nodes are independently
randomly rounded to {0, 1}.

Good for GPUs

3 Predict features given hidden units just as step 1.

Perfect for
GPUs

4 Shift weights to make reconstruction more accurate.

Perfect
for GPUs



RBM parallelization

GPU = hundreds of weak processors doing vector operations on
shared memory.

1 Activation levels of hidden node i is sig(
∑

j wijxj).

A GPU is
perfectly designed for a dense matrix/vector dot product.

2 Given activation levels, hidden nodes are independently
randomly rounded to {0, 1}.

Good for GPUs

3 Predict features given hidden units just as step 1.

Perfect for
GPUs

4 Shift weights to make reconstruction more accurate.

Perfect
for GPUs



RBM parallelization

GPU = hundreds of weak processors doing vector operations on
shared memory.

1 Activation levels of hidden node i is sig(
∑

j wijxj).

A GPU is
perfectly designed for a dense matrix/vector dot product.

2 Given activation levels, hidden nodes are independently
randomly rounded to {0, 1}.

Good for GPUs

3 Predict features given hidden units just as step 1.

Perfect for
GPUs

4 Shift weights to make reconstruction more accurate.

Perfect
for GPUs



RBM parallelization

GPU = hundreds of weak processors doing vector operations on
shared memory.

1 Activation levels of hidden node i is sig(
∑

j wijxj).

A GPU is
perfectly designed for a dense matrix/vector dot product.

2 Given activation levels, hidden nodes are independently
randomly rounded to {0, 1}.

Good for GPUs

3 Predict features given hidden units just as step 1.

Perfect for
GPUs

4 Shift weights to make reconstruction more accurate.

Perfect
for GPUs



RBM parallelization

GPU = hundreds of weak processors doing vector operations on
shared memory.

1 Activation levels of hidden node i is sig(
∑

j wijxj). A GPU is
perfectly designed for a dense matrix/vector dot product.

2 Given activation levels, hidden nodes are independently
randomly rounded to {0, 1}. Good for GPUs

3 Predict features given hidden units just as step 1. Perfect for
GPUs

4 Shift weights to make reconstruction more accurate. Perfect
for GPUs



Parallelization Techniques

1 Store model in GPU memory and stream data.

2 Use existing GPU-optimized matrix operation code.

3 Use multicore GPU parallelism for the rest.

This is a best-case situation for GPUs. x10 to x55 speedups
observed.

But, maybe we just sped up a slow algorithm?
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GPUs for Speech Recognition CGYK11 Chapter 21

Given observed utterances, we want to reconstruct the original
(hidden) sequence of words via an HMM structure.

Observed

Hidden

Standard method of decoding: forward-backward algorithm using
Bayes law to find the most probable utterance.
Naively, this is trivially parallelized just as before. But it’s not.

1 The observation is non-binary. The standard approach
matches the observed sound with one of very many different
recorded sounds via nearest neighbor search.

2 The state transitions are commonly beam searched rather
than using Bayesian integration.

3 The entire structure is compiled into a weighted finite state
transducer, which is what’s really optimized.
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The approach used

Start with a careful systematic analysis of where parallelization
might help.

1 SIMD instructions: Use carefully arranged datastructures so
single-instruction-multiple-data works.

2 Multicore over 30 cores of GPU.

3 Use Atomic instructions (Atomic max, Atomic swap) = thread
safe primitives.

4 Stick model in GPU memory, using GPU memory as
(essentially) a monstrous cache.

Result: x10.5 speedup. Crucially, this makes the algorithm faster
than real time.
GPUs help, even for highly optimized algorithms.
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Terascale Linear Learning ACDL11

Given 2.1 Terafeatures of data, how can you learn a linear predictor
fw (x) =

∑
i wixi?

1 No single machine algorithm.

2 No multimachine algorithm requiring bandwidth ∝ Tbytes for
any single machine.

It is necessary but not sufficient to have an efficient
communication mechanism.
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MPI-style AllReduce
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AllReduce = Reduce+Broadcast

Properties:

1 Easily pipelined so no latency concerns.

2 Bandwidth ≤ 6n.

3 No need to rewrite code!
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An Example Algorithm: Weight averaging

n = AllReduce(1)
While (pass number < max)

1 While (examples left)
1 Do online update.

2 AllReduce(weights)

3 For each weight w ← w/n

Other algorithms implemented:

1 Nonuniform averaging for online learning

2 Conjugate Gradient

3 LBFGS
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Approach Used: Preliminaries

Optimize so few data passes required.
Basic problem with gradient descent = confused units.
fw (x) =

∑
i wixi

⇒ ∂(fw (x)−y)2

∂wi
= 2(fw (x)− y)xi which has units of i .

But wi naturally has units of 1/i since doubling xi implies halving
wi to get the same prediction.
Crude fixes:

1 Newton: Multiply inverse Hessian: ∂2

∂wi∂wj

−1
by gradient to

get update direction.

..but computational complexity kills you.

2 Normalize update so total step size is controlled.

..but this just
works globally rather than per dimension.
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Approach Used

1 Optimize hard so few data passes required.
1 L-BFGS = batch algorithm that builds up approximate inverse

hessian according to:
∆w ∆T

w

∆T
w ∆g

where ∆w is a change in weights

w and ∆g is a change in the loss gradient g .

2 Dimensionally correct, adaptive, online, gradient descent for
small-multiple passes.

1 Online = update weights after seeing each example.
2 Adaptive = learning rate of feature i according to 1√P

g2
i

where gi = previous gradients.
3 Dimensionally correct = still works if you double all feature

values.

3 Use (2) to warmstart (1).

2 Use map-only Hadoop for process control and error recovery.
3 Use custom AllReduce code to sync state.
4 Always save input examples in a cachefile to speed later

passes.
5 Use hashing trick to reduce input complexity.

Open source in Vowpal Wabbit 6.0. Search for it.
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Empirical Results

2.1T sparse features
17B Examples
16M parameters
1K nodes
70 minutes



The end

Right now there is extreme diversity:

1 Many different notions of large scale.

2 Many different approaches.

What works generally?
What are the natural “kinds” of large scale learning problems?
And what are good solutions for each kind?
The great diversity implies this is really the beginning.
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