Lessons From Statistical Learning Theory for Benchmark Design

John Langford

Toyota Technological Institute - Chicago

A Prototypical Result from Learning Theory

 $D = \text{distribution on } X \times \{0, 1\}$

 $S \sim D^m$ be m i.i.d. draws from D

 $c: X \to \{0,1\}$ be a classifier

$$\hat{c}_S = \Pr_{(x,y)\sim S}(c(x) \neq y) = \frac{1}{|S|} \sum_{(x,y)\in S} I(c(x) \neq y)$$

$$c_D = \mathsf{Pr}_{(x,y) \sim D} \left(c(x) \neq y \right)$$

Theorem: For all D, for all c, for all $\delta > 0$:

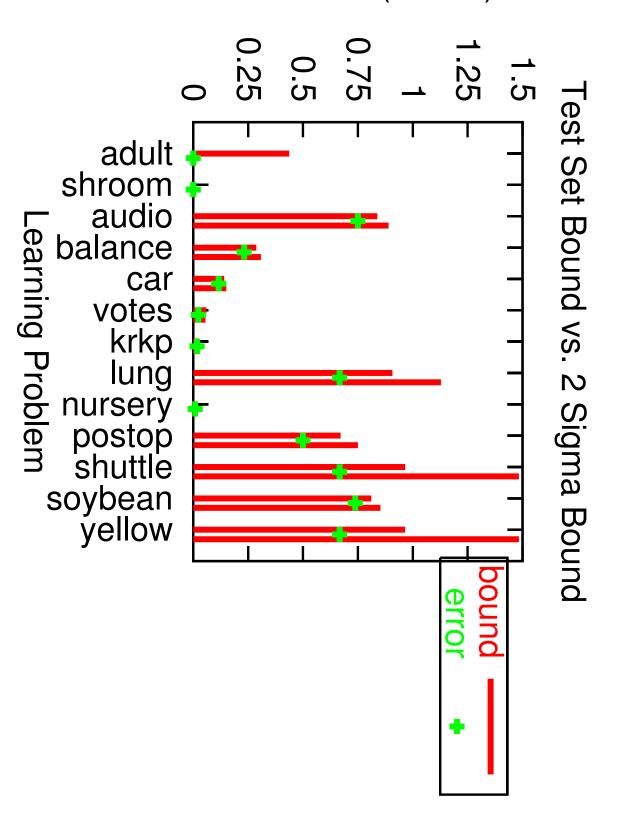
$$\Pr_{S \sim D^m} \left(c_D \leq \widehat{c}_S + \sqrt{\frac{\ln \frac{1}{\delta}}{2m}} \right) \geq 1 - \delta$$

1. Very General (few assumptions => many applications)

2. Directly Applicable (demo)

Hidden here: even tighter results hold

True error (bound)



- 1. Prediction Domains and Loss functions
 - (a) Classification (Predict a bit)
 - (b) Regression (Predict a real)
 - (c) Density Estimation (Predict a measure)
- 2. Prediction Settings
- 3. Assumption Failure

Regression

D = distribution on $X \times [0, 1]$

 $S \sim D^m$ be m i.i.d. draws from D

 $r: X \rightarrow [0,1]$ be a regressor

$$\hat{r}_S = E_{(x,y)\sim S}(r(x) - y)^2 = \frac{1}{|S|} \sum_{(x,y)\in S} (r(x) - y)^2$$

$$r_D = E_{(x,y)\sim D}(r(x) - y)^2$$

Theorem: For all D, for all r, for all $\delta > 0$:

$$\Pr_{S \sim D^m} \left(r_D \leq \widehat{r}_S + \sqrt{rac{\ln rac{1}{\delta}}{2m}}
ight) \geq 1 - \delta$$

Regression Notes

- 1. Sometimes D on $(-\infty, \infty) \Rightarrow$ Theorem fails!
- 2. Sometimes assume $D(y|x) = f(x) + \text{normal noise} \Rightarrow \text{similar}$ theorem.
- 3. Hidden detail: Very tight bounds are harder than for classification.

Density Estimation

D on domain X

p(x) = probability or probability density on x

$$p_D = E_{x \sim D} \ln \frac{1}{p(x)}$$

- 1. Impossible to make theorem statement given above.
- 2. Assume D normal \Rightarrow theorem statement.
- 3. Bounded loss function ⇒ theorem statement.

- 1. Prediction Domains and Loss functions
 - (a) Classification (Cleanest analysis)
 - (b) Regression (Reasonable analysis)
 - (c) Density Estimation (Tricky)
- 2. Prediction Settings
- 3. Assumption Failure

1. Prediction Domains and Loss functions

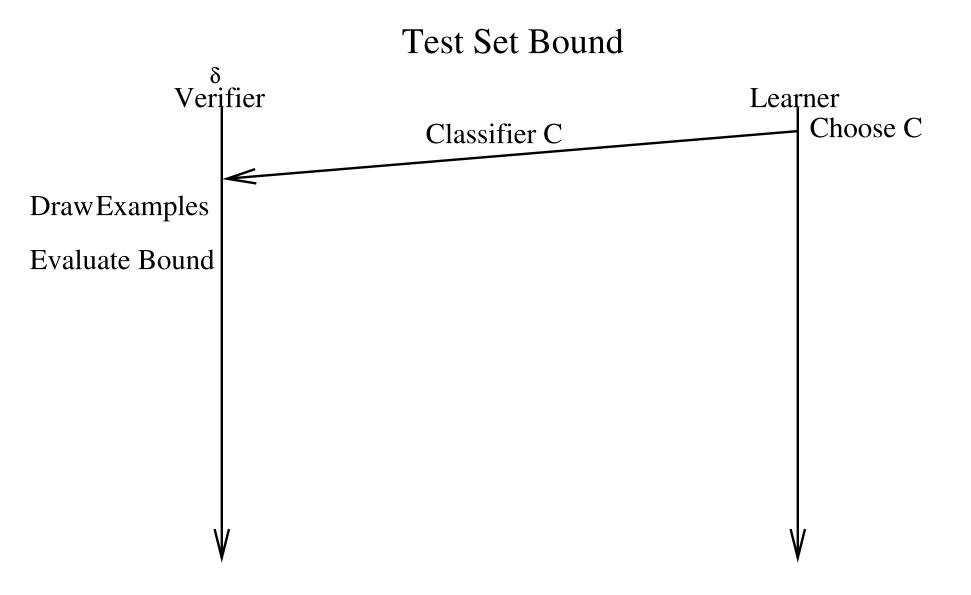
2. Prediction Settings

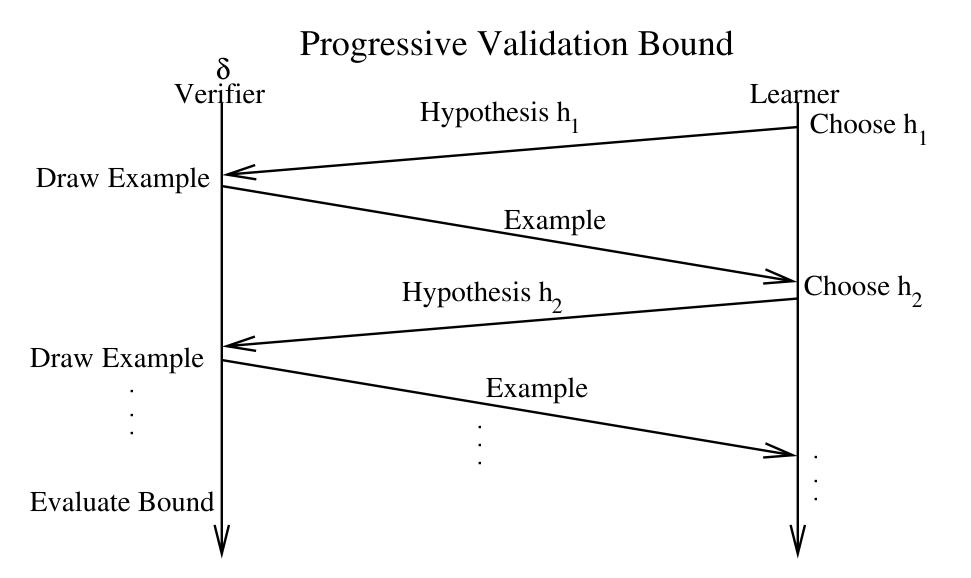
(a) Batch: Train classifier, then evaluate on test set.

(b) Online: Interactive train and test.

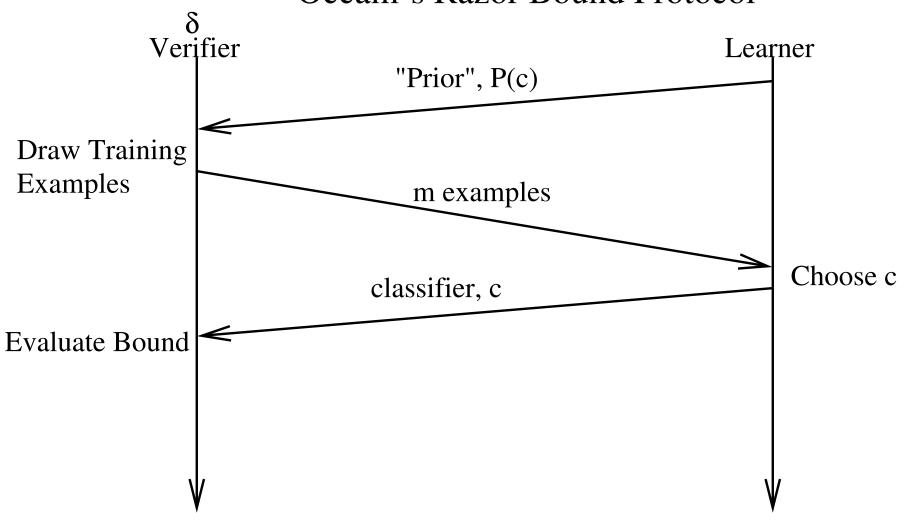
(c) Pure Train: Train and test on the same sample set.

3. Assumption Failure



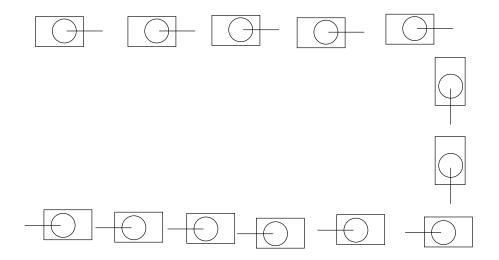


Occam's Razor Bound Protocol



- 1. Prediction Domains and Loss functions
- 2. Prediction Settings
- 3. Assumption Failure: What do we do now? Design around it.
 - (a) Correlated samples: "purify" by subsampling
 - (b) Drifting distribution: Get lots of data so drift = correlation

Purification, before



Purification, after



Final Note: Classification is more adaptable than it looks

