
Machine Learning Bias, Statistical Bias, andStatistical Variance of Decision Tree AlgorithmsThomas G. Dietterichtgd@cs.orst.eduEun Bae Kongebkong@cs.orst.eduDepartment of Computer Science303 Dearborn HallOregon State UniversityCorvallis, OR 97331-3202AbstractThe term \bias" is widely used|and with di�erent meanings|in the �elds of machinelearning and statistics. This paper clari�es the uses of this term and shows how tomeasure and visualize the statistical bias and variance of learning algorithms. Statisti-cal bias and variance can be applied to diagnose problems with machine learning bias,and the paper shows four examples of this. Finally, the paper discusses methods of re-ducing bias and variance. Methods based on voting can reduce variance, and the papercompares Breiman's bagging method and our own tree randomization method for vot-ing decision trees. Both methods uniformly improve performance on data sets from theIrvine repository. Tree randomization yields perfect performance on the Letter Recog-nition task. A weighted nearest neighbor algorithm based on the in�nite bootstrap isalso introduced. In general, decision tree algorithms have moderate-to-high variance,so an important implication of this work is that variance|rather than appropriate orinappropriate machine learning bias|is an important cause of poor performance fordecision tree algorithms.
0



1 IntroductionIn machine learning, the term \bias" was introduced by Mitchell (1980) to mean \any basisfor choosing one generalization [hypothesis] over another, other than strict consistency withthe observed training instances." Examples of such biases include absolute biases and relativebiases. An absolute bias is an assumption by the learning algorithm that the target functionto be learned is de�nitely a member of some designated set of functions (such as the setof linear discriminate functions or the set of boolean conjunctions). A relative bias is anassumption that the function to learned is more likely to be from one set of functions thanfrom another. For example, the decision tree algorithms (e.g., C4.5, CART) consider smalltrees before they consider larger ones. If these algorithms �nd a small tree that can correctlyclassify the training data, then a larger one is not considered. The �eld of supervisedlearning has been described (Shavlik, J. and Dietterich, T.G., 1990) as the study of biases|their expressive power, their computational complexity, and their sample complexity (i.e.,the number of examples required to produce accurate generalization).Several authors have pointed out that every inductive learning algorithm must adopt abias in order to generalize beyond the training data. Without a bias, all possible functionsmust be entertained as hypotheses, and, taken together, these functions predict that all pos-sible future outcomes are equally likely, so they cannot provide a basis for generalization orprediction. The bias of a learning algorithm|if it can be formulated explicitly|providesa speci�cation for the desired behavior of the algorithm and clari�es the design and imple-mentation of machine learning algorithms. In the remainder of this paper, we will call thiskind of bias, the machine learning bias or ML bias.In statistics, the term \bias" is used in a more precise, but not entirely unrelated way.The bias of a learning algorithm (for a given learning problem and a �xed size m for trainingsets) is the persistent or systematic error that the learning algorithm is expected to makewhen trained on training sets of size m.Consider a supervised learning algorithm A for learning real-valued functions. Let f bethe unknown target function to be learned, where f maps from an input space X to the realnumbers <. Let D be a probability distribution over X such that a random example, x 2 X,is drawn with probability D(x). Let S = f(x; f(x) + �)jx 2 Xg be a training sample of sizem drawn according to D and then labeled with the value of f , corrupted by noise �. Fromthis training sample, our algorithm A will output an hypothesis A(S) = f̂ . For a given testpoint x0, the predicted value of f is f̂(x0).Statistical bias is de�ned as follows. Suppose we repeatedly draw training samplesS1, : : : , Sl, each of size m, and apply our learning algorithm A to construct hypothesesf̂S1 ; f̂S2 ; : : : ; f̂Sl , where f̂Si denotes the hypothesis A(Si). We can combine all of these di�er-ent hypotheses into an averaged hypothesis:f̂ (x) = liml!1 1l lXi=1 f̂Si(x):The value f̂(x) is the expected predicted value of f(x), where the expectation is taken overall possible training samples of �xed size m.The statistical bias of algorithm A (for sample size m at point x) is the error in this1



averaged hypothesis: Bias(A;m; x) = f̂ (x)� f(x):Statistical bias captures the idea of a systematic error for a given sample size. Forexample, if the true function is a sine wave f(x) = sin(x) and the learning algorithm �tslines f̂ (x) = ax+ b as hypotheses, then there will be systematic errors at each \bump" inthe sine wave.A concept closely related to statistical bias is variance. Formally, the variance of analgorithm is de�ned as the expected value of the squared di�erence between any particularhypothesis f̂S and the averaged hypothesis f̂ :V ariance(A;m; x) = E "�f̂S � f̂ (x)�2# :The expectation is taken with respect to all training samples S of size m. The variancecaptures random variation in the algorithm from one training set S to another. This variationcan result from variation in the training sample, from random noise (�) in the training data,or from random behavior in the learning algorithm itself, such as the random initial weightsoften used in backpropagation.It can be shown (e.g., Geman, Bienenstock, & Doursat, 1992) that the average error oflearning algorithm A at point x is equal to the squared bias plus the variance:Error(A;m; x) = Bias(A;m; x)2+ V ariance(A;m; x):Hence, an important goal in algorithm design is to minimize statistical bias and varianceand thereby minimize error.The goal of this paper is to apply the statistical ideas of bias and variance to diagnose andrepair problems in the machine learning bias of algorithms, particularly for C4.5. We beginby discussing the relationship between ML bias and statistical bias and variance. Then wedevelop de�nitions of statistical bias and variance for classi�cation algorithms (rather thanthe regression algorithms discussed above). We then show one technique for measuring thestatistical bias and variance of an algorithm for simulated training data. We apply thistechnique to measure the bias and variance of C4.5 and the nearest neighbor algorithm onvarious arti�cial problems and show examples where the error is caused primarily by bias,by variance, or by both. These examples demonstrate how statistical bias and variance candiagnose errors in the ML bias. Finally, we discuss one method|voting|for reducing thevariance of C4.5 (and randomized C4.5). We evaluate voting on �ve domains from the UCIrvine collection.2 The Relationship Between ML Bias and StatisticalBias and VarianceMachine learning bias, as we mentioned above, can be described in terms of absolute bias(certain hypotheses are entirely eliminated from the hypothesis space) and relative bias(certain hypotheses are preferred over others). On any particular problem, an absolute2



Table 1: Relationship between ML bias and statistical bias and varianceML Bias StatisticalAbsolute Relative Bias Varianceappropriate too strong high lowappropriate ok low lowappropriate too weak low highinappropriate too strong high lowinappropriate ok high moderateinappropriate too weak high highbias can be characterized as appropriate or inappropriate. The hypothesis space of aninappropriate absolute bias does not contain any good approximations to the target function.An appropriate bias does contain good approximations.A relative bias can be described as being too strong or too weak. A bias that is toostrong is one that, though it may not rule out good approximations to the target function,prefers other, poorer hypotheses instead. A bias that is too weak does not focus the learn-ing algorithm on the appropriate hypotheses but instead allows it to consider too manyhypotheses.What are the consequences of these problems in ML bias for statistical bias and variance?Table 1 shows the relationship between various properties of ML-bias and the correspondingproperties of statistical bias. In general, if the relative bias of an algorithm is very strong,then the algorithm will have low variance, and if it is too weak, the algorithm will have highvariance. If the ML bias is inappropriate, then the algorithm will have high statistical bias.However, the statistical bias can be high even in cases where the bias is appropriate|ifthe relative bias is too strong. To simultaneously achieve low bias and low variance, thealgorithm must have an appropriate absolute bias and the right level of strength for therelative bias.3 Statistical Bias and Variance for Classi�cation Al-gorithmsThe de�nitions given for statistical bias and variance in the introduction were for regressiontasks. We now extend them by analogy to cover classi�cation algorithms. Suppose that fis a function that maps from the input space X to a �nite set of class labels fc1; : : : ; ckg.Given a set S of training examples, algorithm A outputs an hypothesis A(S) = f̂S.It is convenient to de�ne p̂S(x) to be the probability that f̂S misclassi�es test point x.This probability is 1 if f̂S misclassi�es x and 0 otherwise.p̂S(x) = ( 1 if f̂S(x) 6= f(x)0 if f̂S(x) = f(x)Now suppose that, as before, we draw a sequence of training sets S1, : : : , Sl, each of sizem, and apply our learning algorithm A to construct hypotheses f̂S1 ; f̂S2 ; : : : ; f̂Sl. We de�ne3



the averaged probability of error to be the average of these p̂'s, where the average is takenover all possible training sets S :̂p(A;m; x) = liml!1 1l lXi=1 p̂Si (x):Intuitively, p̂(A;m; x) is the probability that a hypothesis produced by algorithm A from atraining set of size m will misclassify test point x. Another way of saying this is that theexpected error rate of A for test point x isError(A;m; x) = p̂(A;m; x):Now consider any point x such that p̂(A;m; x) > 0:5. For any given hypothesis f̂S, weexpect on the average that x will be misclassi�ed. Hence, x is a systematic error. We willtherefore de�ne the bias of any algorithm A trained on training sets of size m to beBias(A;m; x) = ( 0 if p̂(A;m; x) � 0:51 if p̂(A;m; x) > 0:5We will de�ne the variance of A at point x to be the di�erence between the error rateand the bias: V ariance(A;m; x) = ( p̂(x) if p̂(x) � 0:5p̂(x)� 1 if p̂(x) > 0:5The variance is the increase in the error rate at x relative to the bias.4 Measuring Bias and VarianceWe can measure the bias and variance by directly simulating the de�nitions. Figure 1 showsthe target function for a simple learning problem. There are two features, x1 and x2, twoclasses c0 and c1, and a simple linear decision boundary such that points above the line arein class c0 and points below the line are in class c1. We de�ne the distribution D over thistwo-dimensional input space to be the uniform distribution on the square 0 � x1 � 15 and0 � x2 � 15.To measure the bias of the C4.5 algorithm, we drew 200 training sets S1, : : : , S200 eachcontaining 200 examples labeled according to this target function (call it f). We also drew acomplete test set of 22,801 examples (every possible data point on a grid of points separatedby 0.1 along each axis). We then approximated p̂(A;m; x) by computing the probability(averaged over all 200 training sets) that each test point x will be misclassi�ed. This isequivalent to having each of the 200 hypotheses f̂S1 ; : : : ; f̂S200 vote on the classi�cation ofeach test point.Figure 2 plots all of the test data points whose estimated value of p̂(A;m; x) > 0:5. Theseare the systematic errors. As one would expect, these errors result from C4.5's attempt toapproximate the sloped decision boundary by vertical splits on feature x1.We can compute the mean error rate over any T -element test set by the following:1T TXj=1 p̂(A;m; xj);4



0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

x2

x1

class c0

class c1Figure 1: A two-class problem with 200 training ex-amples. 0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14
x1Figure 2: Bias errors of C4.5 on the problem fromFigure 1.where xj is the j-th element in the test set. This is the average error of each of the 200 trees.We can also compute the bias as 1T TXj=1Bias(A;m; xj)and the variance by the di�erence between these two. The results show that the mean errorrate is 536 errors (out of the 22,801 test examples), of which 297 are the result of bias and theremaining 239 are the result of variance. This is interesting, because it shows that varianceaccounts for a signi�cant portion of the errors from C4.5 on this problem.Figure 3 shows another example. Here, there is a single linear decision-boundary whoseslope is 1. Surprisingly, C4.5 has very low bias for this problem. The bias is restricted to thevery ends of the line. This is a consequence of the uniform distribution over the input space:splits on x1 and x2 are equally likely and, when averaged over all 200 training sets, theycompensate for each other to give a good approximation to the diagonal decision boundary.The mean error for this problem is 821 errors, but the bias is only 177, so most of the errorsresult from the variance of 644 errors.Let us now consider four cases that illustrate the ability of statistical bias and variance todiagnose problems with ML bias. The four cases will illustrate all four combinations wherethe statistical bias is either high or low and the variance is either high or low.We begin with a situation where the statistical bias and variance are both high. Figure 4shows an example six-class problem on which we have performed extensive experiments.The �gure shows the persistent errors of C4.5 when training on training sets of size 200.The statistical bias of this algorithm is 1788 and the variance is 1046. As predicted inTable 1, the ML bias of C4.5 is inappropriate and too weak. It is inappropriate, becausenone of the decision boundaries are axis-parallel, and it is too weak because the only goodapproximations to the decision boundaries are very large decision trees, and the ML biasprovides little guidance for preferring one of these over another.To check the robustness of these observations, we computed a learning curve for C4.5 onthis problem which shows the mean error, statistical bias, and variance of C4.5 as a functionof the size of the training sample (see Figure 5). Note that as the training sample gets larger,5



0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

x2

x1Figure 3: Bias errors of C4.5 on a diagonal decisionboundary problem. 0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14
a1

Class 1

Class 2

Class 3

Class 4

Class 5

Class 6

Class 3

Class 3Figure 4: Bias errors of C4.5 for a six-class problem.the bias of C4.5 decreases but the variance remains large. This results from the fact thatas the sample expands, C4.5 is willing to grow larger and larger decision trees (which havesmaller statistical bias). However, there are still a very large number of alternative trees toconsider, so the variance does not decrease.The second case we will consider arises when we apply C4.5 to this same problem butwe require it to place at least 25 training examples in each leaf|that is, we prevent it fromgrowing large decision trees, since it is permitted to partition the training sample into at mosteight regions of size 25 or more. Under these conditions, the mean error jumps to 4476, thestatistical bias to 4281, and the variance drops to a mere 195 points. Table 1 predicts that ahigh bias/low variance case is caused by an ML bias that is too strong (regardless of whetherit is appropriate or inappropriate). In this particular case, the ML bias is inappropriate andmuch too strong.The third case we will consider is a low bias/high variance case. A learning algorithmwith low bias is the nearest neighbor algorithm. When we applied it to the problem fromFigure 4, its mean error rate was measured as 2074 of which only 377 errors were due tobias and the remaining 1697 to variance. Table 1 predicts from these observations that thealgorithm has an appropriate but very weak ML bias. The ML bias of the nearest neighboralgorithm is appropriate|it can easily represent decision boundaries of any shape|but it isweak. The weakness is caused by the highly local nature of the algorithm. A slight changein the position of a single training example can cause a shift in the position of the decisionboundary. Slight changes throughout the training set can work combinatorially to generatea huge number of slightly di�erent alternative hypotheses.It is interesting to compare the learning curve of nearest neighbor (shown in Figure 6)with the learning curve of C4.5 (Figure 5). As the training sample enlarges, the statisticalbias of the nearest neighbor algorithm approaches zero. The variance decreases as well, butit accounts for an even larger fraction of the total error.The fourth case we will consider is the low bias/low variance case shown in Figure 7. Thedecision boundaries in this problem can be exactly represented by an axis-parallel decisiontree. The mean error on this problem is only 17, with all 17 errors resulting from variancein the algorithm; the bias is zero. According to Table 1, the low bias/low variance case can6



0

500

1000

1500

2000

2500

3000

3500

4000

4500

100 1000

N
um

be
r 

of
 E

rr
or

s

Training Set Size

C4.5 Mean Error

C4.5 BiasFigure 5: Learning curve for C4.5 on the problemfrom Figure 4. The upper curve is the average per-formance of C4.5; the lower curve shows the persis-tent errors of C4.5. The di�erence between thesetwo curves is the variance. Note that the horizontalscale is logarithmic. 0

500

1000

1500

2000

2500

3000

3500

100 1000
Training set size

NN Mean Error

NN BiasFigure 6: Learning curve for the nearest neighboralgorithm on the program from Figure 4.only be caused by an appropriate absolute bias and a moderate preference bias. This isindeed the correct diagnosis for this problem.5 Reducing Bias and VarianceBecause statistical bias and variance result from the basic design of a learning algorithm,any change to the algorithm can change the bias and variance. Any change that increasesthe representational power of an algorithm can reduce its statistical (and ML) bias. Anychange that expands the set of available alternatives for an algorithm or makes them dependon a smaller fraction of the training data can increase the variance of the algorithm.In particular, one important source of variance in C4.5 is the fact that the algorithmmustchoose a single split at each node in the tree. With most splitting criteria (e.g., informationgain, gain ratio, or GINI index), the choice of split can be altered by the addition or removalof a single training example. Furthermore, the subsequent splits at the descendent nodesin a tree are in
uenced by the split at the root, so that a change of one training examplecan produce a cascade of changes in subsequent splits and alter the entire tree. This is aplausible cause of the variance of C4.5.This analysis suggests that the variance of C4.5 could be reduced by making the choice ofsplits more robust to slight changes in the training set or by making the splits \softer." TheC4.5 system has a facility for softening splits such that test examples near the split thresholdof a continuous feature are routed down both sides of the split. The class probability esti-mates resulting from those subtrees are then combined by weighted sum (where the weightsdepend on how close the example was to the split threshold). We ran this con�guration ofC4.5 on the program from Figure 4, and it resulted in a decrease in the mean error (from2834 errors to 2740), a slight increase in the statistical bias (from 1788 to 1851) and a sig-7



0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

Class 1 Class 2

Class 3

Class 4 Class 5

Class 6

Class 4Figure 7: A simple learning problem for which the correct function is a decision tree with axis-parallel splits.ni�cant decrease in the variance (from 1046 to 889). Further improvements can probably bemade here. We predict that the Markov Tree models of Jordan et al (1991, 1994), which aresoft, stochastic versions of decision trees, would have much lower variance than C4.5. Wealso predict that other learning systems, such as RL (Clearwater & Provost, 1990), whichlearn collections of independent rules, will have lower variance also, because they reduce thecascading of decisions that results from the top-down construction of decision trees.Many authors have suggested that an important source of variance in decision tree al-gorithms is the choice of splits and classi�cations for the leaves of the tree. These choicesare based on a very small number of training examples, so one would expect them to havehigh variance. The conventional remedy for this is to prune the tree to remove high-varianceleaves. We tested this remedy using the pessimistic pruning procedure of C4.5 (with prun-ing con�dence level 0.10) on the problem from Figure 4. We found that this had almostno e�ect on the variance (reducing it from 1046 errors to 1015), but that it increased thebias (from 1788 to 1927) and, hence, increased the mean error from 2834 to 2942. Fromthis and many other test problems, we conclude that pruning does not necessarily work theway its advocates claim. In our experience, it rarely produces improvement in classi�cationaccuracy (Dietterich & Bakiri, 1995).A very general technique for reducing variance is to construct a set of hypotheses andthen have them vote on the classi�cation of test cases. For example, if a relative ML biasdoes not have a strong preference for one hypothesis over another, the two hypotheses couldboth be generated and then voted. There are many di�erent ways of producing and votingthe hypotheses, and this is a very active topic of research, particularly in the neural networkcommunity (Perrone, 1993; Perrone & Cooper, 1993; Perrone, 1994). There are strongBayesian justi�cations for voting as well (Buntine, 1990).We explored two methods for generating multiple hypotheses. The �rst is bootstrapping(Efron & Tibshirani, 1993; Breiman, 1994). Many equally-plausible decision trees can be8



constructed by the following procedure. Let S be the available training set of sizem. We candraw a bootstrap replicate training set by drawing a set of examples S1 of size m by samplingat random with replacement from S. We then apply C4.5 to this bootstrap replicate dataset to obtain a bootstrap replicate hypothesis, f̂1. In our experiments, we constructed 200bootstrap replicate decision trees. To classify a new example x, we voted these trees bysumming their class probability vectors component-wise and then choosing the class withthe highest probability. This relies on the ability of C4.5 to estimate the probability that xbelongs to each of the k classes, c1; : : : ; ck. (This is in fact how we compute our estimates ofp̂ throughout this paper.)Breiman (1994) calls this procedure bagging (for bootstrap aggregating). He shows thatis produces very signi�cant improvements in performance for the CART algorithm appliedto several real-world data sets. When we followed this procedure with C4.5 on the problemfrom Figure 4, the mean error rate dropped from 2834 to 2648, the bias increased quite abit from 1788 to 2067, but the variance was reduced by almost half from 1046 down to 581.Hence, in this problem at least, bootstrap aggregation trades a slight increase in bias for amajor decrease in variance to yield a signi�cant improvement in performance.The second procedure that we explored for generating alternative hypotheses was ran-domization, which was �rst introduced in a simple form by Kwok and Carter (1990). Wemodi�ed C4.5 so that at each node in the decision tree, it computes the 20 best splits accord-ing to its gain ratio criterion and then chooses randomly among them to select the attributeand value to split on. As with bootstrapping, we constructed 200 trees in this fashion andvoted them by summing their class probability vectors component-wise. The result was thatthe mean error rate dropped from 2834 to 2627, which is almost exactly the same reductionobtained from bootstrapping (2648). However, unlike bootstrapping, with randomized trees,the bias remains virtually unchanged (1788 for a single tree versus 1772 for 200 randomtrees), while the variance decreases from 1046 to 855.Randomization is paradoxical, because at �rst glance it seems to increase variance bydeliberately introducing variation into the splits in the decision tree. However, it can alsobe seen as a way of smoothing or averaging out the e�ects of several equally-good splits bysampling them all and then voting them.We tested these two voting methods (bootstrap and randomization) on �ve interestingproblems: the vowel, soybean, letter recognition, and NETtalk tasks from the Irvine repos-itory, and a part-of-speech task which was made available to us by C. Cardie (personalcommunication). The results are summarized in Table 2. Bootstrap voting improves perfor-mance on all �ve problems. The measured improvement in the accuracy of the hypothesesproduced by the algorithms is signi�cant for the bootstrap in the NETtalk and letter recog-nition task and for randomized C4.5 in the vowel, NETtalk, and letter recognition tasks.The letter recognition task is particularly astonishing. Bootstrap voting reduces the errorfrom more than 20% to less than 1%, and randomized voting classi�es the test set withperfect accuracy!Bootstrap voting can also be applied to the nearest neighbor algorithm. As with manyinteresting variations of the nearest neighbor procedure, bootstrap voting has an e�cientclosed-form solution. Instead of repeatedly drawing 200 training sets and applying thenearest neighbor algorithm to each of those sets, we can compute the probability that the k-th nearest neighbor of a test point will be the point that \survives" the bootstrap subsampling9



Table 2: Results on Five Domains (best error rate in boldface)Test set 200-fold 200-foldTask size C4.5 bootstrap C4.5 random C4.5Vowel 462 0.5758 0.5152 0.4870�Soybean 376 0.1090 0.0984 0.1090Part-of-Speech 3060 0.0827 0.0765 0.0788aNETtalk 7242 0.3000 0.2670��� 0.2500���Letter Recognition 4000 0.2010 0.0038��� 0.0000���Di�erence from C4.5 signi�cant at p < 0:05�; 0:001���: a256-fold random.to be the nearest neighbor of that test point. Suppose the training set contains m elements.When a bootstrap sample is drawn by random sampling with replacement, a given point willbe missing from the bootstrap sample with probability (1� 1m)m, since it has a probability of1m of being selected on each draw. Hence, for a given test point x, its �rst nearest neighborin the full data set will also be its �rst nearest neighbor in the bootstrap data set withprobability 1 � (1 � 1m)m. As m gets large, this is approaches 1 � e�1. In general, the k-thnearest neighbor of x in the full training set will be the �rst nearest neighbor in the bootstrapdata set with probability e�(k�1) � e�k. Hence, we can implement ideal bootstrapping asa weighted k-nearest neighbor classi�er where we compute the seven nearest neighbors andthen weighting their classes appropriately (the weight of the seventh nearest neighbor willbe 0.0016 according to this formula, so no additional neighbors are needed).For the problem in Figure 4, this modi�cation of the nearest neighbor algorithm has thedesired e�ect: the variance has decreased (from 1697 errors to 1538). However, it turns outthe bias has increased by exactly the same amount (from 377 to 536), so the mean errorremains unchanged.Now that we have considered voting as a general technique for variance reduction, webrie
y describe one technique for bias reduction: error-correcting output coding (ECOC). Fora k-class problem where k > 5, it is possible to construct a large number of 2-class problemswhose solution can be converted into a solution to the k-class problem. The constructionis based on error-correcting codes. Each class is assigned a codeword in an error-correctingcode, and each bit position of the codeword then de�nes a 2-class learning problem, whichcan be solved by applying such algorithms as C4.5. To classify a new example, each of the\bit-position hypotheses" is evaluated to produce a binary string of 2-class decisions. Thisstring is then mapped to the nearest legal codeword (in Hamming distance) to classify theexample. See Dietterich and Bakiri (1991, 1995) for more details.A companion paper (Kong & Dietterich, 1995) shows that the bias errors made in eachof the bit-position hypotheses can be substantially uncorrelated, so that the error-correctionprocedure can correct for bias errors in the algorithm. We applied this procedure to the6-class learning problem from Figure 4 with the following results. Compared to standardC4.5, the bias is reduced from 1788 errors to 1669. The variance is also slightly reduced from1046 to 977. So that the overall mean error is reduced from 2834 to 2646. This is essentiallythe same improvement that was obtained from the two variance reduction methods, but itwas accomplished through bias reduction instead.This suggests that we should combine bias and variance reduction. We did this by using10



Table 3: Results of Experiments on the Problem From Figure 4.Con�guration Mean Error Bias VarianceC4.5 multiclass 2834 1788 1046C4.5 multiclass pruned 2942 1927 1015C4.5 multiclass softened 2740 1851 889C4.5 multiclass -m 25 4476 4281 195C4.5 200-fold bootstrap 2648 2067 581C4.5 200-fold random 2627 1772 855C4.5 32-bit ECOC 2646 1669 977C4.5 32-bit ECOC+ 200-fold bootstrap 2407 1562 845NN 2074 377 1697NN in�nite bootstrap 2074 536 1538the 200-fold bootstrap to learn each bit-position hypothesis in the error-correcting code. Theresult was simultaneous and substantial decreases in bias (from 1788 to 1562) and variance(from 1046 to 845) so that the mean error rate dropped from 2834 to 2407.The results of all of our experiments are summarized in Table 3.6 Concluding RemarksThis paper has attempted to clarify the relationship between machine learning bias and sta-tistical bias (and variance). We began with a formal de�nition of statistical bias and variancefor classi�cation algorithms. Then, we developed an experimental procedure for measuringbias and variance and applied it to several synthetic learning tasks. We showed that sta-tistical bias and variance can diagnose problems in machine learning bias (such as overlystrong, overly weak, or inappropriate biases). Finally, we discussed some algorithm-speci�cand algorithm-independent methods for reducing variance and bias. The variance-reductiontechnique of voting was tested in �ve real-word domains and shown to improve perfor-mance uniformly|sometimes modestly and sometimes dramatically. Finally, we showedthat variance-reduction and bias reduction could be combined to produce excellent errorreductions.There are many additional implications of the bias/variance perspective on learning al-gorithms. For example, virtually none of the work in computational learning theory hasaddressed the bias/variance tradeo� and the nature of bias and variance in predicting thee�ectiveness of algorithms. For example, the boosting (Schapire, 1990) algorithm appearsto be a variance-reduction algorithm, while the weighted majority algorithm (Littlestone &Warmuth, 1989) could provide both variance and bias reduction. Can we develop a theoryof variance reduction that can predict when it will succeed? Can we develop a theory of biasreduction and understand its capabilities and limitations?Another consequence of this perspective concerns the statistical evaluation of machinelearning algorithms. If an algorithm has high variance, then it is essential to run thatalgorithm multiple times so that the variance can be measured. Traditional tests based onthe t statistic do not directly measure the variance (as it is de�ned in this paper), nor do11



they take into consideration the size of the test set. Much work remains to be done.A �nal practical issue with variance reduction and bias reduction is that large scale votingand error-correcting codes require huge amounts of memory and CPU time to classify eachtest example. For instance, with 200-fold bootstrap replications on each of 32 bits in theerror-correcting code for the 6-class problem of Figure 4, we must evaluate 6,400 decisiontrees to classify each example. To measure the variance and bias of this procedure, wereplicated it 200 times, for a total of 1,280,000 decision trees. Some method is needed forconverting a combination of trees (or other complex hypotheses) into a smaller, equivalenthypothesis. These trees are very redundant; how can we remove this redundancy while stillreducing bias and variance?7 AcknowledgementsThe authors gratefully acknowledge the support of the NSF under grants IRI-9204129 andCDA-9216172. The authors also thank Leo Breiman and David Cohn for very helpful dis-cussions.ReferencesBreiman, L. (1994). Bagging predictors. Tech. rep. 421, Department of Statistics, Universityof California, Berkeley, CA.Buntine, W. L. (1990). A Theory of Learning Classi�cation Rules. Ph.D. thesis, Universityof Technology, Sydney.Clearwater, S., & Provost, F. (1990). RL4: A tool for knowledge-based induction. In Proceed-ings of the Second International IEEE Conference on Tools for Arti�cial Intelligence,pp. 24{30. IEEE Computer Society Press.Dietterich, T. G., & Bakiri, G. (1991). Error-correcting output codes: A general methodfor improving multiclass inductive learning programs. In Proc. of the Ninth NationalConference on Arti�cial Intelligence, pp. 572{577. AAAI Press/MIT Press.Dietterich, T. G., & Bakiri, G. (1995). Solving multiclass learning problems via error-correcting output codes. Journal of Arti�cial Intelligence Research, 2, 263{286.Efron, B., & Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Chapman and Hall,New York, NY.Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the bias/variancedilemma. Neural Computation, 4 (1), 1{58.Jacobs, R. A., Jordan, M. I., Nowlan, S. J., & Hinton, G. E. (1991). Adaptive mixtures oflocal experts. Neural Computation, 3 (1), 79{87.Jordan, M. I. (1994). A statistical approach to decision tree modeling. In Proc. 7th Annu.ACM Workshop on Comput. Learning Theory, pp. 13{20. ACM Press, New York, NY.12



Kong, E. B., & Dietterich, T. G. (1995). Error-correcting output coding works by correctingbias and variance. In Submitted to the International Conference on Machine Learning.Kwok, S. W., & Carter, C. (1990). Multiple decision trees. In Schachter, R. D., Levitt,T. S., Kannal, L. N., & Lemmer, J. F. (Eds.), Uncertainty in Arti�cial Intelligence 4,pp. 327{335. Elsevier Science, Amsterdam.Littlestone, N., & Warmuth, M. K. (1989). The weighted majority algorithm. In Proc. 30thAnnu. IEEE Sympos. Found. Comput. Sci., pp. 256{261. IEEE Computer SocietyPress, Los Alamitos, CA.Mitchell, T. M. (1980). The need for biases in learning generalizations. Tech. rep. CBM-TR-117, Rutgers University, New Brunswick, NJ.Perrone, M. P. (1993). Improving regression estimation: Averaging methods for variancereduction with extensions to general convex measure optimization. Ph.D. thesis, BrownUniversity, Institute for Brain and Neural Systems.Perrone, M. P. (1994). Putting it all together: Methods for combining neural networks. InCowan, J. D., Tesauro, G., & Alspector, J. (Eds.), Advances in Neural InformationProcessing Systems, Vol. 6, pp. 1188{1189. Morgan Kaufmann, San Francisco, CA.Perrone, M. P., & Cooper, L. N. (1993). When networks disagree: Ensemble methods forhybrid neural networks. In Mammone, R. J. (Ed.), Neural networks for speech andimage processing. Chapman and Hall.Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5 (2), 197{227.Shavlik, J. and Dietterich, T.G. (1990). Readings in Machine Learning. Morgan Kaufmann,San Mateo, CA.
13


