
Machine Learning 4771: Midterm

The exam is worth 25% of your grade. You can choose to do any two of the three problems below (16 points
for two) + exercises (9 points total) to get 25 points. If you do all three problems + exercises, you will get
8 bonus points.

Problem 1

(8 points) A q-quantile for a distribution D over [0, 1] is a value Q such that

Pry∼D[y ≤ Q] ≥ q and Pry∼D[y ≥ Q] ≥ 1− q.

The 1/2-quantile is known as the median.
Recall that the median is the minimizer of the absolute loss. More formally, for every distribution D over

[0, 1], the median of D is
argmina∈[0,1]Ey∼D [ |y − a| ] .

Problem: Produce a generalization of the absolute loss function which is minimized (over all distributions)
by a q-quantile, 0 ≤ q ≤ 1. In other words, find a function `q(y, a) such that a q-quantile is

argmina∈[0,1]Ey∼D [ `q(y, a) ] .

Hint: `q is an appropriately tilted absolute loss.

Solution: The q-quantile is the minimizer of Ey∼D`q(y, a), where

`q(y, a) =

{
q(y − a), y ≥ a
(1− q)(a− y), y < a

(The q-quantile may not be unique when D has regions with zero mass.)

Problem 2

(8 points) Consider the following version of the Winnow algorithm (for OR functions):

• Initialize the weights w1 = w2 = . . . = wn = 1 on the n variables.

• Given an example x = (x1, . . . , xn), output 1 if
∑n

i=1 wixi ≥ n, else output 0.

• Update step:

– If the label of x is 1, double the value of wi for each i such that xi = 1 (regardless of whether
we made a mistake on x or not).

– If the label of x is 0, halve w[i] for all i such that xi = 1.
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Machine Learning 4771 : Midterm Problem 2 (continued)

Problem: Produce an infinite sequence of examples (consistent with some OR function on n boolean
variables) that forces this algorithm to make an infinite number of mistakes.

Solution: Let n = 2. We will construct an infinite sequence of examples consistent with the disjunction
f(x1, x2) = x1. By repeating the following block of two examples, we continue forcing the algorithm to make
one mistake per block.

x1 x2 f(x1, x2) prediction
1 1 1 1
0 1 0 1
. . . . . . . . . . . .

Problem 3

(8 points)
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Perceptron: Suppose that data points are distributed uniformly over the unit circle S =
{
x ∈ R2 | ‖x‖ = 1

}
.

The target function is sign(u · x) represented by a unit vector u ∈ R2, which classifies all points perfectly.
(See the picture above.)

• Starting the perceptron algorithm with w0 = 0, show the hypothesis w1 after observing x1, and show
the region(s) of S where u and w1 disagree (i.e., show all x ∈ S such that sign(w1 · x) 6= sign(u · x)).

• If the angle between u and w1 is 10◦, compute the error rate of w1 on the underlying data distribution
D (which is uniform over S), i.e., compute Prx∼D[sign(w1 · x) 6= sign(u · x)].

• Show the hypothesis w2 after observing x2, starting with w1 as the current hypothesis. Is the error
rate of w2 smaller than that of w1 (on D)? If not, how would you change the update rule to correct
the problem?

Solution: The first hypothesis is w1 = x1. The arcs of disagreement correspond to the regions marked with
ε.
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Machine Learning 4771 : Midterm Problem 3
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The error rate of w1 on D is given by (where θ(u,w1) is the angle between u and w1 in degrees)

Prx∼D[sign(u · x) 6= sign(w1 · x)] =
θ(u,w1)

180◦
=

10◦

180◦
= 1/18.

The hypothesis w2 = x1 + x2. The error rate of w2 is higher, because the perceptron update overshoots and
swings too far to the other side of u. To prevent the update from overshooting when the current hypothesis
wt is already close to u, the norm of wt should be fairly high, on the order of 1/ sin θ(wt, u) (easiest to see
it geometrically). On the other hand, we know that the norm grows quite slowly, as the square root of the
number of mistakes. To avoid the oscillations caused by points close to the half space represented by the
current hypothesis, we can scale the update rule with wt · x.

Exercises

1. (3 points) A fair coin is flipped until the first head occurs. Let Z denote the number of flips required.
Find the entropy H(Z) and the expected value of Z. The following expression may be useful:

∞∑
i=1

iri =
r

(1− r)2

Solution:
Since Pr[Z = i] = (1/2)i, we have

E(Z) =
∞∑

i=1

i(1/2)i = 2.

The entropy

H(Z) = −
∞∑

i=1

(1/2)i log(1/2)i =
∞∑

i=1

i(1/2)i = 2.

2. (3 points) Concisely (2-3 sentences) state the idea behind the kernel trick. Be precise.

Look up any credible source.

3. (3 points) Consider a variation of the deterministic Weighted Majority designed to make it more
adaptive:

(a) Each expert begins with weight 1 (as before)

(b) We predict the result of a weighted-majority vote of the experts (as before)
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Machine Learning 4771 : Midterm Problem 3

(c) If an expert makes a mistake, we penalize it by dividing its weight by 2, but only if its weight is
at least 1/4 of the average weight of experts.

Suppose that we have two experts and suppose that on the first 50 examples the first expert is correct
and the second is wrong, and then on the next 50 examples the second expert is correct and the first
is wrong.

How many mistakes does the original deterministic Weighted Majority algorithm make in this case
(assume that it always makes the wrong choice when there is a tie)? How many mistakes does the
modified version make?

Solution:
The original version makes 51 mistakes (the first tie + the last 50 examples).

The modified version makes 5 (the first tie + examples 51 through 54 to bring the weight of the first
expert down from 1 to 1/8; example 54 is a tie).
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