AdaBoost (Freund & Schapire '97)
"Ada Boost" is short for "Adaptive Boosting"
- very widely used, one of the most popular machine
 learning algorithms
- "An Empirical Comparison of Supervised Learning
 Algorithms" Caruana & Niculescu-Mizil '06
 1) Boosted DT
 2) Boosted Shpapes
 3) LDA

- Top 10 Algorithms in Data Mining (We at dhi)
 presents lists identified by IEEE Computer
 ICBO in Dec 2006 (Popularly ranked)
 1) SVM
 2) AdaBoost

- Freund & Schapire received the 2003 Cradel
 Prize for their work on AdaBoost.
- "meta" algorithm: can be used to improve
 ("boost") the performance of another learning
 algorithm
- very easy to implement, there are no
 standard software packages because you
 just do it yourself.

A Little History
AdaBoost came out of the PAC Learning
 community.
- PAC Learning Model was developed by Valiant 1985
- Kearns Valiant (1987, 1989) proved the
 guarantee of whether a "weak" PAC Learning
 algo, i.e., one that performs slightly better than
 a random guess could be used to construct
 an "strong" PAC Learning algorithm, i.e., one
 that performs arbitrarily well (not all polynomial
 other technical conditions)
- Freund & Schapire's example: betting strategies for
 horse racing:
 One expert gambler may not be able to
 easily learn betting strategy, but even
 prediction of data for a specific set of
 races, she can give us a "rule of thumb"
 - bet on the horse that had won the
 most recently
 - bet on the horse of the most favored odd
 - rules of thumb are not very accurate, but a
 little better than a random guess
 - boosting algorithms combine these rules of thumb into a
 single, highly accurate prediction rule.
- Schapire (1990) showed that the answer to Kearns
 & Valiant's question was "yes". Their method is called
 AdaBoost, and the algorithm is called
 AdaBoost algorithm (Short description)
- AdaBoost (1997) a few other boosting algo were
 invented but not used very practical
- Freund & Schapire (1995) a decision-theoretic
 generalization of online learning. i.e., adaptive
 learning (1995) - enhanced AdaBoost
- Schapire & Singer (1999) extended AdaBoost to more
 general, convex losses.
LinkedIn (2010) +40000 others
Feb 19-2:35 PM
Standard Classification Task:

Let \(X \in \mathbb{R}^m \times \mathbb{R}^n \), \(y \in \{-1, 1\} \)

We want to find a function \(f : X \rightarrow \{-1, 1\} \) such that \(f(x) \) agrees with \(y \) as often as possible.

Let \(\Delta \) denote the classification error, i.e., \(\Delta = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{[f(x_i) \neq y_i]} \)

We want to minimize \(\Delta \).

Note: A solution to the above problem may not be unique. It may be difficult to compute the exact solution.

For some functions, we can obtain a global solution.

Some of these functions are convex, and thus nice properties.

Let's perform a trick, namely to use:

\[L(y, \hat{y}) = \frac{1}{|y|} \sum_{i=1}^{n} \mathbb{1}_{[f(x_i) \neq y_i]} \]

Hence, the classification error at each step is:

\[\Delta = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{[f(x_i) \neq y_i]} = L(y(x), \hat{y})(x) \]

We hope that choosing \(\hat{y} \) to yield small values of \(L(y, \hat{y}) \) will yield small values of the classification error.

Next, let's focus on the form of \(\hat{y} \). The AdaBoost is a binary combination of weak classifiers or rules of thumb.

Let \(\hat{y} = \sum_{i=1}^{n} \lambda_i \mathbb{1}_{[x_i \in S_i]} \) where \(\lambda_i : \mathbb{R} \rightarrow [0, 1] \)

AdaBoost's Objective Function:

\[L(y, \hat{y}) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{[f(x_i) \neq y_i]} \]

Want to minimize this w.r.t. \(\lambda \).

About the weak classifier \(\mathbb{1}_{[x_i \in S_i]} \):

- AdaBoost can be used in 2 ways:
 - To do most of the work is a wrapper to improve the accuracy of an already trained base learner algorithm (e.g., bagged model).
 - To do most of the work is a wrapper to improve the accuracy of an already trained base learner algorithm (e.g., boosted model).

- We assume that the \(\mathbb{1}_{[x_i \in S_i]} \) is not hard to do, so we just add to the loss.

Tactic: Derivation of Logistic Regression's Objective:

\[\theta \approx \log \left(1 + e^{-\theta x} \right) \]

Thus, we would derive the objective for the logistic regression model.

\[L(y, \hat{y}) = \frac{1}{n} \sum_{i=1}^{n} \log \left(1 + e^{-\hat{y}_i y_i} \right) \]

Tactic: Risk of SVM's Objective:

\[\frac{1}{n} \sum_{i=1}^{n} \max(1 - y_i \hat{y}_i, 0) \]

Thus, we would have derived part of the objective for SVM.
Back to AdaBoost!

Since \(\mathcal{L}(h) \) is convex in \(\lambda \), we can use simple techniques to minimize \(\mathcal{L}(h) \) w.r.t. \(\lambda \) in \(\mathbb{R}^m \). We'll use "coordinate descent."

\[F(x) = \sum_{i=1}^{m} \lambda_i \cdot h_i(x) \]

for \(t = 1 \ldots T

Step 1: Find the deepest decision \(\mathcal{d}_t \) (i.e., choose a weak classifier)

Step 2: move along that decision until \(\mathcal{L}(h) \) is minimized (i.e., choose \(\alpha \) to minimize \(\mathcal{L}(h_t + \alpha \mathcal{d}_t) \) where \(\mathcal{d}_t = \left(\frac{1}{T} \right) (x_i - \bar{x}) \))

Finally,

Objective

\[\min_{\lambda, \alpha} \sum_{i=1}^{m} \mathcal{L}(h_t + \alpha \mathcal{d}_t) + \sum_{i=1}^{m} \lambda_i \cdot h_i(x) \]

Gradient Descent

\[\frac{d}{d\alpha} \sum_{i=1}^{m} \mathcal{L}(h_t + \alpha \mathcal{d}_t) + \sum_{i=1}^{m} \lambda_i \cdot h_i(x) \]

\[= \sum_{i=1}^{m} \frac{d}{d\alpha} \mathcal{L}(h_t + \alpha \mathcal{d}_t) + \sum_{i=1}^{m} \lambda_i \cdot h_i(x) \]

\[= \sum_{i=1}^{m} \frac{d}{d\alpha} \mathcal{L}(h_t + \alpha \mathcal{d}_t) \]

Step 1:

\[\begin{align*}
&\lambda^{(t)} : \arg\min_{\lambda} \sum_{i=1}^{m} \mathcal{L}(h_t + \alpha \mathcal{d}_t) + \sum_{i=1}^{m} \lambda_i \cdot h_i(x) \\
&\text{subject to:} \quad \sum_{i=1}^{m} \lambda_i \cdot h_i(x) \leq 1
\end{align*} \]

Step 2:

\[\alpha^{(t)} = \arg\min_{\alpha} \sum_{i=1}^{m} \mathcal{L}(h_t + \alpha \mathcal{d}_t) \]

Pseudocode for AdaBoost:

Given \(\{(x_i, y_i)\}_{i=1}^{n} \quad \{\lambda_i\}_{i=1}^{m} \quad T \quad \lambda_0 = 0 \)

For \(t = 1 \ldots T

\[\begin{align*}
&\mathcal{d}_t = \sum_{i=1}^{m} \frac{d_i}{\sum_{i=1}^{m} d_i} \quad \\text{"train weak learner with weight \(d_i \"\) for \(\mathcal{d}_t \"\)}
\end{align*} \]

\[\delta_t = \sum_{i=1}^{m} \mathcal{d}_t(i) \quad \\text{"error of weak classifier \(\"\)}
\end{align*} \]

\[\lambda_t = \lambda_0 + \frac{1}{2} \ln \left(\frac{1 - \delta_t}{\delta_t} \right) \]

\[\text{weak weights for next round in terms of weights for this round} \]

\[\text{end} \]

To calculate \(\mathcal{F} \),

\[\mathcal{F}(x) = \sum_{t=0}^{T} \lambda_t \cdot h_t(x) \]