Reinforcement Learning on MDPs

John Langford

Yahoo Research

Backing Material: http://hunch.net/~jl/tutorial/RL.html

COMS-4771, Columbia
Reinforcement Learning is Always Relevant

- Reinforcement Learning
 - Markov Decision Process (RL)
 - N-armed Bandits
 - Active Learning
 - Semi-Supervised Learning
 - Classification
 - Supervised Learning
The answer to: ‘Is this an RL problem?’ is always ‘yes’.

The implication: RL theory is broadly applicable.

The other implication: RL theory is often only weakly relevant. (breadth + relevance = hard.)

Understanding a problem as an RL problem is the beginning to solving it. Whenever possible, you want to understand how the problem is special.
Outline

1. Sample Complexity Results

2. Limitations of Sample Complexity
Markov Decision Process (MDP)

1. $S = \text{the number of states in an MDP}$

2. $A = \text{the number of actions/state in an MDP}$

3. $T = \text{the horizon time you care about (or } \gamma = \text{discount factor)}$

4. $O = \text{number of observations}$

5. $\epsilon = \text{precision parameter}$
Important Derived Quantities

\[V_t^\pi(s) = E_{(s,a,r) \sim \pi, MDP_s} \left[\sum_{t'=1}^{t} r_{t'} \right] \]

= the value of being in state \(s \) and acting according to \(\pi \) for \(t \) timesteps.

\[Q_t^\pi(s, a) = E_{(s,a,r) \sim \pi, MDP_{sa}} \left[\sum_{t'=1}^{t} r_{t'} \right] \]

= the value of being in state \(s \), acting with \(a \), and then acting according to \(\pi \) for \(t \) timesteps.

\[\pi^*(s) = \arg \max_a Q_t^{\pi^*}(s, a) \]

= recursive definition of optimal policy.

\[Q_t^*(s, a) = Q_t^{\pi^*}(s, a) \]

= short hand for optimal policy \(Q \) values.
The E^3 Guarantee

Trace Model = ability to read current state s, take action a, observe next state s' and reward r. Notation: $TM : A \rightarrow S \times [0, 1]$.

Assume $MDP(S, A, p(s'|s, a))$ with horizon T

1. Original: +assume mixing time $\tau \Rightarrow Poly(S, A, \tau, \frac{1}{\epsilon})$ samples implies ability to act ϵ optimal for $T > \tau$.

2. Modified: $Poly(S, A, T, \frac{1}{\epsilon})$ samples implies ability to act ϵ optimal for T timesteps.

(2) + mixing assumption implies (1). (2) holds even for deterministic worlds. We’ll go through (2).
E^3 Theorem Statement

Theorem: There exist an algorithm E^3 such that for all MDP $(S, A, T, p(s'|a, s))$ with rewards $r \in [0, 1]$, with probability $1 - \delta$, for all except $\text{Poly}(S, A, T, \frac{1}{\epsilon}, \ln \frac{1}{\delta})$ steps $Q_{T-t \mod T}^{E^3}(s, E^3(h)) \geq V_{T-t \mod T}^*(s) - \epsilon$ where h is the history of observations.

Suboutline:

1. The Algorithm

2. The Proof
The **Known(h) MDP**

A state s, all actions a leaving s and the probability of their outcomes is known if all actions a leaving s have been executed at least n times.

An MDP

Initially: known MDP = nothing
The **Known(h) MDP**

An MDP

Probability
Action
Reward

s_1 a_1 0 a_2 0 s_2

s_3 a_1 a_2 0.6 0.4 1

Probability
Action
Reward

s_1 a_1 0 a_2 0 s (unknown)

s (unknown) a (unknown) 0

Complete dangling action(s) with one state that always has reward 0.
The **Known**(h) MDP

An MDP

<table>
<thead>
<tr>
<th>State</th>
<th>Action</th>
<th>Probability</th>
<th>Action</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>a_1</td>
<td>0</td>
<td>a_2</td>
<td>0.6</td>
</tr>
<tr>
<td>s_2</td>
<td></td>
<td>0.4</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>s_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Then:

<table>
<thead>
<tr>
<th>State</th>
<th>Action</th>
<th>Reward</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>a_1</td>
<td>0</td>
</tr>
<tr>
<td>s_2</td>
<td>a_2</td>
<td>0</td>
</tr>
<tr>
<td>$s_{unknown}$</td>
<td>$a_{unknown}$</td>
<td>0</td>
</tr>
</tbody>
</table>
The **Known**(\(h\)) MDP

An MDP

Finally:

(note: the probabilities are empirical counts)
The \textbf{Unknown}(h) MDP

\textbf{Unknown}(h) = \textbf{Known}(h) \text{ except the reward is 1 for actions which leave the known states and 0 otherwise.}
Dynamic Program

Fundamental operation: Given MDP M and state s,

$$\text{DP}(M, s, t) = a, v$$

where v = the maximum expected $T - (t \mod T)$ reward sum and a = action achieving it.

Computation:

$$\text{DP}(M, s, t) = \max_a E_{s', r \sim M(s, a)} r + \text{DP}(M, s', t + 1)$$

$$\text{DP}(M, s, nT) = 0$$
$E^3(h)$ Explicit Explore or Exploit Algorithm

1. If last s not in $\text{Known}(h)$: choose the least previously used action

2. Else:

 (a) If $\text{DP}(\text{Unknown}(h)) > \epsilon'$ then act according to $\text{DP}(\text{Unknown}(h))$ until state is unknown or $t \mod T = 0$ then go to (1).

 (b) else act according to $\text{DP}(\text{Known}(h))$.
The proof uses 5(!) MDPs

1. MDP — the true MDP (Imposed by world)

2. \text{Known}(h) = \text{known MDP (Known by } E^3 \text{ algorithm)}

3. \text{Unknown}(h) = \text{unknown MDP (Known by } E^3 \text{ algorithm)}

4. \text{MDP}_{K(h)} = \text{MDP restricted to the known states (exists only in proof)}

5. \text{MDP}_{U(h)} = \text{MDP restricted to the known states with rewards set to 0 except for escaping rewards. (exists only in proof)}
Proof Sketch:

Simulation Lemma:

$$|\text{DP}(\text{MDP}_{U/K(h)}) - \text{DP}((\text{Un})\text{Known}(h))| \leq \frac{1}{\text{Poly}(S, A, T, \ln \frac{1}{\delta})}$$

Explore/Exploit Lemma:

$$\text{DP}(\text{MDP}_{K(h)}) + T \text{DP}(\text{MDP}_{U(h)}) \geq \text{DP}(\text{MDP})$$

So $n = \text{Poly}(S, A, T, \ln \frac{1}{\delta})$ implies ability to simulate on known states to precision $\frac{1}{\text{Poly}(S,A,T,\ln \frac{1}{\delta})} << \epsilon$. ⇒ Explore/Exploit Lemma implies $\text{DP}(\text{MDP}) - \text{DP}(\text{MDP}_{K(h)}) > \epsilon \Rightarrow \text{DP}(\text{MDP}_{U(h)}) > \frac{\epsilon}{T}$ ⇒ probability about $\frac{\epsilon}{T}$ of encountering new state if exploring. This can happen only $O\left(\frac{nSAT}{\epsilon}\right)$ times (Using the Chernoff bound). Each exploration uses at most T steps ⇒ proof.
Delayed Q-learning

The theorem can be tightened from $\text{Poly}(S,A)$ to $\tilde{O}(SA)$ using the Delayed Q-learning algorithm.
Outline

1. Sample Complexity Results

2. Limitations of Sample Complexity
The Limits of Sample Complexity: A lower bound

Theorem: Any algorithm A satisfying the E^3 statement must use at least $\Omega(TSA)$ actions to explore.

(There are stronger lower bounds, but this is sufficient.)
Proof

A "Key lock" MDP

States in a chain. One action leads to next state, all the rest lead to the beginning. The final state has an action with reward 1.
Implications

Lower bound \Rightarrow the really big problems can’t be solved.

But the problems are solvable: we solve them every day.

\Rightarrow More or different assumptions are required.
Related Reading

