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Learning = Prediction ability

e \We can’'t expect any prediction ability, in general.

e \\We can expect prediction ability, if examples come indepen-
dently, sometimes.

Here we study prediction ability, assuming indepedence.



Why study prediction theory?

1. Better methods for learning and verifying predictive ability

2. To gain insight into learning.



Better Methods for Learning & Verification

Standard technique:

1. Divide samples into train and test set

2. Train on train set

3. Test on test set

We can do better.



To gain insight into learning

. Overfitting: sample complexity quantifies overfitting.

. Learning algorithm design: What is a good pruning criterion?
Why are large margins good? WAhat other algorithms are
likely to vield good results?



Outline

. T he Basic Model

. The Test Set Bound

. Occam’s Razor Bound

. PAC-Bayes Bound



Model: Definitions
X = input space
Y ={0,1} = output space
c. X — Y = classifier
Model: Basic Assumption

All samples are drawn independently from some unknown distri-
bution D(x,vy).

S = (x,y)™ ~ D™ is a sample set.



Model: Derived quantities

The thing we want to know:

cp= Pr (c(x) #vy) = true error
z,y~D



Model: Derived quantities

The thing we want to know:
cp= Pr (c(x) #vy) = true error
z,y~D
The thing we have:

m

eg=m_Pr (c(0) #y) = Y. Ile(@) # ]

LY~ 1=1

= "rain error’, ‘test error”, or “observed error’, depending on
context.

(note: we identify the set S with the uniform distribution on S)



Model: Basic Observations
Q: What is the distribution of cg?
A: A Binomial.

=~ I k - m—k
oFPLn (Cs=klep) = ( 1 )CD(l ¢p)

— probability of k heads (errors) in m flips of a coin with bias
CD-
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Model: basic quantities

We use the cumulative:

Bin(m,k,CD) PrSNDm (ES < %‘CD)

= Zi'{::() ( m ) Czb(]. — CD)m_i

1

= probability of observing k or fewer “heads” (errors) with m
coins.



Model: basic quantities

Need confidence intervals = use the pivot of the cumulative
instead

Bin (m, k,8) = max{p : Bin (m, k,p) > 6}

— the largest true error such that the probability of observing k
or fewer “heads” (errors) is at least 4.
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Test Set Bound: Setting

Standard technique:

1. Cut the data into train set and test set

2. Train on the train set

3. Test on the test set

What do sample complexity say about this method?



Test Set Bound: Theorem

Theorem: (Test Set Bound) For all classifiers ¢, for all D, for all
6 € (0, 1]:

Sflgm (cD < Bin (m, 05,5)) >1-9

World's easiest proof: (by contradiction).
Assume Bin (m, k,cp) > § (which is true with probability 1 — ).

Then by definition, Bin (m,¢cg,d) > cp
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Test Set Bound Notes

Perfectly tight: There exist true error rates achieving the bound

Lower bound of the same form.

Primary use: verification of succesful learning



What does Test Set Bound mean?

Corollary: For all classifiers ¢, for all D, for all § € (0, 1]
C Inl
M‘(KLC%W@>_‘ﬁ;21—5
S~Dm m m

where KL(q||p) :qln%—l—(l q)ln for qg<p

Corollary: For all classifiers ¢, for all D, for all § € (0, 1]

~ 1
4 M5 51 s

Pr CD S —
S~Dm m 2m

Proof: Use the Chernoff approximation. Full details in the notes



Test Set Bound: Example
Suppose 6 = 0.1
Suppose m = 100
Suppose cg =2
Square root Chernoff bound: = cp € [-0.102,0.142]

Exact calculation = ¢p € [0.0045,0.0616]



Test Set Bound Comparison: Empirical “‘confidence” intervals
k = number of test errors, m = number of examples
p=k
02 = LYy (n— 1 [e(m) # yil)?
m—1 2«i=1 M 1 Yq
pick bound = £ 4 2¢

How do they compare?
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Test Set Bound vs Empirical Confidence Interval

1. empirical confidence intervals are sometimes pessimistic

2. empirical confidence intervals are sometimes optimistic

3. the test set bound always works



Interpretation:

Verifier

Interactive Proof of Learning

Test Set Bound

Classifier C

Lea
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K-fold Cross Validation
Divide m examples into K subsets.
Repat K times: Train on K — 1 subsets, test on heldout subset.
Not well understood theoretically. (Big open problem!)

Best Result: Confidence interval smaller than a test set of size
m

K-
= |eave-one-out cross validation very prone to overfitting.

= Some people fool themselves with overconfidence in Cross
Validation.
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Training Set Bounds in General

e Sometimes the holdout set is critical for learning.

e Sometimes we want bounds to guide learning

=Train set bounds

Occam’'s Razor bound is the simplest train set bound.
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Occam’s Razor Bound

Theorem: (Occam’s Razor Bound) For all “priors” P(c) over the
classifiers ¢, for all D, for all § € (0, 1]:

Sflgm (‘v’c . ¢p < Bin(m,cg,0P (c))) >1—-9

Compare with test set bound: § — §dP(c).

Corollary: For all P(c), for all D, for all § € (0, 1]:

N5y + 1N

2m

>1—9

S~Dm T om



Occam’s Razor Bound: Proof

Test set bound =

Ve Sflgm (cD < Bin (m, ES,5P(C))) >1—6P(c)



Occam’s Razor Bound: Proof

Test set bound =

Ve Sflgm (cD < Bin (m,cS,5P(c))) >1—6P(c)
Negate to get:

Ve Sflgm (cD > Bin (m, ES,5P(C))> < 6P(c)



Occam’s Razor Bound: Proof

Test set bound =
Ve Sflgm (cD < Bin (m,cs,5P(c))) >1—6P(c)
Negate to get:
Ve Sflgm (cD > Bin (m, Cs,5P<C))> < 6P(c)
Apply union bound: Pr(A or B) < Pr(A) 4+ Pr(B) repeatedly.

Pr (3(: . ¢p > Bin (m, 65,5P(c))) <> 6P(c) =34
~ [PDm C



Occam’s Razor Bound: Proof

Test set bound =

Ve Sflgm (cD < Bin (m,ES,5P(c))) >1—90P(c)

Negate to get:
Ve Sflgm (cD > Bin (m, g, 5P(c))) < dP(c)
Apply union bound: Pr(A or B) < Pr(A) 4+ Pr(B) repeatedly.

P (Elc . ¢cp > W(m,és,cSP(c))) <Y 6P(c) =6
- C

Negate again to get proof.

Next: Graphical proof



Occam'’s Razor Tail Cuts
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Each classifier is a Binomial with a different size tail cut.

With high probability no error falls in any tail.



Occam Bound Calculation
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The chosen classifier has an unknown true error rate.



True Error Rate Bound

02 [ = = | L
: - empirical error e
= true error bound rereee e

Probability
o
|_\
|

S I A N
0 0.2 0.4 0.6 0.8 1
Empirical Error Rate

Bound = the largest true error rate for which the observation is
not in the tail.



Occam’s Razor Bound: Example
Suppose 6 = 0.1
Suppose m = 100
Suppose P(c) =0.1
Suppose cg =2
Square root Chernoff = ¢p € [-0.143,0.183]

Exact calculation = ¢p € [0.001, 0.089]



Occam’s Razor Bound Results Decision Trees

ID3 decision tree + pruning
probability of failure = 6 = 0.1

Discrete problems from UCI database of Machine Learning
problems.

100% of data used for training set bounds
80%/20% Train/Test split for test set bounds

Minimal selection bias



Test Set Bound vs. Occam’s Razor Bound
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Left bar = test set bound, right bar = Occam’s Razor Bound
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PAC-Bayes Bound
5
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PAC-Bayes Bound: Basic quantities

Qp = E..glcp] = average true error

average train error

QS = ECNQ [%ﬂ



PAC-Bayes Bound: Theorem

Theorem: (PAC-Bayes Bound) For all “priors” P(c) over the
classifiers ¢, for all D, for all § € (0, 1]:

m-+1
KL(Q||P) + In L ) 1

S~ pDm m

Pr (vcxc) - KL (QsllQp) <

where: KL(Q||P) = E..qIn %8

Corollary: For all P(c¢), for all D, for all 6 € (0, 1]:

KL(Q||P) + In™+1

2m

Pr VQ<C):QD§QS+\I >1-9

S~Dm



PAC-Bayes Bound: Application
Is the PAC-Bayes bound tight enough to be useful?

Application: true error bounds for Support Vector Machines.

Classifier form:

c(x) = sign (0 - @)

Change the binary labels to {—1,1} for the following.

Also note: Work by Matthias Seeger for Gaussian Processes.



PAC-Bayes Margin bound

F(x) = [;° \/%_We—;ﬂ/z = cumulative distribution of a Gaussian

Q(W, u) = N(u,1) x N(0,1)* 1 where first direction parallel to &

v(Z,y) = ||1yU|||.|xf|| — normalized margin

Q(W, n)s = Ez o sF (uy(Z,y)) = stochastic error rate

Corollary: (PAC-Bayes Margin Bound) For all distributions D,
for all 6 € (0, 1]:

. W2 mEl
Pr v, >0 KL (Qw,1)s||Q(w, n)p) < -2 ' | >1-4

S~ Dm m




PAC-Bayes Margin Bound: Intuition

Isotropic Gaussian prior and posterior



PAC-Bayes Margin Bound: Proof

Start with PAC-Bayes bound:

vP(c) _Pr (vcxc): KL (QsllQp) <

KL(Q||P) + |In = 1
(QIIP) 0 >>1—5
S~Dm

m

Set P = N(0,1)"
Q(W, n) = N(u,1) x N(0,1)* 1 with first direction parallal to @

Gaussian = coordinate system reorientable

= KL(Q||P) = KL(N(0,1)" 1[|N(0, 1) 1) +KL(N (1, 1)||N(0, 1))
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Use properties of Gaussians to finish proof



PAC-Bayes Margin proof: the end

/ / xJ_
= F- E E I < — — —
x,y~S z/NN(O>1) wﬁ_NN(O,l) (y//d > — Yz wax>
The sum of two Gaussians is a Gaussian =

= Lz yost >
xr
v~N | 0,14+—%

)I (yp < —yv)
“|

= Ez ysE I (yp < —yv)
Y ~ 1 -
! N(O’v(f,y)Q)

= Bz y~sF (uy(Z,y))

= Corollary



PAC-Bayes: Application to SVM

SVM classifier:

c(x) = sign (i aik(azi,az))
1=1

k is a kernel = 3® : k(z;,z) = ®(z;) - P(z) so:

GeT =Y

1 k(2 ) W W =3 5 aok(wg, )
y > aik(x, x)

\/k(-’ﬂa ) ZZ}’ZLl Oéiajk<$z'a wj)

= v(z,y) =

= Margin bound applies to support vector machines.
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PAC-Bayes Margin Bound Results
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Conclusion

1. Use real confidence intervals to compare classifiers.

2. Test set bound very simple.

3. Train set bounds on the threshold of quantitatively useful.

Code for bound calculation at:

http://hunch.net/~jl/projects/prediction_bounds/bound/bound.html



