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Abstract

This paper is about bounds on future
error rates. We present a theorem for
combining an arbitrary test set based
bound with an arbitrary training set
based bound. Appropriate use of this
theorem results in a combined bound
with two properties: 1) the combined
bound is never much worse than either
the training set based bound or the
test set based bound and 2) the com-
bined bound is sometimes better than
either bound individually. Empirical
validation is presented showing the ef-
fectiveness of the combined bound.

1 Introduction

Traditionally, there are two broad classes of techniques
for bounding the future error rate of a learned classifier
under an assumption that all examples are drawn iid
from an unknown distribution. These techniques are
“training set” based techniques and “test set” based
techniques. Each approach has both disadvantages
and advantages relative to the other. The message
of this paper is that the techniques are not exclusive.
The two approaches can be freely blended to construct
a bound which is “better” (in some sense) than either
bound individually.

Test set based techniques include bagging, cross-
validation, and the simple holdout set. The primary
advantage of test set based techniques is that they
work: typically they can be used to give a tight up-
per bound on the future error rate of some hypoth-
esis. There are, however, several drawbacks to the
test set approach. The largest drawback is that data
used for testing can not be used for training. This
can be a very serious issue when learning problems ex-
hibit “phase transitions” where a few extra examples
suddenly make the chosen classifier much more accu-
rate. If these extra examples are in the holdout set,
our learning algorithm will produce a poor classifier.

Another, drawback of test set based techniques is that L

they are not always well-analyzed. Of the above ap-
proaches, only the behavior of the holdout set is well
understood on arbitrary learning algorithms.

Training set based techniques include the famous VC
analysis [7], and is the focus of much of the work in
computational learning theory. The biggest advantage
of training set based techniques is that all examples
can be used for both learning and bound construction.
The drawback of training set based techniques is that
they are often too loose to provide any useful informa-
tion. Sometimes training set based techniques are ac-
tually tighter than test set based techniques. However
this has not been used in practice, principally because
it is difficult to predict in advance whether or not a
training set based technique will be tight enough to
yield interesting information.

The combination theorem proved in this paper makes
all computable training set based true error bound
techniques practically useful. The prescription for use
is straightforward:

(1) Choose a training set bound, a holdout set,
and a combined train set/test set bound.

(2) Train on the training set to choose a classifier.

(3) Evaluate errors on the train and the test sets
and use the combined train set /test set bound
to report a high-probability bound on the fu-
ture error rate.

A judicious choice of combined bound can be used with
the simple guarantee that the combined bound is never
much worse than the lowest of the training set and test
set bounds. In addition, we can also guarantee that
the combined bound is sometimes better than either
individual bound.

The remainder of this paper first develops the com-
bined bound theorem, and then presents empirical re-
sults showing how this technique can be useful.



2 How to Combine Training and
Testing Bounds

2.1 Setup and Motivation

We will define a classification problem as a distribu-
tion, D, on a space X x{0,1}. Given aset S of |S| = m
draws of labeled examples (z,y) from the distribution
D, the goal of any learning algorithm is to choose a
hypothesis, h : X — {0,1}, with a low true error rate,
ep(h) = Pry yp(h(z) # y). Unfortunately, the dis-
tribution D is unknown and so the true error rate,
ep(h) is not evaluatable. Nonetheless, it is often pos-
sible to bound the true error rate in terms of observ-
able quantities such as the empirical (or training) error
és(h) = Pry you(s)(h(z) # y). Here U(S) is the uni-
form distribution on the set S. It will be important to
make a distinction between train and test sets. Test
sets, Stest Will always have a subscript “test” and the
number of test set examples will be denoted by myegs.-
For brevity, we will denote the empirical error on a
test set as Egest (h)-

Given a fixed classifier and a classification problem,
the distribution of a test error on m labeled examples
is simple. The probability of an error for each exam-
ple is ep(h) and independence implies the empirical
error will be Binomially distributed. In particular, the
Binomial distribution is given by:

Bin(m,k,p) = Yo (T)p!(1—p)m

and note that:

Bln(m7 k;p) = Stest ,\I,)Drmtest (eteSt (h) S Miest

en®))

Given a fixed learning algorithm and learning prob-
lem, the training error will have a considerably more
complicated distribution. We can nonetheless, regard
the training error as a fixed random variable which has
some cumulative distribution parameterized by many
parameters, one of which is the true error rate of the
output hypothesis (which is itself a random variable).

How can we construct a confidence interval based upon
information from both the training and testing sets?
There are several possibilities.

(1) Construct an interval based upon the proba-
bility that both true error upper bounds are
violated.

(2) Construct an interval based upon the proba-
bility that at least one of the true error upper
bounds is violated.

(3) Use a more general technique.
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Figure 2.1. This is a graph representing the rejection re-
gion for a combined bound based upon both bounds being
violated. The marked region is the low probability events
disallowed.
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Figure 2.2. This is a graph representing the rejection re-
gion for a combined bound based upon either bound being
violated. Note that the “width” of the one violation area is
smaller than in figure 2.1. This occurs because the proba-
bility mass of the rejection region stays constant.

Figure 2.1 represents Technique (1) visually.

The essential problem with technique (1) is that the
resulting true error bound is the mazimum (minus a
small amount) of the bounds based upon both the test
set and the training set. Given that we don’t trust the
training set based bound to always be tight, we expect
this combination not behave well.

Technique (2) can be seen visually in Figure 2.2.

Technique (2) works moderately well. Mathematically,
we can calculate the minimum of the two error bounds
and add a small amount. This approach is nearly
equivalent to taking a union bound. While this ap-
proach allows us to combine the bounds, it does not let
us achieve an improvement over either bound individ-
ually. This property is intuitively possible. Certainly,
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Figure 2.3. This is a graph representing a possible rejec-
tion region for some other combined bound.

if we use two test sets, the confidence interval should
improve.

A better approach is possible. We would like to con-
struct a combined bound with the form given in Figure
2.3.

Such a rejection region has two important properties:

(1) If one bound is loose, it does not greatly harm
the final true error bound.

(2) The final true error bound can be tighter than
either individual true error bound.

Showing that technique (2) works is just an application
of the union bound. Given any two bounds on the
true error rate, we can apportion % confidence to each
bound. Then both bounds will hold with probability §
which implies that the minimum of the two true error
bounds (worsened by the substitution § — £) holds.

One interesting possibility to consider is the rejection
region of two test set based bound. The standard rejec-
tion region for the combination of two test set bounds
will be a diagonal orthogonal to the identity as in Fig-
ure 2.4. A bound based upon a rejection region of this
form is desirable because it can result in significant im-
provements. The combined bound we develop mixes
the possible improvement of Figure 2.4 with the soft
minimum of 2.2. The soft minimum is necessary in or-
der to protect against the (sometimes large) pessimism
of training set based bounds.

2.2 General Approaches for Combined Bounds

Showing that a more general technique works must
start with a discussion of confidence intervals. Funda-
mentally, a bound can be viewed as a set of outcomes.
Let X be a space of outcomes, then a bound ¢ C X is
a subset. The probability that this generalized bound

No Violation
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Figure 2.4. This is a graph showing the bound constructed
by combining two (asymmetrically sized) test sets. Since
the total number of errors is a sufficient statistic for bound
calculations, the boundary of the bound violation region is
at a constant number of errors which is perpendicular to
the identity.

is violated for some distribution P is given by:
P
Pr(zeg)

Note that the rejection region ¢ can be parameterized
by both the distribution P and confidence § to get:

Pr(z€op(®) <6

We can expand the definition of a bound to include
a randomized rejection region. In particular, let
¢p(w,d) satisfy:

Vw: Pr(z€ ¢p(w,d)) <4d

z~P
Then, the following statement holds:

Pr (z € ¢p(w,d)) <4

w~Q,z~P

In fact, we can make a stronger statement. If

@1 Fuso Prl€opwd) <5
then
(2.2) Pr (z € ¢p(w,d)) <4d

w~Q,z~P

Randomized confidence intervals are useful here be-
cause we can regard the draw of the “test” set as con-
structing a randomized interval for the “train” set. As
long as constraint 2.1 is obeyed, the bound will hold
with probability at least . We can then take a supre-
mum over all classification problems D and the bound
will then yield the following theorem:

Theorem 2.1. (Ezact test and train bound) Let ¢p(0)
be any bound satisfying:

VDV§>0 Pr (S€¢p(d) <9



Let f(Siest) be any function satisfying:
ESieqnDmicn Pr (S € ¢p(f(Stest) ¥9)) <6
then:
Pr (S € ¢p(f(Stest) %)) <6

~Dm+tmiest
s test

Proof. This is a simple application of the definition of
probability. O

At this point we are (in some sense) “done”—we can
flexibly combine any train set based bound with the
holdout bound and verify that it holds using an exact
calculation of the expectation,

ESiesinDmies Pr_ (S € dp(f(Stest) ¥ ) <&

There are many possible choices of the function
f(Stest), each of which leads to a different combined
training and testing bound. In particular, there exists
an f for the conjunction and disjunction methods—
cases (1) and (2) in the previous section. We can also
design an f which satisfies our goals of “never much
worse and sometimes better”.

Nonetheless, some more effort is required because in
practice it is sometimes desirable to use a bound for
the holdout set rather than an exact calculation of the
expectation.

2.3 Approximations in Combinations

The inexact nature of bounds forces us to impose a
monotonic structure on the function f(Siest). For
simplicity, we will restrict to functions of the form
S (étest(h)) where égest(h) is the test error on hypoth-
esis h. This simplification is not necessary and this
technique can be extended to arbitrary test set based
techniques.

We can consider any upper bound 6p(4) on the true
error rate, ep(h), as inducing a cumulative distribu-
tion on the test set events.

This cumulative distribution is not the cumulative dis-
tribution of the underlying (Binomial) probability. To
construct this distribution, let:

Fy(égest () = inf{8 : st (h) € Op(8)}

Intuitively, Fy(éiest(h)) is the smallest 6 such that the
test error éiest () is rejected.

Lemma 2.2. The function Fy(étest(h)) is a cumula-
tive distribution function.

Proof. In order to show that the function is a cumula-
tive distribution function, we must show that it varies

between 0 and 1 for all values of égesi(h). Since 6p(d)
is an upper bound, the following inequality holds:

VStest Fo (étest (h)) > Bin(m, m x étest(h): eD(h))

This inequality implies the value of Fy(étest(h)) is al-
ways at least as large as the CDF of the underlying
Binomial distribution. Note, that different Sies; are
implicitly aliased under this technique. We also have
the inequality Fy(éiest(h)) < 1 because all true error
rate upper bounds are vacuous above a true error rate
bound of 1. O

We have shown that Fp is a cumulative distribution
function over the value of the empirical error. Given
the upper bound cumulative, Fy, we can look at dis-
tributions satisfying:

Eétest (h)~Fy Sflgm (S € d)(f(étest (h)) * 6)) S 0

If we are guaranteed that f(éyes;(h)) decreases mono-
tonically then equation 2.2 will hold. This is the
essence of our theorem.

Theorem 2.3. (Approzimate test and train bound)
Let ¢p(d) be any bound satisfying

VDV§>0 Pr (S€¢p(d) <9

. Let f(€ésest(h)) be any monotonic decreasing function
satisfying:

Ee,...(h)~Fo Sf[r)m(S € ¢p(f(étest(h)) x0)) <&
, then:
Pr (S € ¢p(f (Etest(h)) x0)) <&

~DMtMiest
sOtest

Proof. Note that Prg.pm (S € ¢p(f(Etest(h)) * 9)) is
a monotonic decreasing function of éiest(h). For any
monotonic decreasing function g(z) and any two cu-
mulative distribution functions Fj(x) and Fy(x) satis-
fying Vo Fi(z) < Fy(x) we have:

By ry(2)9(%) < Epopy(2)9(2)

Let F(z) be the cumulative distribution of the Bino-
mial and note that the definition of a bound implies:
Vx Fy(x) > F(x). Applying these inequalities, we get:

6> Eétest,\,pg SF[I;W (S € ¢p (f(étest (h)) * 6))

> Bt PL (S € 9D(f(Brest(h)) % 9))

Given this, an application of theorem 2.1 completes
the proof. O

The only constraint that we must check in applying
a combined train and test bound is the monotonicity
constraint. Heuristically, this is satisfied for the func-
tions graphed in figures 2.1, 2.2, 2.3, and 2.4 since the



set of excluded events increases monotonically along
the z axis as it decreases along the y axis.

It is worth noticing that this approach applies to any
training set based bound which holds for all § > 0
and all learning problems D. In particular, it holds
for VC-dimension based bound [7] although we do not
use that approach here.

2.4 The train and test bound

An explicit mathematical form for a combined train
and test bound can be given by considering the bound-
based cumulative distributions, Fy, and a similar dis-
tribution for the training set, Fy4. In particular, we
can define the rejection region to be

{Stestas : FG(Stest)F¢'(S) < t(d)}
where (d) is a function satisfying

o Br (Pl ()Fy(5)) < 40)) <0

The monotonic constraint is satisfied by this con-
struction because Fy is implicitly monotonic decreas-
ing with Fy(S) given a constant t. We will use this
bound for combining train and test sets in the experi-
ments.

Calculation of this bound is straightforward. Essen-
tially, we do a binary search for the true error rate
e(h) which places our observed test error and training
error on the boundary of the rejection region. Since
e(h) is in the interval [0, 1], each tested true error rate
will increase the precision of the true error bound cal-
culation by 1 bit. The computation can be halted at
the machine precision or some other negligible size.

By observation, this combined bound will satisfy our
desirable properties (1) “never hurt much” and (2)
“sometimes help”.

3 Experimental Results: Decision Trees
3.1 The Approach and Bounds used

We will test and compare various bounds on an ID3
based decision tree algorithm using discrete datasets
from the UCI database of machine learning problems.
The exact details of the decision tree and bound imple-
mentations are not discussed here although the details
are quite important in order to replicate these results.
For full details see [2] and note that a true error bound
calculation program is available [3].

For every dataset, our goal is to learn a hypothesis
h and a high-probability upper bound on the future
error rate of that hypothesis. We wish to find a hy-
pothesis with the smallest possible high-probability

upper bound. For our purposes, there are 3 varieties
of bounds: Training set bounds, test set bounds, and
combined training and testing set based bounds. We
will compare these bounds in 3 ways:

(1) Test set bounds (figure 3.2): Train on 80% of
the data then use the remaining 20% for the
test set bound.

(2) Training set bounds (figure 3.3): Train on all
the data and then calculate the training set
based bound.

(3) Train and Test bounds (figure 3.4): Train on
80% of the data then calculate a bound us-
ing performance on both the training and the
testing sets.

We choose this comparison because it is realistic. Any-
one attempting to apply machine learning techniques
faces a choice of train set/test set example allocation
and the choices made here are not uncommon.

The training set based bounds are the following:

(1) The discrete hypothesis bound such as appears
in [6] formed by simply counting the number
of decision trees.

(2) The Microchoice bound (first introduced in [4]
but see [2] for improvements). The Micro-
choice bound can (almost) be thought of as
a particular choice of description language for
the Occam’s Razor bound [1].

(3) The Shell bound [5] ([2] for improvements) and
the Sampled Shell bound [2]. The shell bound
is a functional improvement on the Occam’s
Razor style bounds which requires significant
computation in order to evaluate.

We only use the holdout bound (see [2] chapter 2
for details) for test sets because other test set based
bounds lack a solid analysis on decision trees. We also
compare two combined bounds:

(1) A combined training and testing bound using
the holdout bound and microchoice bound.

(2) A combined training and testing bound using
the holdout bound and the (stochastic) shell
bound.

The datasets (see figure 3.1 for sizes) consist of 13 UCI
database discrete datasets which appeared easiest to
use with a decision tree. It is important to note that
the problems were not chosen because they optimized
particular bounds well, nor were any of the bounds
“tuned” to do better on any of these datasets.



Examples per Learning Problem
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Figure 3.1. A graph showing the number of examples in
each problem. Note that holdout sets use only 20% of the
available data.
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Figure 3.2. This is a graph of the confidence intervals im-
plied by the holdout bound (See the introduction of [2]
for details). In this figure (and all others) we use § = 0.1
bounds for each tail so the confidence intervals hold with
probability 0.8 over the data set. Note that an estimate of
the size of a the holdout set can be inferred by the width
of the confidence interval.

For all bounds, we use a probability of failure of 6 =
0.1. The exact data generating Figure 3.3 and Figure
3.4 are listed in the appendix.

3.2 Discussion

It is difficult to answer the question “which bound
is tighter?” in a theoretical way. In fact, all of the
training set based bounds we use could be the “best”
depending on the exact learning problem (and algo-
rithm). For example, the Microchoice bound is worse
than the Simple bound when the hypothesis chosen
happens to be one of the “last” hypotheses with a long
description length. The results in Figure 3.3 show
there is no total ordering amongst the bounds although
there is a noticeable rough ordering:
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Figure 3.3. This graph compares upper bounds based
upon the training set. The left column is a discrete hy-
pothesis bound, the middle column is a microchoice bound,
and the right column is a shell bound. The existence of a
dashed line implies an approximate calculation of the sto-
chastic shell bound.

Test and Train Bounds

075 | B || I || -

True error (bound)
o
(]
T
1

0.25 | | 1 -
0 L IIIIIIL.; L
= oW s 0 oD o o
:E-—o@mxcao:mg
30T 20&8ELS5cLEZD
S o635 oxXxX2uvn3sl=
= © = > = 0o c© Q
< © 2 awn 2>
[Z] o c 8

Learning Problem

Figure 3.4. This graph compares the true error upper
bound for test set (left column) and two combined bounds
based upon Microchoice+holdout (middle column) and
Shell+holdout (right column) bounds. Once again, a
dashed line implies an approximate calculation.

Simple > Microchoice > Shell ~ Holdout

This ordering is approximately as expected based on
theoretical considerations. The Simple bound can
never be much better than Microchoice bound and
the Microchoice bound can be arbitrarily tighter than
the Simple bound. A similar statement holds for the
Microchoice Bound and the Shell bound. The Shell
bound is not always the best, but it does behave well
in comparison to the more standard holdout approach.

Empirically, we can observe a very noticeable behavior.
For problems with less than 100 examples the training
set based bounds are superior to the holdout bound.
Between 100 and 1000 examples, the behavior changes



with the holdout bound generally winning, although
not necessarily by much. Above 1000 examples, the
holdout bound is significantly and consistently tighter
than the training set based bounds. This behavior is
expected because the training set based bounds are
typically loose. In particular, the problem of corre-
lated hypotheses has yet to be solved in a convinc-
ing manner on discrete hypothesis spaces. Once the
holdout set becomes large enough to achieve statisti-
cal certainty, the training set based bounds can not
compete.

The combined bounds are compared with the holdout
bound in 3.4 and the results are the real import of this
paper. By comparison, we have the following rough
ordering:

Holdout > Holdout + Micro > Holdout + Shell

These improvements are typically most significant
when the bound for the test set is weak due to few
test examples, but improvement can and does occur
even when this is not the case. For example, this oc-
curs with the “shroom” problem.

The combined approach appears to have the best be-
havior in practice on both large and small datasets. By
examination, we can also see that the two guarantees
stated in the abstract hold as well:

(1) The combined bound is never much worse than
the best bound.

(2) The combined bound is is sometimes (a little)
better than either bound.

4 Conclusion

We proved a theorem allowing us to combine train and
test set based true error bounds in a general manner.
Then, we picked a particular technique for combining
the train and test bounds and applied them to a deci-
sion trees learned on discrete UCI database problems.
The results show that the combined approach is gen-
erally better on these experiments.

One significant implication of the combined bound ap-
proach is that it makes theoretical improvements in
training set based bounds much more relevant for prac-
tical use. This is important because it connects signif-
icant theoretical work with practical use.

There are several directions of future investigation
which could further strengthen any of these ap-
proaches. For the training set based bounds, find-
ing a quantitatively useful bound which takes into ac-
count correlation between hypotheses remains an open

problem. Note that VC-bound and associated cover-
ing number approaches [7] address this, but not in a
manner that results in a bound which is satisfying for
practical use.

We tested the simplest of holdout techniques so an-
other natural extension is to test other holdout tech-
niques. This was not done here, because the theory
of these other techniques is lacking and contributions
there could be of great import.

The particular method we used to combine training
and testing set bounds was a simple choice. It is easy
to imagine that other combinations (other choices of
the function f) can be beneficial.
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5 Appendix: Exact results

Here we present the exact results behind the graphs.
This first table lists the upper bounds associated train-
ing set bounds and the holdout set bound.

| Problem | Number | Simple | Micro | Shell | Holdout |

adult 20 0.579 | 0.605 | 0.447 | 0.438
shroom 8124 1.0 0.083 | 0.016 | 0.0014
audio 200 1.0 0.922 | 0.865 | 0.838
balance 625 0.933 | 0.405 | 0.409 | 0.287
car 1728 0.926 | 0.303 | 0.269 | 0.141
votes 435 1.0 0.180 | 0.097 0.06
krkp 3196 1.0 0.171 | 0.079 | 0.026
lung 32 1.0 0.963 | 0.051 | 0.907
nursery | 12960 0.91 | 0.181 | 0.093 | 0.013
postop 90 1.0 0.498 | 0.475 | 0.671
shuttle 15 1.0 0.908 | 0.805 | 0.965
soybean 307 1.0 0.945 | 0.879 | 0.811
yellow 16 1.0 0.902 | 0.822 | 0.965




The next table presents the results of holdout and com-
bined bounds.

| Problem | Holdout | Holdout+Micro | Holdout+Shell |

adult 0.438 0.438 0.438
shroom | 0.0014 0.0014 0.0014
audio 0.838 0.864 0.862
balance 0.287 0.313 0.313
car 0.141 0.155 0.129
votes 0.06 0.072 0.074
krkp 0.026 0.026 0.030
lung 0.907 0.871 0.853
nursery 0.013 0.013 0.0100
postop 0.671 0.446 0.450
shuttle 0.965 0.791 0.778
soybean | 0.811 0.833 0.834
yellow 0.965 0.789 0.740




