On Learning Monotone Boolean Functions

Avrim Blum*

Abstract

We consider the problem of learning monotone
Boolean functions over {0,1}"* under the uniform dis-
tribution. Specifically, given a polynomial number of
uniform random samples for an unknown monotone
Boolean function f, and given polynomial computing
time, we would like to approximate f as well as pos-
sible. We describe a simple algorithm that we prove
achieves error at most 1/2 — Q(1/+/n), improving on
the previous best bound of 1/2—Q((log” n)/n). We also
prove that no algorithm, given a polynomial number
of samples, can guarantee error 1/2 — w((logn)/\/n),
improving on the previous best hardness bound of
O(1/\/n). These lower bounds hold even if the learn-
ing algorithm is allowed membership queries. Thus this
paper settles to an O(logn) factor the question of the
best achievable error for learning the class of monotone
Boolean functions with respect to the uniform distribu-
tion.

1. Introduction

A monotone Boolean function f maps bit vectors
{0,1}" to {0, 1}, such that if f(x) = 1, then flipping
any bit of z from 0 to 1 keeps f(z) = 1. (This is some-
times called a positive Boolean function, or, in combi-
natorics, a monotone increasing set system.) Because
monotone functions encompass a very broad class of
Boolean expressions—specifically all circuits including
no negations—algorithms to learn them are of special
interest.

For a particular Boolean target concept f and a hy-
pothesis function h, we define the error of h as the frac-
tion of points # where h(xz) # f(z); that is, the error

*Carnegie Mellon University. E-mail: avrim+@cs.cmu.edu.
Supported in part by NSF National Young Investigator grant
CCR-9357793.

tCarnegie Mellon University. E-mail: cburch+@cs.cmu.edu.
Supported in part by a National Science Foundation Graduate
Fellowship.

{Carnegie Mellon University. E-mail: jcl+@cs.cmu.edu.

Carl Burchf

John Langford*

is Pr[h(z) # f(z)] for bit vectors & chosen uniformly
from {0,1}". (All probabilities in this paper are over
the uniform distribution.) Because of the generality of
monotone functions, this paper usually discusses errors
of nearly 1/2. To simplify discussion, we sometimes use
the closely related concept of correlation, which for er-
ror v is defined as 1 — 2.

The algorithms we discuss are for learning monotone
functions with respect to the uniform distribution. In
other words, the algorithm has access to an example
oracle SAMPLE for a hidden monotone function f,
that when invoked produces a pair (z, f(x)) where z
is chosen uniformly at random from {0, 1}". The goal
of the learning algorithm is to produce a good approx-
imation to f (a hypothesis with low error over the uni-
form distribution) using polynomial time and a polyno-
mial number of samples. Achieving error 1/2 is trivial,
achieving error 1/2 — 1/poly(n) is called “weak learn-
ing”; and achieving arbitrarily low error € in time poly-
nomial in 1/¢ is called “strong learning”. A more pow-
erful oracle than SAMPLE is the membership query
oracle MEMBER that allows the algorithm to query f
at arbitrary points of its choosing. Our upper bounds
(algorithms) use only SAMPLE but our lower bounds
(hardness results) hold even if the algorithm has access
to MEMBER as well.

One reason the problem of learning monotone func-
tions from random examples is interesting is that for
several important subclasses of monotone functions,
the upper bounds for the general class of monotone
functions are the best known. The most prominent
such subclass, to which the algorithm of this paper
is an improvement, is the class of monotone DNF
formulas. (Some restricted subclasses of monotone
DNF, such as puDNF, where each variable appears
at most once, have known strong-learning algorithms
[KLV94, Sch92].) The study of learning monotone
functions under the uniform distribution is also in-
spired by the fact that they stand at the threshold of
what is weakly learnable. Kearns, Li, and Valiant ob-
serve on proposing the problem: “Generalization in any
direction—uniform distributions to arbitrary distribu-
tions, weak learning to strong learning, or monotone

functions to arbitrary functions—results in intractabil-
ity” [KLV94].

The first results on learning monotone functions over
the uniform distribution were by Kearns et al [KLV94].
Their algorithm begins by drawing a sample of data
and producing the constant-one function (h(z) = 1) or
the constant-zero function (h(z) = 0) if the number
of positive examples seen differs significantly from the
number of negatives seen. Otherwise, their algorithm
outputs the single-variable function (f(z) = ;) that
has highest observed correlation with the data. By
results of Aldous [Ald86] there must exist some vari-
able with correlation €(1/n), and thus their error is
1/2—Q(1/n). Bshouty and Tamon [BT96] improve on
this guarantee using results of Kahn, Kalai, and Linial
[KKL88]. They demonstrate an algorithm which out-
puts linear-threshold functions and guarantees error at
most 1/2 — Q((log” n)/n). Bshouty and Tamon also
describe super-polynomial-time algorithms with better
guarantees.

In this paper we present an algorithm that achieves
error at most 1/2 — Q(1/y/n). The approach is es-
pecially simple. In brief, we prove that one of three
functions achieves this correlation: the constant-one
function, the constant-zero function, or the majority
function (h(z) = 1 iff Y} ,2; > n/2). By sampling
enough times to determine which of these three is best-
correlated, we achieve the result.

We complement this result with a lower bound show-
ing that this simple algorithm is nearly the best possi-
ble. Specifically, no algorithm, given only a polynomial
number of accesses to the target function, can guaran-
tee error 1/2 — w((logn)/+/n), even if it can use both
the SAMPLE and MEMBER oracles. The best pre-
vious negative result, using “slice” functions, is that
no subexponential-time algorithm can guarantee error
O(1/+/n) [KLVY4].

In this paper, [|z|| represents the number of 1 bits in
z; in other words, ||z|| = >, z;. We use X}, to represent
the set of size-k bit vectors: Xy = {z | ||z|| = k}.

2. Learning a fair monotone function

A fair Boolean function is a Boolean function that
labels exactly half the points with 1; that is, f is fair if
Pr[f(z) = 1] = 1/2. In Section 3 (Lemma 7), we prove
that a learning algorithm for fair monotone functions
implies a learning algorithm for general monotone func-
tions with only a small loss in error; thus, it suffices to
assume that the target function is fair. In this section
we show that an especially simple algorithm—mnamely,
the algorithm that blindly returns the majority func-
tion over all variables—learns fair monotone functions

with error at most 1/2 — Q(1/+/n). That is, we show
that the majority function correlates weakly with any
fair monotone function.

The intuition motivating this proposition is that the
best fair monotone function for foiling the majority
function would be the most lopsided function imag-
inable, the single-variable function f(z) = ;1. (Sur-
prisingly, the converse is not true: Ben-Or and Linial
demonstrate that the majority function does not min-
imize correlation with the best single-variable func-
tion [BOL85].) The single-variable function disagrees
with the majority function on a

11 (W) 1 1 1 04

2 2 2n 2

V2mn) vn
fraction of the points. Although we believe that this is
the true worst-case error of the majority function, what
we prove is a slightly worse approximation guarantee.

We will assume for simplicity in this section that n
is odd; this assumption will be removed in Section 3
(Lemma 6).

Theorem 1 Say f: {0,1}"* — {0,1} is a fair mono-
tone function. Then the majority function

) :{ Ll > /2

otherwise
has error at most 1/2 —0.1//n.

To prove the theorem, we analyze the quantities py,
which we define as the fraction of the points z € X
such that f(z) = 1:

Prf(z) =1 |z € X}]
Ho € Xi [f(z) =1}
(¢)
(Recall that we defined X}, as {« | ||z|| = k}, the set of
bit vectors with exactly k ones.)

It is easy to see that the pg are non-decreasing with
k: Imagine placing 1’s at random into an example that
initially is all 0’s; the probability that the example is
positive can only increase as more 1’s are added. The
Kruskal-Katona Theorem (page 39, [Bol86]) implies

that in fact these pg must be increasing at a reasonable
rate.

P =

Lemma 2 (Corollary to Kruskal-Katona[Bol86])
For monotone increasing function f and 0 <1 < j < n,
we have p; < p;».

We break the proof of Theorem 1 into three lemmas.
These lemmas, proven below, examine p, for a partic-
ular s. Define s as the smallest number so that at least
1/4 of the points have size at most s; that is, s is the
minimum number so that Zj:o (?) > (1/4)2".

Lemma 3 Ifp, < 1/4, then Theorem 1 is true.

Lemma 4 If p, > 1/4, then we have p,_s > ps +

0.4/\/n.

Lemma 5 If p,_s > ps + 0.4/\/n, then Theorem 1 is
true.

Proof of Theorem 1. The above three lemmas
immediately imply the theorem. =

Proof of Lemma 3. Let a denote the fraction of the
points z with ||z|| < s for which f(z) = 1. Since the
pi are increasing and p; < 1/4, we know that o < 1/4.
Also, by definition of ps, we have that at most an «/4
fraction of the points z € {0, 1}" satisfy both ||z|| < s
and f(z) = 1.

Because f is fair, this means that a 1/2—«/4 fraction
of the points z € {0,1}" have f(z) = 1 and ||z|| > s.
So (1/2—a/4)/(3/4) = (2—) /3 of the points x where
[|z|] > s must have f(z) = 1. Because the pj increase
with k, the proportion of points z with f(z) = 1 is
less in the range s < [|z|| < n/2 than in the range
n/2 < ||z]] € n. In the range s < [jz|| < n/2, then,
where h(z) = 0, f(x) is also 0 for at least 1 —(2—«)/3 =
(I + «)/3 of the points. In the range n/2 < ||z|| < n,
where h(z) =1, f(z) is also 1 for at least (2 — «)/3 of
the points.

The total fraction of points where f(z) agrees with
h(z) is at least

(Lta) (2-a)

1 @2-0)
3 2 3 o 3

(1—a)+

o =
o =

The first term represents the points with [|z|| < s; the

second the points with s < ||z|| < n/2; and the third

the points with ||z|| > n/2. This (2 — «)/3 fraction is
1

certainly greater than 5 + \0/—% for sufficiently large n

since o < 1/4. L]

Proof of Lemma 4. Define ¢ so that s = n/2—c\/n.
A straightforward calculation shows that ¢ > 5/16. In

particular,
[n/2]
n 5 n
X () < 5] ()
j:{n/Z—%\/n]
5 0.8
< = —) 2"
- 16ﬁ<\/ﬁ>
(by Stirling’s approximation)
= 1/4,

A

which implies ¢ > 5/16 by definition of s.

By Lemma 2, we know that p,_, > pz/("_s)

s/(n—s) =1—2¢c/nf/(n/2+ c\/n), we have

. Since

_ 2c!!n Cﬁ
Prs Z Ds - Ps n/24+cv/n =ps- en/22+—c\/;1ng
2 1
> p, (1 P Y/ _)
n/2+ce/n ps
3.7¢ 1
>

s+ —=psln—.
p+\/ﬁpsnp

k]

The lemma’s hypothesis requires p; > 1/4, and for f
to be fair we must have p; < 1/2. So p, In(1/p;s) is at
least (1/2)In2. This gives us

3.7c1n2> +%
N

which is what we want.]

pn—s Z ps +

Proof of Lemma 5. Note that for i < s, we have

Proi > Pnos > Ds + 0.4/\/n > p; +0.4/\/n

by our hypothesis and the fact that p; increases with k.
Also note that y_"_ p; (T;) = (1/2) - 2", since f is fair.
The number of points where h(z) = 1 and f(z) =1
is

(
1 > n [n/21-1 n
1=0 t=s+1

v
N | —
<
i
<)
TN
=

+
sz
3| o~
SN
<3
SN

i=s+4+1 i=[n/2]
1 04 <~ (n
= —.9n
4 +2\/ﬁ;<i)
1 0.4
> —.ong . 9n
-4 +8\/ﬁ

Since h and f are both fair functions, the number of
points & for which h(2z) = 0 and f(x) = 1 is the same
as the number of points # for which h(z) = 1 and
f(z) = 0. Therefore, the number of points & where
h(z) = 0 and f(z) = 0 is also at least

1 0.4

R L
4 +8\/5

Thus the total number of points where h(z) = f(x)
is at least
1 2-04 1 0.1
- —— 2" =2 -+ —] .
2 + 8/n <2 + N)
Therefore the majority function has an error of at most

1/2-0.1/\/n. -

3. Learning monotone and unate func-
tions

In this section we show how the previous algorithm
for learning fair monotone functions can be extended to
the class of general monotone functions and the broader
class of “unate” Boolean functions, with essentially the
same guarantees. This implies our main positive result,
a learning algorithm achieving error 1/2 — Q(1/+/n).

First we show how to work around our earlier as-
sumption that n is odd.

Lemma 6 If f is a fair monotone target function over
an even number of variables, then the majority function

h has error at most 1/2 —0.1/y/n + 1.

Proof. For each (n + 1)-bit vector z', define f'(z') as
the value of f on ' with the last bit removed. Since f
is fair and monotone, f’ is fair and monotone.

Say we have a random n-bit vector z with label
f(z). Let 2’ be x with a random bit appended, and
predict h(z’). (This is equivalent to the majority
function on n variables, with the label chosen ran-
domly if ||z|| = n/2.) Since f'(2') = f(x), by The-
orem 1, the probability that h(z') # f(z) is at most

1/2—-0.1/v/n+ 1.]

3.1. Learning monotone functions

To transform an algorithm for learning fair mono-
tone functions into an algorithm for learning mono-
tone functions, we do the following. We sample enough
times to determine whether the target concept is ap-
proximately fair. If it is far enough away from fair
then we can output the constant-zero or constant-one
function. If not, then we output what the fair-function
algorithm does for the concept. The following lemma
makes this argument concrete.

Lemma 7 Say we have an algorithm A for learning
fair monotone functions, which uses no samples and
outputs a hypothesis with error at most 1/2 —¢. Then
for any a,d > 0 we can construct an algorithm A’ for
learning all monotone functions, finding a hypothesis

with error at most 1/2—¢/(2+ a) with probability 1 —4.
This algorithm A’ calls SAMPLE
22+a)? 1

aZe? n 5

times.

Remark. For simplicity we examine a severely hand-
icapped algorithm A which uses no samples and has
no chance of failure, since the particular algorithm we
are considering has these properties. The theorem also
holds for more general algorithms, at the expense of
added complexity and slightly worse bounds.

Proof. Say that the target concept f labels a v frac-
tion of the points with 1. The new algorithm A’ uses
the samples to obtain an estimate 5 of v. By Ho-
effding bounds, with probability at least 1 — § our
estimate ¥ is within y + «@¢/2(2 +). Assume that
this happens. If ¥ > 1/2 4 ¢/2, then A’ outputs the
constant-one function h(z) = 1. Since in this case
y>1/24¢/2—ae/2(2+a) = 1/24+¢/(2+), the error
is at most 1/2 — ¢/(2 4+ «). Similarly, if ¥ < 1/2 —¢/2,
then A’ outputs the constant-zero function h(z) = 0
with error at most 1/2 — ¢/(2 + «).

Otherwise, if 4 is within 1/2 & €/2, then v is within
1/2 + (1 4+ a)e/(2 + «), and A’ outputs whatever A
outputs. This hypothesis may err on the points of the
fair function, plus it may err on that (1 + a)e/(2 + «)
fraction of points that must be relabeled in order to
make f fair. Thus the error of this hypothesis is at
most 1/2— e+ (1+a)e/(24+a)=1/2—¢/(2+ a).

The only possibility that leads to an incorrect hy-
pothesis is if we misestimate 4 by a wide margin. Since
this occurs with probability at most §, we have the re-
quired guarantee. L]

As a corollary we now have our learning algorithm.

Theorem 8 In polynomial time we can learn mono-
tone functions guaranteeing error at most 1/2 —

0.04//n.

Proof. Let A be the algorithm that performs no sam-
pling or computation and blindly outputs the majority
function. By Theorem 1, this algorithm always has
error at most 1/2 — 0.1/4/n on fair monotone target
concepts. We apply Lemma 7 with o = 1/2 to get our
algorithm. L]

This algorithm is particularly simple: The amount
of time it requires in linear in n; it uses only the labels
returned by SAMPLE and not the actual bit vectors;
and, the algorithm has only three possible outputs (the
constant-one function, the constant-zero function, and
the majority function).

3.2. Generalizations

Another transformation generalizes the class of func-
tions further to encompass unate functions (in some
communities, these are called monotone functions).
Say that a variable is a positive indicator for a Boolean
function f if flipping the variable from zero to one never
turns f from one to zero, and say that it is a negative
wndicator for f if flipping the variable from one to zero
never turns f from one to zero. In monotone func-
tions, all variables are positive indicators; in a unate
function, every variable is either a positive indicator or
a negative indicator.

If we have an algorithm for learning monotone func-
tions, then we can construct an algorithm for learning
unate functions. The technique is similar to that of
Lemma 7. In this case, we determine for each variable
whether it is a positive or a negative indicator. We
then use this information to transform the unate tar-
get concept into a concept that is probably a “mostly”
monotone function.

All that remains is to show that variables which in-
dividually do not exhibit much correlation do not cause
much harm if they are wrongly categorized. Since the
algorithm miscategorizes variables only if their corre-
lation is very weak, the fraction of points that must
be relabeled in order to make the transformed function
monotone is very small. By estimating the correla-
tions accurately enough, the fraction becomes so small
that with high probability none of the labeled examples
that SAMPLE returns in a subsequent draw are points
that must be relabeled. Thus the algorithm provides
an good estimate to this function. Though it may err
on the small fraction that are relabeled, it is also a
good estimate to the original function.

The following lemma gives the precise statement of
the result; the proof appears in the appendix.

Lemma 9 Say we have an algorithm A for weakly
learning monotone increasing Boolean functions, which
uses at most s calls to SAMPLE to output a hypothesis
with error at most 1/2—¢ with probability 1 —3/4. Then
we can construct an algorithm A’ for weakly learning
unate functions, finding a hypothesis with error at most
1/2—¢/2 with probability 1 —§. This algorithm A’ calls
SAMPLE at most
2 8n

S+€—21H7

times, where ¢ is defined as

. min{e, d/2s}

n++/2nln(4/9)

4. Hardness of learning

We now prove that no algorithm, given only a poly-
nomial number of calls to SAMPLE or MEMBER, can
achieve correlation more than an O(logn) factor better
than the algorithm of Theorem 8. This proof does not
rely on computational hardness; even if the algorithm
has infinite computation time, the information avail-
able from the oracles does not permit a better correla-
tion.

Theorem 10 For sufficiently large n, for any s > n,
there exists a distribution P, over monotone Boolean
functions with the following property: For any algo-
rithm A making at most s calls to MEMBER, the ez-
pected error of A (the probability over Ps, over any
internal random choices of A, and over the choice of a
random test example z, that A predicts incorrectly on
z) is at least 1/2—O(log(sn)/\/n). Thus, no algorithm
can guarantee expected error 1/2—w((logn)/+/n) given
a polynomial number of queries.

Notice that given access to MEMBER, the

SAMPLE oracle is redundant because a (randomized)
learning algorithm can simply call MEMBER on uni-
form random inputs if it so chooses; thus, we need only
consider the MEMBER oracle. Also, Theorem 10 is
written in terms of expected error, but it can easily be
transformed into the (e, d) formulation.
Proof. We begin by describing the distribution Ps.
Given s, let t = lg(3sn). The target function is a mono-
tone t-DNF formula in which each possible conjunct of
t variables is placed in the target independently with
probability p, where p is defined such that an example
of weight n/2 (having exactly n/2 1’s in it) has prob-
ability 1/2 of being labeled positive. That is, p is the
solution to the equation

1—p) =1/2.
Note that we have defined P; so that each term appears
independently with some fixed probability, as opposed
to the more common distribution on formulas in which
the target is random subject to having a fixed number
of terms.

To analyze the learning algorithm A, we want to
keep the conditional distribution Py, given the infor-
mation gathered by A so far, as “clean” as possible.
To do this, we augment the MEMBER oracle so that
it provides more information to the learning algorithm
than the standard oracle. Lower bounds for algorithms
using the augmented oracle clearly imply at least the
same bound for the standard oracle.

Specifically, we define the augmented MEMBER or-
acle as follows. Given a query example z, with 1’s in bit

positions indexed by some set S, let us imagine that
MEMBER looks at all of the (IS;:I) conjuncts of ¢ vari-
ables in Sg in lexicographic order and returns the first
such conjunct that appears in the target function (if «
is positive), or “0” if « is negative. In other words, for
a positive example, the oracle returns a witness (the
first one in lexicographic order) to the fact that the
example is positive. This augmented oracle is conve-
nient because in the conditional distribution P given
some set of oracle queries, each term is either known to
be present in the target formula, is known to be absent
from the target formula, or is still in the target formula
independently with probability p.

One way to think of this conditional distribution P;
is as a vector V; of (TZ) elements, one for each possible
conjunct of size ¢, in which each element of the vector
initially contains the number p, indicating the proba-
bility that the conjunct is in the target function. When
a query x is made, the oracle examines one by one the
entries relevant to « (those corresponding to terms that
if present in the target function would make z positive).
For each entry having value p, we can think of the or-
acle as flipping a coin, replacing the entry by 0 with
probability 1 — p and by 1 with probability p. The ora-
cle announces each result to the learning algorithm and
halts when either a 1 is observed (meaning the example
is positive) or when the number of relevant entries is
exhausted (for a negative example).

At any point in the learning process, by definition
of the augmented MEMBER oracle, the vector V; de-
scribes exactly the conditional distribution P; given the
information observed by the learning algorithm so far.
Specifically, entries in V; set to 1 correspond to terms
known to be present in the target function, entries set
to 0 correspond to terms known to be absent from the
target function, and the remaining entries are each in
the target function independently with probability p.

Claim 1 After s queries, at most s of the entries in
Vi are set to 1.

Proof. Immediate by definition of the augmented
MEMBER oracle. u

Claim 2 After s queries, with probability 1 — e=5/4,

there are at most 2s/p zeros in Vs. (Call this event £.)

Proof. In the worst case, for each query the oracle
continues to flip coins until a 1 is produced (in other
words, the oracle is not prematurely interrupted by a
previously-seen 1, or by the number of relevant entries
being exhausted). Thus, the question of the number
of zeros produced is equivalent to: How many times
will we flip a coin of bias p before seeing s heads? In

2s/p coin flips we expect to see 2s heads. By Chernoff
bounds, the actual number of heads is at least half this
quantity with probability at least 1 — e=28/8, =

For a given example z, and vector V5, let V;(z) de-
note the probability that z is positive given the dis-
tribution over target functions defined by V;. Because
Vi describes the conditional distribution P; given the
queries made so far, the Bayes-optimal prediction for
an example z is simply, “If V,(z) > 1/2 predict posi-
tive, else predict negative.” We bound the accuracy of
this predictor through the following final claim.
Claim 3 For any vector V; of size (Ttl) with at most s
entries set to 1, at most 2s/p entries set to 0, and the
remaining entries set to p, for a random example x, we
have that with probability at least 1—2/ﬁ—26‘c2, the
quantity V(z) lies within 1/2 £ (¢ + 1)t//n.
Remark. Notice that by plugging ¢ = /(lnn)/2
into Claim 3 (and using the definition of t) we have
that with probability 1 —4/4/n, V;(z) lies within 1/2+
O(log3/2(sn)/ﬁ). This immediately yields a weaker
version Theorem 10 in which log(sn)/\/n is replaced by
log3/2(sn)/\/ﬁ. After proving Claim 3 we give a more
refined argument producing the stronger bound.

Proof of Claim 3. Let us say that an entry of V;
is “relevant to” an example z if z satisfies the con-
junct corresponding to that entry; that is, the entry is
relevant to z if the conjunct’s presence in the target
function implies f(z) = 1.

We begin by showing that for a random example z,
with probability at least 1—2/y/n— 26‘c2, the following
three events occur.

1. None of the 1-entries in V; are relevant to z.

There are at most s 1-entries, and for each one,
the probability it is relevant to z is 27¢. Since
527" = 1/(3n) by the definition of ¢, this event
occurs with probability at least 1 — 1/(3n).

2. At most (2s\/n/p)2~" of the O-entries in V, are
relevant to z.

The expected number of 0-entries relevant to z is
at most (2s/p)27%. By Markov’s inequality, the
chance that it is more than /n times this is at

most 1/4/n.

3. The test example z lies in X}, for k& within n/2 +
e\/n/2.

By Hoeffding bounds, this event occurs with prob-
ability at least 1 — 2e¢7¢ .

The probability that all three events occur is at least

2, o
In /n > N <
Given that the above three events occur, we now
show that V; () lies in the desired range. For the lower
bound, V;(z) is minimized when z has as few 1’s as
possible and when as many of the 0-entries in V; are
relevant to # as possible. Thus V,(z) is at least

{(nﬂ—ct\/m)_ M}

p2t

Vs(2)

v

1- (_1 —-p)
1-{a _p)<"”'i“”_”>] [cssvmr]
L[o]
(cieﬁnition of t)

- 1o '2—(”/2-z¢"_/2)/<n{2)]]

(definition of p)

v

We bound the exponent for sufficiently large n:

(1) (m—dﬁ—t)t

(") n/2

(n/? —(c+ 1)W)t

n/2
_{,_Vae+nY
- v
V2(c+ 1)t
Baev-ant

Thus our lower bound on Vj(z) is

1—

v

Vi) > 1- [Q—u—ﬁ(cﬂ)t/ﬁ)} [ewﬁ}
1 [v2ueie+n t+1]
= 1——|e NG
2
l 2v/21n(2)(c + 1)t + 1
> 1- =
1 V2In@2)(c+ 1)t +1/2
= 3 NG
S 1 (e+1)t
-2 vn

We maximize V;(z) when z contains as many 1’s as
possible and as few 0-entries as possible. Thus V;(z) is
at most

Vi) £ 1-(1-pT
= 1oL

We bound the exponent for sufficiently large n:

(n/Z-}—CtM) n/2+c ‘
o R

nf2—t

< (1+\/_c+1)

2\/_ c+l)
NG

()

<

Thus our upper bound on V;(z) is

_(1+2\/5\/_gc:-1)t)

Ve(z) < 1-2
_ 1 _2\/51nf/2)_(c+1)t
= — 5@
. - 1_2\/§1n(2)(c+1)t
2 vn
1 (e+ 1)t
< —
= 3t N

Given the above three claims, we now complete
the proof of Theorem 10. Claim 2’s event & fails
with probability e=*/4. Given &, we would like to
know the probability that the Bayes-optimal predic-
tion is correct on a random example. Define P. for
1 < ¢ < +/n as the probability for a random example z
that |V (z)—1/2] < (¢+1)t/+4/n. By Claim 3, we know
that 1 —2/+/n — 2¢=¢" < P, < 1. The probability that
the Bayes-optimal prediction is correct for a random
example, then, is at most

(e 3)

4
4
+ (P\/E—P\/g_l) <%+(\/ET—;W) .

By telescoping this series, we get a bound of

(55
1

s 3 7((\/—-1-1)

IN

_ ol 4 % e ?
2 n n n 1—e 2
1 t
= —4+0|—].
27" (ﬁ)

Thus the best a predictor can do is to achieve a
1/2 + O(t/+/n) probability of agreeing with the tar-
get function, given that £ occurs. Since & fails with
o(t/+/n) probability, and ¢ = O(logsn), we have the

theorem.]

5. Conclusions

This paper closes to within an O(logn) factor the
question of how well algorithms can learn the class of
monotone Boolean functions on the uniform distribu-
tion, given a polynomial number of accesses to the tar-
get function. It is natural to suppose that one might
guarantee an error 1/2 — Q((logn)/y/n) using a more
sophisticated algorithm than that of Theorem 8. In
particular, the following approach appears promising:
First, order the variables by their observed individual
correlations with a sufficiently large sample of data.
Then, look at the n hypotheses hi,..., h, where h;
is the majority function over just the first ¢ variables
in this ordering. Finally, choose the h; of highest ob-
served correlation with the data (or the constant-zero
or constant-one hypotheses if the target function is suf-
ficiently non-fair).

The most interesting open question related to this
work is that of the learnability of monotone DNF for-
mulas over the uniform distribution, where the algo-
rithm’s time and samples used may be polynomial in
the number of terms in the formula. The proof of The-
orem 10 uses a target concept including ©(sn) terms,
and so it does not apply directly to this problem. A
number of algorithms have been given for special cases
of this problem (i.e., when the target function is fur-
ther restricted to be a special kind of monotone DNF
formula) but we know of no positive results better than
the guarantee of Theorem 8 for the general case.

References

[Ald86] D Aldous. On the markov chain simulation
method for uniform combinatorial distribu-
tions and simulated annealing. Technical Re-

port 60, Univ California at Berkeley, 1986.

[BOL85] M Ben-Or and N Linial. Collective coin
flipping, robust voting schemes, and minima
of banzhaf values (preliminary report). In

FOCS, pages 408-416, 1985.

[Bol86] B Bollobas. Combinatorics. Cambridge Uni-
versity, 1986.
[BT96] N Bshouty and C Tamon. On the fourier

JACM,

spectrum of monotone functions.

43(4):747-770, Jul 1996.

[KKL88] J Kahn, G Kalai, and N Linial. The influence
of variables on boolean functions (extended

abstract). In FOCS, pages 68-80, 1988.

[KLV94] M Kearns, M Li, and L Valiant. Learning
boolean formulas. JACM, 41(6):1298-1328,

Nov 1994.

[Sch92] R Schapire. The Design and Analysis of Effi-
cient Learning Algorithms. MIT Press, Cam-
bridge MA, 1992.

Appendix

Proof of Lemma 9. For each variable ¢, our new
algorithm A’ computes an estimate 7; of the relevance
r; of that variable

Prf(z) =1|a; =1]=Pr[f(z) =1 |2; =0]
1=2Pr [f(z) # ;] .

For each i, after (2/¢%) In(8n/§) examples, with proba-
bility d/4n the estimate of Pr [f(z) # ;] is within €/2
of the true value. Thus with probability 1 — d/4 we
estimate all of the 7; within r; &+ €.

When f is a unate function, the ith variable is a
positive indicator exactly when r; > 0. We define ¢ :
{0,1}" — {0, 1}" to transform bit vectors so that fot
is a monotone function if we have the correct values for
all the 7;:

T

if7; >0
otherwise

= {

To compute its return value, A’ defines for A a new
oracle SAMPLE', which works by receiving (z, f(z))

from SAMPLE and returning (t(z), f(z)). Since (fo
t)(t(z)) = f(z), SAMPLE" is an oracle to fot, and the
distribution of its returned vectors is still uniform. So
A’ can use this oracle to call A(SAMPLE',§/4), which
returns some hypothesis function hA. The return value
of A”is hot.

Since t is based on the 7;, however, f ot may not
be monotone. In particular, the transformation ¢ may
transform variables incorrectly if r; is within 0+ ¢é. But
in this case we can relabel a small fraction of the points
to make f ot monotone. Let @ e; denote the bitwise
exclusive-OR of z with ¢;, the bit vector that is 0 except
in the ith position. If ¢ mistransforms the ¢th variable,
we relabel the |r;| < € fraction of points # where z; = 1,
(fot)(x)=0,and (fot)(z de) = 1.

With probability 1 — §/4, the number of variables
¢ for which we must do this relabeling is at most
n/2 4 +/(n/2)In(4/4), because the chance that #; and
r; have different signs is at most 1/2. Assuming
this occurs, we may need to relabel as much as an
(n/24+/(n/2)1n(4/6))e fraction of the points to make
fot monotone. But A’ need not compute these to gen-
erate SAMPLE': The probability that none of the s
examples seen by A fall in these relabeled points is at

least
n n. 4

n n. 4\ ’
(- (amd))
> 1-4/4.

We assume, then, that A sees a monotone function
through SAMPLE'.

If A succeeds, its hypothesis h has error at most

v

1/2 — e. This hypothesis may also be wrong on the
(n/2 + +/(n/2)In(4/8))é€ relabeled points, so its error
on fotisat most 1/2—e+ (n/24/(n/2)In(4/d))é <
1/2 — /2. This is the error of h ot (the hypothesis
returned by A’) on fotot = f.

Four events may occur to prevent A’ from returning
a hypothesis of error at most 1/2 — ¢/2. One of the
estimates of 7; may be outside r; & €. The number of
variables for which we must do relabeling may exceed
n/2++/(n/2)In(4/3). One of the samples A sees may
be in the relabeled points. Or the h returned by A may
have error more than 1/2—¢. Each of these occurs with
probability at most /4, so A’ succeeds with probability
at least 1 — 4. L]

