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Abstract

A major topic in machine learning is to determine good upper bounds on the true
error rates of learned hypotheses based upon their empirical performance on train-
ing data. In this paper, we demonstrate new adaptive bounds designed for learning
algorithms that operate by making a sequence of choices. These bounds, which we
call Microchoice bounds, are similar to Occam-style bounds and can be used to make
learning algorithms self-bounding in the style of Freund [Fre98]. We then show how
to combine these bounds with Freund’s query-tree approach producing a version of
Freund’s query-tree structure that can be implemented with much more algorithmic
efficiency.

1 Introduction

Sample complexity bounds tend to be too loose for application to real world learning prob-
lems using common learning algorithms. They require more examples than experimentally
necessary to guarantee a reasonable accuracy with a reasonable probability. Chief amongst
the reasons for this failure is that typical sample complexity bounds are worst-case in na-
ture and do not take into account what may turn out to be a fortunate target function
and/or data distribution. A tighter bound can perhaps be derived by taking properties of
the observed data into account.

Many learning algorithms work by an iterative process in which they take a sequence
of steps each from a small set of choices (small in comparison to the overall hypothesis
set size). Local optimization algorithms such as hill-climbing or simulated annealing, for
example, work in this manner. Each step in a local optimization algorithm can be viewed
as making a choice from a small set of possible steps to take. If we take into account the
number of choices made and the size of each choice set, can we produce a tighter bound?



We develop a bound we call the Microchoice bound, which is a natural approach to ana-
lyzing algorithms of this form and lends itself to the construction of Self bounding Learning
algorithms in the style of Freund [Fre98| in a straightforward way. The goal is to allow
algorithms to bound the difference between the true and empirical errors of the output hy-
pothesis based on the choices actually taken and the choice sets actually explored without
needing to consider sets that “might have been” visited for different learning problems. By
keeping track of the sizes of the choice sets visited, the bound can be calculated and output
along with the answer. The simpler version of the Microchoice bound, which we describe
first, can be thought of as a direct application of the Occam’s razor connection developed
by [BEHWS&T|. In particular, the idea is to use the learning algorithm itself to define a de-
scription language for hypotheses, so that the description length of the hypothesis actually
produced gives a bound on the estimation error. In the second half of this paper, we show
how the Microchoice bound can be combined with the query-tree approach of Freund to
produce a variant of the query tree that can be used much more efficiently. The idea here
is to use empirical properties of the sample to prune away unlikely choices. For example,
in decision tree learning, if the sample is such that one choice of root node test is highly
preferred to all the rest, we may be able to formally act almost as if those other choices
never existed (see Section 4.5 for a fuller description of this example). Our procedures work
without altering the final hypothesis produced by the learning algorithm. It is also possible
to modify the learning algorithm to use a current bound in order to implement early stopping
in a manner similar to that of dynamic Structural Risk Minimization [STBWA96].

The structure of this paper is as follows. We begin in Section 2 with some background
on standard bounds, and use this to provide motivation for our approach. Section 3 contains
a simpler version of the Microchoice bound, which can be viewed as a warmup to our main
result in Section 4 that combines this idea with Freund’s Query-tree approach. We then
discuss the relationship between some of these methods in Sections 5 and 6.

Self bounding Learning algorithms were first suggested by Freund [Fre98|. Work develop-
ing approximately Self Bounding Learning algorithms was also done by Domingos [Dom98|.

2 Discrete PAC Bound Review

The basic PAC model is characterized by a hypothesis set, H, composed of hypotheses,
h: X — Y. We will be considering only discrete sets H. The learning algorithm is given
m labeled examples (z1,41),---, (Tm, Ym) generated according to an unknown distribution
P over the instance-label product space X x Y. We will call the set of labeled examples
2™ = {z,...,2m}, where z; = (2;,4;). Let Ep(h) = Pr(zy)~p(h(z) # y) denote the true
error of some hypothesis h with respect to P, and let E(h, 2™) = Pr(y4)~.m(h(z) # y) denote
h’s empirical error on the sample.’

In the realizable setting, we assume there exists some h € H with Ep(h) = 0. In this
setting we typically wish to state that with high probability no hypothesis of high true error
will have zero empirical error. The standard result, using the union bound, is that for any

'We are using Pry~p(¢(z)) to denote the probability ¢ holds for a random z chosen from D.



P, for any 6 > 0,

Py [@he H:E(hz")=0and Bp(h) > d <4, forc= % (m @) Y
A folk result, stated explicitly as Preliminary Theorem 1 in [McA98], is that one can
weight the hypotheses in H according to any probability measure u, resulting in different
error bounds for different hypotheses. In particular, one way to think of the standard bound
above is that we take our “supply” of confidence, ¢, and split it evenly among the hypotheses,
giving 6 /|H| to each. Then we define € so that the probability a fixed hypothesis of true error
¢ has empirical error 0 on m examples is at most d/|H|. The generalization is simply that we
can allocate our supply of § according to any distribution p if we wish, giving 6(h) = 0 - u(h)
to each. We then define €(h) so that the probability a hypothesis of true error e(h) has
empirical error 0 on m examples is at most §(h), and apply the union bound. Specifically,

Theorem 2.1 (Realizable Folk Theorem [McA98]) For any § > 0, any P, and any measure
u over H,
1

szw)ﬁ,m [3h € H : E(h,2™) =0 and Ep(h) > e(h)] < 6, for e(h) = % <lng +1In ﬁ)
(2)

For example, the Occam’s razor connection observed by [BEHW87] can be viewed in this
framework by giving every hypothesis of description length I a weight of u(h) = 272, In
the agnostic case, where the empirical error can be any value rather than only zero, we wish
to bound the deviation between the true and empirical errors of any hypothesis. The same
trick of unevenly spreading the confidence § over the hypotheses, combined with Hoeffding
bounds, produces the following result stated explicitly as Preliminary Theorem 2 in [McA98].

Theorem 2.2 (Agnostic Folk Theorem [McA98]) For any § > 0, any P, and any measure
u over H,
Pr [3h € H:Ep(h) > E(h,2™) +¢€(h)] <6,

ZmNPm

for e(h) = J% (m% +In ﬁ)

2.1 A Motivating Observation

For a given learning algorithm A, a distribution P on labeled examples induces a distribution
p(h) over the possible hypotheses h € H produced by algorithm A after m examples®. If we
knew P, then we could apply the Realizable Folk Theorem with the measure p(h) = p(h).
This choice of p(h) is optimal for minimizing the expected value of our true error bound,
€(h). In particular, notice that

1 1 1

inf Y p(h)— <1n ~+In —)
" hem m 0 p(h)

2p(h) is the probability over draws of examples and any internal randomization of the algorithm.
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This corresponds to minimizing the Kullback-Liebler divergence which provides a solution
of p(h) = p(h).

Interestingly, for the agnostic bound this choice of measure, u(h) = p(h), does not mini-
mize the expected value of €(h), as can be seen from a quick analysis of the two hypothesis
case. Instead, this choice of measure minimizes the expected value of €(h)?.

1
inf » p(h)e(h = inf p(h ln +In—)
e " )

From here, the analysis is the same as for the realizable case.

The point of these observations is to notice that if we can use the structure of the learning
algorithm to produce a choice of u(h) that approximates p(h), this should result in better
estimation bounds.

3 The Basic Microchoice Bound

The Microchoice bound is essentially a natural measure p(h) for learning algorithms that
operate by making a series of small choices. In particular, consider a learning algorithm that
works by making a sequence of choices, ¢y, ..., cq, from a sequence of choice sets, C, ..., Cy,
finally producing a hypothesis, h € H. Specifically, the algorithm first looks at the choice
set C; and the data z™ to produce choice ¢; € C';. The choice ¢; then determines the next
choice set Cy (different initial choices produce different choice sets for the second level). The
algorithm again looks at the data to make some choice c; € Cs. This choice then determines
the next choice set C3, and so on. These choice sets can be thought of as nodes in a choice tree,
where each node in the tree corresponds to some internal state of the learning algorithm, and
a node containing some choice set C' has branching factor |C|. Depending on the learning
algorithm, subtrees of the overall tree may be identical. We address optimization of the
bound for this case later. Eventually there is a final choice leading to a leaf, and a single
hypothesis is output.

For example, the decision list algorithm of Rivest [Riv87]| applied to examples over n
features uses the data to choose one of 4n + 2 rules (e.g., “if 3 then —”) to put at the top.
Based on the choice made, it moves to a choice set of 4n — 2 possible rules to put at the
next level (e.g., “if x; then +”), then a choice set of size 4n — 6, and so on, until eventually
it chooses a rule such as “else +” leading to a leaf.

The way we determine pu(h) (equivalently, d(h)) for the basic Microchoice bound is as
follows. We take our “supply” of § and give it to the root of the choice tree. The root
takes its supply and splits it equally among all its children. Recursively, each child then
does the same: it takes the supply it is given and splits it evenly among its children, until
all of the supplied confidence parameter is allocated among the leaves. If we examine some
leaf containing a hypothesis h, we see that this method gives it 6(h) = § Hd(h) L where

i=1 TG
d(h) is the depth of h in the choice tree and C(h),C3(h),...,Cyn)(h) is the sequence of



choice sets traversed on the path to h. Equivalently, we allocate pu(h) = Hfihl) m measure
to each h. Note it is possible that several leaves will contain the same hypothegis h, and in
that case one should really add the allocated measures together. However, we will neglect
this issue, implying that the Microchoice bound will be loose for learning algorithms that
can arrive at the same hypothesis in multiple ways. The reason for neglecting this is that
we want p(h) to be something the learning algorithm itself can calculate by simply keeping
track of the sizes of the choice sets it has encountered so far. It is important to notice that
this construction is defined before observing any data. Consequently, every hypothesis has
some bound associated with it before the data is used to pick a particular hypothesis and
its corresponding bound.

Another way to view this process is that we cannot know in advance which choice sequence
the algorithm will make. However, a distribution P on labeled examples induces a probability
distribution over choice sequences, inducing a probability distribution p(h) over hypotheses.
Ideally we would like to use p(h) = p(h) in our bounds as noted above. However, we cannot
calculate p(h), so instead, our choice of u(h) will be just an estimate. In particular, our
estimate p(h) is the probability distribution resulting from picking each choice uniformly at
random from the current choice set at each level (note: this is different from picking a final
hypothesis uniformly at random). Le., it can be viewed as the measure associated with the
assumption that at each step, all choices are equally likely.

We immediately find the following theorems.

Theorem 3.1 (Realizable Microchoice Theorem) For any 6 € (0,1),

Pr [3he€ H:E(h,2™) =0 and Ep(h) > ¢(h)] < §

szPm

m

1( 1 W@
for €(h) = In 5 + Y In|Ci(h)]
i=1
Proof. Specialization of the Realizable Folk Theorem.

Theorem 3.2 (Agnostic Microchoice Theorem) For any 6 € (0,1),

Pr [3h e H:Ep(h) > E(h,2™)+€(h)] <6

2M e~ P™m

1 [ 1 W
for e(h) = o (lng +Y In |C’Z(h)|)
i=1

Proof. Specialization of the Agnostic Folk Theorem.

The point of these Microchoice bounds is that the quantity e(h) is something the al-
gorithm can calculate as it goes along, based on the sizes of the choice sets encountered.
Furthermore, in many natural cases, a “fortuitous distribution and target concept” corre-
sponds to a shallow leaf or a part of the tree with low branching, resulting in a better bound.
For instance, in the Decision List case, ¥“% In |C;(h)| is roughly dlogn where d is the length



of the list produced and n is the number of features. Notice that dlogn is also the descrip-
tion length of the final hypothesis produced in the natural encoding, thus in this case these
theorems yield similar bounds to Occam’s razor or SRM.

More generally, the Microchoice bound is similar to Occam’s razor or SRM bounds when
each k-ary choice in the tree corresponds to logk bits in the natural encoding of the final
hypothesis h. However, sometimes this may not be the case. Consider, for instance, a local
optimization algorithm in which there are n parameters and each step adds or subtracts 1
from one of the parameters. Suppose in addition the algorithm knows certain constraints
that these parameters must satisfy (perhaps a set of linear inequalities) and the algorithm
restricts itself to choices in the legal region. In this case, the branching factor, at most 2n,
might become much smaller if we are “lucky” and head towards a highly constrained portion
of the solution space. One could always reverse-engineer an encoding of hypotheses based
on the choice tree, but the Microchoice approach is much more natural.

There is also an opportunity to use a priori knowledge in the choice of (k). In particular,
instead of splitting our confidence equally at each node of the tree, we could split it unevenly,
according to some heuristic function g. If g is “good” it may produce error bounds similar
to the bounds when u(h) = p(h). In fact, the method of section 4 where we combine these
results with Freund’s query-tree approach can be thought of along these lines.

3.1 Examples

The Microchoice Bound is not always better than the standard sample complexity bound
(1). To develop some understanding of how they compare we consider several cases.

3.1.1 Greedy Set Cover

Consider a greedy set cover algorithm for learning an OR function over n boolean features.
The algorithms begins with a choice space of size n+ 1 (one per feature or halt) and chooses
the feature that covers the most positive examples while covering no negative ones. It then
moves to a choice space of size n (one per feature remaining or halt) and chooses the best
remaining feature and so on until it halts. If the number of features chosen is k£ then the
Microchoice bound is:

e(h) = % <ln%+i1n(n—i+2)> <L (ln%—i—kln(n-l—l))

i=1 m

In contrast, the bound of (1) is:

1 1
e=—(ln—+nln2>.
m )

If £ is small, then the Microchoice bound is much better, but if & = O(n) then the
Microchoice bound is slightly worse. Notice that in this case the Microchoice bound is
essentially the same as the standard Occam’s razor analysis when one uses O(lnn) bits per
feature to describe the hypothesis.



3.1.2 Decision Trees

Decision trees over discrete sets (say, {0, 1}") are another natural setting for application of
the Microchoice bound. To apply this bound in a reasonable way, let us assume the learning
algorithm operates in a recursive fashion: after placing a test at the root, it recursively
constructs the left and right subtrees. (So, the only decision of the algorithm at each point
in time is what, if any, test to apply at the current node — not which node to expand next.)
In this case, there are (n — d(v) + 1) choices for a node v at depth d(v), implying the bound:

1
2m

Ep(h) < E(h,2™) + \/ (In % + > In(n—d(v) +1)) (3)

where v ranges over the nodes of the decision tree.

3.1.3 Pruning

Decision tree algorithms for real-world learning problems often have some form of “pruning”
as in [Qui86] and [Min89]. The tree is first grown to full size producing a hypothesis with
minimum empirical error. Then the tree is “pruned” starting at the leaves and progressing
up through the tree towards the root node using some type of significance test.

Microchoice bounds have the property that if we begin with the tree 7" and then prune
to the smaller tree 7", we can apply the bound (3) to 7" as if the algorithm had constructed
T' directly rather than having gone first through the tree 7. This suggests another possible
pruning criterion: prune a node if the pruning would result in an improved Microchoice
bound. That is, prune if the increase in empirical error is less than the decrease in €(h). The
similarities to SRM are discussed below.

3.2 Relationship with Structural Risk Minimization

Structural Risk Minimization works with a sequence of nested hypothesis sets, Hy C Hy C
.... C H;. For each hypothesis set, one can apply the standard sample complexity bound:
Prumpn [3h € H; : Ep(h) > E(h, 2™) + €] < 6, where & = 1/(1/2m) (In1/6 + In |H;). SRM
combines these into a single inequality that includes all hypothesis sets, as follows.

Theorem 3.3 (Structural Risk Minimization) Let p; be some measure across the | hypoth-
esis sets with 4, p; = 1. Then:

PI“m [Hh € H; € Hl, ...,Hl : Ep(h) > E(h, Zm) + 6,’] <0

2Mm~ P
1 1 H;
fOT‘ € = J% (1115 +ln‘,u—i‘)

The proof is simple — just apply the union bound.
The SRM bound is slightly inefficient in the sense that the bound for all hypotheses in Hy
includes a bound for every hypothesis in H;. This effect is typically small because the size




of the hypothesis sets usually grows exponentially, implying that the extra confidence given
to a hypothesis h in H; by the bounds used on hypothesis set Hs, Hs, ... is small relative
to the confidence given by the bound for H;. One can remove this slack in Structural
Risk Minimization bound by “cutting out” the nested portion of each hypothesis set in the
formulation of Hy, ..., H;. Let’s call this Disjoint Structural Risk Minimization.

The above Microchoice bound can be viewed as a form of Disjoint SRM bound where
the description language for a hypothesis is the sequence of data-dependent choices that the
algorithm makes in the process of deciding upon the hypothesis. The hypothesis set H; is
all hypotheses with the same description length in this language.

The principle disadvantage of the Microchoice bound is that the sequence of data-
dependent choices may contain redundancy. A different SRM bound with a different set
of disjoint hypothesis sets might be able to better avoid redundancy. As an example, assume
that we are working with a decision tree on n binary features. There are n+2 choices (any of
n features or 2 labels) at the top node. At the next node down there will be n+ 1 choices in
both the left and right children. Repeat until a maximal decision tree is constructed. There
will be [T o(n — i +2)% possible trees. This number is somewhat larger than the number of
boolean functions on n features: 22".

4 Combining Microchoice with Freund’s Query Tree
approach

The remainder of the paper is devoted to an improvement of the Microchoice bound that
we call Adaptive Microchoice which arises from synthesizing Freund’s query trees with the
Microchoice bound. This improvement is not easily expressed as a simplification of Struc-
tural Risk Minimization. First we require some background material in order to state and
understand Freund’s bound.

4.1 Preliminaries and Definitions

The statistical query framework introduced by Kearns [Kea93] is the same as the PAC
framework, except that the learning algorithm can only access its data using statistical
queries. A statistical query takes as input a binary predicate, x, mapping examples® to a
binary output: (X,Y) — {0,1}. The output of the statistical query is the average of x over
the examples seen,

~ 1
Px = EZX(%)
=1

The output is an empirical estimate of the true value P, = Ep[x(2)] of the query under
the distribution P. It is convenient to define

/1 2

3In the real SQ model there is no set of examples. The algorithm asks a query x and is given a response

~

P, that is guaranteed to be near to the true value P,. That is, the true SQ model is an abstraction of the
scenario described here where P, is computed from an observed sample.
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Then, by Hoeffding’s inequality,

Pr[|P - P| > a(5)] < 6.

4.2 Background and Summary

Freund [Fre98| considers choice algorithms that at each step perform a Statistical Query on
the sample, using the result to determine which choice to take. For an algorithm A, tolerance
«, and distribution P, Freund defines the query tree TA(P «) as the choice tree created by
considering only those choices resulting from answers P to queries x such that |P -P | <a.
The idea is that if a particular predicate, Yy, is true Wlth probability .9 on a random example,
then it is very unlikely that the empirical result of the query will be .1. More generally, the
chance the answer to a given query is off by more than « is at most e~ 2ma’ by Hoeffding’s
inequality. So, if the entire tree contains a total of |Q (T4 (P, )| queries in it, the probability
any of these queries is off by more than « is at most 2-|Q(T4 (P, @))|-e~2™*". In other words,
this is an upper bound on the probability the algorithm ever “falls off the tree” and makes a
low probability choice. The point of this is that we can allocate half (say) of the confidence
parameter ¢ to the event that the algorithm ever falls off the tree, and then spread the
remaining half evenly on the hypotheses in the tree (which hopefully is a much smaller set
than the entire hypothesis set).

Unfortunately, the query tree suffers from the same problem as the p(h) distribution
considered in Section 2.1, namely that to compute it, one needs to know P. So, Freund
proposes an algorithmic method to find a superset approximation of the tree. The idea is
that by analyzing the results of queries, it is possible to determine which outcomes were
unlikely given that the query is close to the desired outcome. In particular, each time a
query Y is asked and a response P is received, if it is true that |P — P, | < o, then the range
[PX 20, Px + 2a] contains the range [P, — «, P, + «]. Thus, under the assumption that no
query in the correct tree is answered badly, a superset of the correct tree can be produced
by exploring all choices resulting from responses within 2« of the response actually received.
By applying this method to every node in the query tree we can generate an empirically
observable superset of the query tree: that is, the original query tree is a pruning of the
empirically constructed tree.

A drawback of this method is that it can easily take exponential time to produce the
approximate tree, because even the smaller correct tree can have a size exponential in the
running time of the learning algorithm. Instead, we would much rather simply keep track
of the choices actually made and the sizes of the nodes actually followed, which is what the
Microchoice approach allows us to do. As a secondary point, given §, computing a good
value of a for Freund’s approach is not trivial, see [Fre98|; we will be able to finesse that
issue.

In order to apply the Microchoice approach, we modify Freund’s query tree so that
different nodes in the tree receive different values of o, much in the same way that different
hypotheses h in our choice tree receive different values of e(h).



4.3 Microchoice Bounds for Query Trees

The manipulations of the choice tree are now reasonably straightforward. We begin by
describing the ¢rue microchoice query tree and then give the algorithmic approximation. As
with the choice tree in Section 3, one should think of each node in the tree as representing
the current internal state of the algorithm.

We incorporate Freund’s approach into the choice tree construction by having each inter-
nal node allocate a portion ¢’ of its “supply” 4 of confidence parameter to the event that the
output of the statistical query being asked is within «(d’) of the correct answer. The node
then splits the remainder of its supply, § — &', evenly among the children corresponding to
choices that result from answers P, with |P, — P,| < a(6"). Choices that would result from
“bad” answers to the query are pruned away from the tree and get nothing. This continues
down the tree to the leaves.

How should ¢’ be chosen? Smaller values of §’ result in larger values of «(d’) leading to
more children in the pruned tree and less confidence given to each. Larger values of ¢’ result
in less left over to divide among the children. Unfortunately, our algorithmic approximation
(which only sees the empirical answers ]3 and needs to be efficient) will not be able to make

this optimization. Therefore, we define ¢’ in the ¢rue Microchoice query tree to be m where
d is the depth of the current node.

The algorithmic approximation uses the idea of [Fre98] of including all choices within 2«
of the observed value I5X. Unlike [Fre98], however, we do not actually create the tree; instead
we just follow the path taken by the learning algorithm, and argue that the “supply” d(h) of
confidence remaining at the leaf is no greater than the amount that would have been there
in the original tree. Finally, the algorithm outputs €(h) corresponding to §(h).

Specifically, the algorithm is as follows. Suppose we are at a node of the tree containing
statistical query x at depth d(x) and we have a & supply of confidence parameter. (If the
current node is the root, then 6 = § and d(x) = 1). We choose &' = §/(d + 1), ask the query
X, and receive ]5 We now let £ be the number of children of our node corresponding to
answers in the range [P, —2a(d"), P, +2a(0’")]. We then go to the child corresponding to the
answer P, that we received, giving this child a confidence parameter supply of (6 — 6" /k.
This is the same as we would have given it had we allocated § — ¢’ to the children equally.
We then continue from that child. Finally, when we reach a leaf, we output the current
hypothesis h along with the error estimate E(h,z™) + €(8), where €(§) is the error term
corresponding to the remaining confidence supply ¢.

We now prove that with probability 1 — §, our error estimate E(h,z™) + €(h) is correct.
By design, with probability 1 — § all queries in the true Microchoice query tree receive good
answers, and all hypotheses in that tree have their true errors within their estimates. We
argue that in this case, the confidence assigned to the final hypothesis in the algorithmic
construction is no greater than the confidence assigned in the true query tree. In particular,
assume inductively that at the current node of our empirical path the supply 5emp is no
greater than the supply 6m,e given to that node in the true tree. Now, under the assumption
that the response P is “good”, it must be the case that the interval [P — 2a( emp/(d +
1)), Py + 20(8emp/ (d + 1))] contains the interval [Py, — a(rue/(d + 1)), Py + a(Sirue/(d +1))].
Therefore, the supply given to our child in the emplrlcal path is no greater than the supply

10



given in the true tree.

Let d(h) be the depth of some hypothesis A in the empirical path and Cy(h), Cy(h), ..
C’d(h) be the sequence of choice sets resulting in A in the algorithmic construction; i.e., C’,(h)
is the number of unpruned children of the i-th node. Then, the confidence placed on h will

be:

*I

, B d(h) i 1 B 1 d(h) 1
0 =01 (S 370m) ~ w1 L N

Let A(2™) denote the hypothesis produced by the learning algorithm on the given sample.
We now have the following two theorems for the realizable and agnostic cases:

Theorem 4.1 (Realizable Adaptive Microchoice Theorem) For any 0 < 6 < 1, under the
assumption that A produces only hypotheses with zero empirical error,

Pr [A(z™) =h: Ep(h) >e€(h)] <§

2M e~ PM

O
for e(h) = % (ln % +In(d(h) +1)+ > ln(|C’i(h)|)> .

i=1
Theorem 4.2 (Agnostic Adaptive Microchoice Theorem) For any 0 < § < 1,

Pr [A(z™) = h: Ep(h) > E(h, 2™) + €(h)] <

an
for e(h) = \l %(ln% +In(d(h) +1) + Zl In(|Ci(h)])).

The bounds in Theorems 4.1 and 4.2 are very similar to 3.1 and 3.2 except that the choice
complexity is slightly worsened with the In(d(h) + 1) term but improved by replacing C;(h)
with the smaller C;(h). The hope is that the reduction in number of choices from C;(h) to
C’Z(h) resulting from pruning the tree will more than make up for the single In(d(h) + 1)
term.

4.4 Allowing batch queries

Most natural Statistical Query algorithms make each choice based on responses to a set of
queries, not just one. For instance, to decide what variable to put at the top of a decision
tree, we ask n queries, one for each feature; we then choose the feature whose answer was
most “interesting”. This suggests generalizing the query tree model to allow each tree node
to contain a set of queries, executed in batch. Requiring each node in the query tree to

11



contain just a single query as in the above construction would result in an unnecessarily
high branching factor just for the purpose of “remembering” the answers received so far.*
Extending the algorithmic construction to allow for batch queries is easily done. If a node
has g queries x1, ..., X4, We choose the query confidence ¢’ = 5 /(d+1) as before, but we now
split the ¢’ evenly among all ¢ queries. We then let k& be the number of children corresponding
to answers to the queries x1, ..., X, in the ranges [P, — 2a(8'/q), Py, + 22.(8'/q)], . .., [qu -
2a(8'/q), qu + 2a(0"/q)] respectively. We then go to the child corresponding to the answers
we actually received, and as before give the child a confidence supply of (5 —¢")/k. Theorems
4.1 and 4.2 hold exactly as before; the only change is that |C;(h)| now denotes the size of

the 2-th choice set in the batch tree rather than the size in the single-query-per-node tree.

4.4.1 Example: Batch Queries for Decision trees

When growing a decision tree, it is natural to make a batch of queries and then use the results
to make a decision about which feature to place in a node. The process is then repeated to
grow the full tree structure. As in the decision tree example described in Section 3.1.2, if
we have n features and are considering adding a node at depth d(v), there are n — d(v) + 1
possible features that could be chosen for placement in a particular node. The decision of
which feature to use is made by comparing the results of n —d(v) + 1 queries to pick the best
feature according to some criteria, such as information gain. We can choose 8’ = §/(d + 1),
then further divide ¢’ into confidences of size §'/(n — d(v) + 1), placing each of these on one
of the n — d(v) 4 1 statistical queries. Based on the results of these queries, we now may be
able to eliminate some of the n —d(v) 41 choices from consideration, allowing the remaining
confidence, § — § to be apportioned evenly amongst the remaining choices. Depending on
the underlying distribution this could substantially reduce the size of the choice set. The
best case occurs when one feature partitions all examples reaching the node perfectly and
all other features are independent of the target. In this case the choice set will have size 1
if there are enough examples.

4.5 Adaptive Microchoice vs. Basic Microchoice

The Adaptive Microchoice bound is a significant improvement over the simple Microchoice
bound when the distribution is such that each choice is clear. For example, consider n
boolean features and m = O(n) examples. Suppose that one feature is identical to the label
and all the rest of the features are determined with a coin flip independent of the label.
When we apply a decision tree to a dataset generated with this distribution, what will be
the resulting bound? Given enough examples, with high probability there will only be one
significant choice for the first batch query: the feature identical to the label. The second and

4Consider a decision tree algorithm attempting to find the right feature for a node. If the first
query returns a value of P, with a confidence of § then the branching factor would be approximately

m- [PX —20(8) — (P, — 2a(8))| = 4m - a(8). This branching factor would be approximately the same for

further queries required by the algorithm to make a decision about what feature to use. This results in a
total multiplied choice space size of approximately [4m - a(d)]". This can be reduced to n or less using a
batch query.
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third batch queries, corresponding to the children of the root feature, will also have a choice
space of size 1 with very high probability: the “right” choice will be to make the node into
a leaf containing the label value. Each choice set has size 1 resulting in a complexity of In 4
due to allocation of confidence to the statistical queries necessary for learning the decision
tree. In4 is considerably better than In(n + 2) + 21In(n + 1) which the simple version of the
Microchoice bound provides. Note that the complexity reduction only occurs with a large
enough number of examples m implying that the value of €(h) calculated can improve faster
than (inverse) linearly in the number of examples.

The Adaptive Microchoice bound is never much worse than the simple Microchoice
bound under the assumption that choice sets are of size at least 2, because in this case
the penalty for using the adaptive version, Ind, is always small compared to the complexity

term 0% In |C;(h)].

4.6 Alternative Adaptive Microchoice

The Adaptive Microchoice bound provides a simple scheme for dividing confidence between
choices and queries. There are other choices which may be useful in some settings. Any
scheme which a priori divides the confidence between queries and choices at every node will
generally work. Here are two schemes which may be useful:

e Assign a constant proportion of confidence to the query. This scheme is more aggressive
than the one used in the Adaptive Microchoice bounds and may result in a lower
complexity when many choices are eliminatable. The drawback is we no longer get the
telescoping in equation (4) and so the term logarithmic in d(h) in theorems 4.1 and
4.2 becomes linear in d(h).

e For a decision tree, assign a portion dependent on the depth of the node in the decision
tree that the choice set is over. It is unlikely that choices are eliminatable from nodes
not near the root because the number of examples available at a node typically decays
exponentially with the (decision tree) depth. A progressive scheme which allocates less
confidence to queries for deep nodes will probably behave better in practice.

5 Comparison with Freund’s Work

Freund’s approach for self-bounding learning algorithms can require exponentially more com-
putation then the Microchoice approach. In its basic form, it requires explicit construction of
every path in the state space of the algorithm not pruned in the tree. There exist some learn-
ing algorithms where this process can be done implicitly making the computation feasible.
However, in general this does not appear to be possible.

The Adaptive Microchoice bound only requires explicit construction of the size of each
subset from which a choice is made. Because many common learning algorithms work by
a process of making choices from small subsets, this is often computationally easy. The
Adaptive Microchoice bound does poorly, however, when Freund’s query tree has a high
degree of sharing; for example, when many nodes of the tree correspond to the same query,

13



or many leaves of the tree have the same final hypothesis. Allowing batch queries alleviates
the most egregious examples of this. It is also possible to interpolate between the Adaptive
Microchoice bound and Freund’s bound by a process of conglomerating the subsets of the
Microchoice bound.

5.1 Choice Set Conglomeration

The mechanism of choice set conglomeration is similar to the batch query technique. The
idea is to collapse adjacent levels of the query tree in order to trade increased computation
for a tighter bound. When starting with the simple Microchoice bound, this technique can
smoothly interpolate with the simple sample complexity bound (1). When starting with the
Adaptive Microchoice bound, we can interpolate with Freund’s bound.

Consider a particular choice set, C‘i, with elements ¢;. Each ¢; indexes another choice set,
C’i+1(ci). If the computational resources exist to calculate the union CA'i,,-H = Ugee éi+1(6i),

then |Cj 41| can be used in place of |Cy| - |Ciy1| in the adaptive Microchoice bound. The
conglomeration can be done repeatedly to build large choice sets and also applies to the
simple Microchoice bound 3.1 and 3.2. Conglomeration can be useful for tightening the
bound when there are multiple choice sequences leading to the same hypothesis. However,
choice set conglomeration is not always helpful because it trades away the fine granularity of
the Microchoice bound. The extreme case where all choice sets are conglomerated into one
choice set and every hypothesis and query have the same weight is equivalent to Freund’s
bound.

When the choices of the attached choice sets are all different, conglomeration will have
little use because the size of the union of the choice sets is the sum of the sizes of each choice
set |Ciip1| = Yeieds |Cis1(c;)|. If the child sets each have the same size |Cj4| then this
simplifies to |C; ;11| = |Ci| - |Ciy1| which results in the same confidence applied to each choice
whether conglomerating or not. The best case for conglomeration is equivalent to the batch
query case: every subchoice set contains the same elements. Then we have \CA’“H| = \é’i+1|
and can pay no cost for the choice set, |Cj.

6 Conclusion

The goal of this work is to produce tighter bounds on the future error rates of a learned
hypothesis. We have presented the Microchoice bound which is a kind of Occam’s razor
bound using the structure of the learning algorithm itself. We then synthesized the Micro-
choice bound with Freund’s query tree approach for Self-Bounding learning algorithms, to
produce what we call the Adaptive Microchoice bound. We have also presented some simple
techniques for improving these bounds. In particular, by allowing batch queries in nodes, we
can produce much more natural bounds for algorithms such as decision trees that are best
viewed as basing each decision on the results of a set of queries. We have also presented
some examples of the application of these bounds to decision trees.

The Microchoice bound can be applied to many common learning algorithms unintru-
sively — the path through state space that the algorithm takes need not be affected. Some
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extra computation may be necessary to assess the size of the choice set from which the
algorithm makes its choices. In return, the algorithm can state a bound along with its hy-
pothesis. The Microchoice approach also shows a very natural way of performing SRM. For
example, the bound can be used as a decision tree pruning criterion.

In a given situation, the Microchoice bound may or may not be better than another PAC
bound. In practice, it may be worthwhile to output a bound which is the minimum of that
given by the Microchoice bound and a more general PAC bound. This can be done in a
theoretically sound manner by giving half of the confidence parameter ¢ to each bound, for
instance. The resulting € = min(PAC(6/2), Microchoice(§/2)) bound will then hold with
probability 1 — 4.

There are several remaining open questions. Is there a satisfying, natural bound for the
continuous case? Can this approach be useful for commonly used learning algorithms?
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