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Abstract

HausslerKearnsSeungandTishbyintroduced
thenotionof ashelldecompositiorf theunion
boundasameansf understandingertainem-
pirical phenomenén learningcurvessuchas
phasetransitions. Here we use a variant of
their ideasto derive an upperboundon the
generalizatiorrrorof ahypothesisomputable
from its training error and the histogramof
training errorsfor the hypothesein theclass.
In mostcasesghis new boundis significantly
tighterthantraditionalboundscomputedrom
the training error and the cardinality or VC
dimensionof the class. Our resultscanalso
beviewedasproviding PAC theoreticafoun-
dationsfor a model selectionalgorithm pro-
posedby Schefer andJoachims.

1 Introduction

For an arbitraryfinite hypothesisclasswe considerthe
hypothesisof minimal training error. We give a new
upperboundon the generalizatiorerror of this hypoth-
esiscomputablefrom the training error of the hypothe-
sisandthe histogramof the training errorsof the other
hypothesesn the class. This new boundis typically
muchtighter than more traditional upperboundscom-
putedfrom the training error and cardinalityor VC di-
mensionof theclass.

As a simpleexample,supposehatwe obsene that
all but oneempiricalerrorin a hypothesisspaceis 1/2
andoneempiricalerroris 0. Furthermoresupposehat
thesamplesizeis largeenough(relative to thesizeof the
hypothesiglass)thatwith highconfidencave havethat,
for all hypothesesn the class,the true (generalization)
error of a hypothesiss within 1/5 of its training error.
Thisimplies,thatwith high confidencehypothesewith
training error near1/2 have true errorin [3/10,7/10].
Intuitively, we would expectthatthetrueerrorof thehy-
pothesiswith minimum empiricalerrorto be very near
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to 0 ratherthansimply lessthan1/5 becaus@oneof the
hypothesesvhich producedan empirical error of 1/2
couldhaveatrueerrorcloseenoughto 0 thatthereexists
a significantprobability of producing0 empiricalerror.
The boundpresentecherevalidatesthis intuition. We
shaw thatyou canignorehypothesesvith trainingerror
nearl /2 in calculatingan“effectivesize” of theclassfor
hypothesewith trainingerrornear0. Thisnew effective
classsizeallows usto calculatea tighter boundon the
differencebetweertraining error andtrue error for hy-
pothesewwith training error near0. The new boundis
provedusingadistribution-dependerdpplicationof the
unionboundsimilar in spirit to the shelldecomposition
introducedby HausslerKearns SeungandTishby[1].

We actually give two upperboundson generaliza-
tion error— anuncomputabléoundanda computable
bound.Theuncomputabléoundis afunctionof theun-
known distribution of true error ratesof the hypotheses
in the class. The computableboundis, essentiallythe
uncomputabléboundwith the unknowvn distribution of
true errorsreplacedoy theknown histogramof training
errors.Our maincontributionis thatthis replacemenis
sound,i.e., the computableversionremains,with high
confidenceanupperboundon generalizatiorerror.

Whenconsideringasymptotigpropertiesof learning
theoryboundsit is importantto take limits in which the
cardinality(or VC dimension)of the hypothesiglassis
allowedto grow with the sizeof thesample.In practice
more datatypically justifies a larger hypothesisclass.
For example thesizeof adecisiontreeis generallypro-
portional the amountof training dataavailable. Here
we analyzethe asymptoticpropertiesof our boundsby

consideringan infinite sequencef hypothesisclasses

., onefor eachsamplesizem, suchthat 2=l ap-

proachesa limit largerthanzero. This kind of asymp-
totic analysisprovidesa clearaccountof the improve-
mentachiezedby boundsthatarefunctionsof errorrate
distributionsratherthansimply the size (or VC dimen-
sion)of theclass.

Wegivealowerboundongeneralizatiorerrorshaw-



ing that the uncomputableupperboundis asymptoti-
cally astight aspossible— ary upperboundon gener

alizationerrorgivenasafunctionof theunknown distri-

bution of true errorratesmustasymptoticallybe greater
than or equalto our uncomputableupperbound. Our

lowerboundongeneralizatiorrroralsoshovsthatthere
is essentiallyno lossin working with an upperbound
computedrom thetrueerrordistribution ratherthanex-

pectationscomputedfrom this distribution as usedby

Schefer andJoachimg4].

Asymptotically thecomputablédoundis simply the
uncomputabldoundwith the unknawvn distribution of
true errorsreplacedwith obsened histogramof train-
ing errors. Unfortunately we can shaw thatin limits

where 2 %= convergesto a value greaterthan zero,
the hlstogramof training errors neednot corverge to
the distribution of true errors— the histogramof train-
ing errorsis a “smearedout” versionof the distribution
of true errors. This smearingloosensthe boundeven
in the large-sampleasymptoticlimit. We give a pre-
ciseasymptoticcharacterizatiomf this smearingeffect
for thecasewheredistincthypothesebave independent
training errors. In spite of the divergencebetweenthe
uncomputablend computablébounds the computable
boundis still significantlytighterthanclassicalbounds
notinvolving errordistributions.

Thecomputabléboundcanbe usedfor modelselec-
tion. In thecaseof modelselectiorwe canassumenin-
finite sequencef finite modelclasse$4y, H1, ... where
each#; is afinite classwith In|#;| growing linearly
in j. To performmodelselectionwe find the hypothe-
sis of minimal training errorin eachclassand usethe
computabléboundto boundits generalizatiorerror. We
canthenselect,amongthese the modelwith the small-
estupperboundon generalizatiorerror. Schefer and
Joachimspropose(without formal justification) replac-
ing the distribution of true errorswith the histogramof
training errors. Underthis replacementthe model se-
lectionalgorithmbasedon our computablaipperbound
is asymptoticallyidenticalto thealgorithmproposedy
Schefer andJoachims.

Theshelldecompositions a distribution-dependent
useof the union bound. Distribution-dependentisesof
the union boundhave beenpreviously exploitedin so-
calledself-boundingalgorithms.Freund[5] definesfor
a given learningalgorithm and data distribution, a set
S of hypothesesuchthatwith high probabilityoverthe
samplethealgorithmwill alwaysreturnahypothesisn
thatset. Although S is definedin termsof the unknown
datadistribution, Freundgivesa way of computinga set
S’ from the given algorithmandthe samplesuchthat,
with high confidence S’ containsS andhencethe “ef-
fective size” of the hypothesislassis boundedby |5’
Langford and Blum [7] give a more practical version
of this algorithm. Givenanalgorithmanddatadistribu-

tion they conceptuallydefineaweightingoverthepossi-
ble executionsof the algorithm. Althoughthe datadis-

tribution is unknown, they give a way of computinga

lower boundontheweightof the particularexecutionof

the algorithmgeneratedy the sampleat hand. In this

paperwe considerdistribution dependentinionbounds
definedindependentlyof ary particularlearningalgo-

rithm.

2 Mathematical Preliminaries

For an arbitrary measureon an arbitrary samplespace
we usethenotationv’ S &[S, §] to meanthatwith prob-
ability atleastl — ¢ overthechoiceof thesampleS we
havethat®[S, ] holds.In practiceS is thetrainingsam-
pleof alearningalgorithm.NotethatVz V° S ®[z, S, ]
doesnotimply ¥°S Vz ®[z, S, 4]. If X is a finite
set,andfor all z € X we ha/e the assertionvéd >
0 v°S ®[S, z, 6] thenby a standardapplicationof the
union boundwe have the assertiorvs > 0 VS Vz €
X 9[S, z, |X‘] We will call thisthequantificatiorrule.

If V6 > 0 V°S ®[S,8] andVd > 0 VS T[S, 4] then
by a standardapplicationof the union boundwe have
V5 > 0 Y0S @[S, 2] A ¥[S, 4], Wewill call this the
conjunctionrule.

TheKL-divergenceof p from g, denotedD(g||p), is
qIn(1)+(1-q) ln(}%g) with Oln(%) =0andgIn(}) =
o0. Letp bethefractionof headdn asequence of m
tosseof abiasedcoin wherethe probability of headss
p. For p > p we have the following inequalitygivenby
Chernof in 1952[3].

Vge[p,1]: Pr(p>q) <
Thisboundcanberewritten asfollows.

e~mPllp) (1)
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V6> 0¥'S D(max(p,p)|lp) <
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To derive (2) from (1) notethat Pr(D (max(p, p)||p) >
In(} )) equalsPr(p > q) whereq > p andD(q||p) =
M. By (1) we thenhave that this probability is no

largerthane~™P(/lp) = §. It is justaseasyto derive
(1) from (2) so the two statementsare equivalent. By
duality, i.e., by consideringthe problemdefinedby re-
placingp by 1 — p, we getthefollowing.

In(})

=

V6> 0¥'S D(min(p,p)p) < —2° ()
Conjoining(2) and(3) yieldsthe following corollary of
D).

In(2
¥5>0%'s Dl < 8 @)

UsingtheinequalityD(q||p) > 2(¢ — p)? onecanshaw
that (4) impliesthe following betterknown form of the



Chernof bound.

ln(§)
2m

V6 >0V°S |p—pl < (5)

Usingtheinequality D(g||p) > %, which holdsfor

q < p, we canshaw that(3) impliesthefollowing.!

2pIn(%) N 2In(3)
m

V6 >0VS p<p+

(6)

Notethatfor smallvaluesof p formula(6) givesatighter
upperboundon p thandoes(5). The upperboundon p
implicit in (4) is somavhattighterthanthe minimum of
theboundsgivenby (5) and(6).

Wenow consideaformalsettingfor hypothesidearn-
ing. We assumae finite set# of hypothesesndaspace
X of instancesWe assumehat eachhypothesigepre-
sentsa functionfrom X to {0, 1} wherewe write h(x)
for thevalueof thefunctionrepresentetly hypothesish
whenappliedto instancer. We alsoassumea distribu-
tion D onpairs(z, y) withz € X andy € {0,1}. For
ary hypothesish we definethe errorrateof A, denoted
e(h), to beP<x’ y)ND(h(m) # y). For agivensample

S of m pairsdrawn from D we write é(h) to denotethe
fraction of the pairs{z, y) in S suchthat h(z) # y.
Quantifyingover h € H in (4) yieldsthefollowing sec-
ondcorollaryof (1).

In |H|+1n(%)

VS WheH D(e(h)lle(h)) < —

(7
By considerboundson D(g||p) we canderive the fol-
lowing morewell known corollary of (7).

In|H| +In(3)
2m

Thesewo formulasbothlimit thedistancebetweeré(h)
ande(h). In thispapemwe will work with (7) ratherthan
(8) becaussit yields an (uncomputableupperbound
on generalizatiorerrorthatis optimal up to asymptotic
equality

3 TheUpper Bound

Our goal now is to improve on (7). Our first stepis to
divide the hypothesesn # into m disjoint setsbased
on their true error rates. More specifically for p €
[0,1] define[[p]] to be 22xLImel) ~ Note that [[p]]
is of the form % whereeitherp = 0 andk = 1 or
p > 0andp € (&L, L] n eithercasewe have

m ?

P11 € {Z, ..., 2} andif [[p]] = £ thenp €

LA derivationof this formulacanbefoundin [8] or [9]. To
seetheneedfor thelastterm considerthe casewherep = 0.

VS VheH |e(h)—éh)| < (8)

k=1 E]1 Now we define?(£) to bethe setof h €

m ?

H suchthat [[e(h)]] = £. We defines(£) to be
In(max(1, [H(£)|)). Wenow havethefollowinglemma.

Lemma3.1l V8 >0VY’S VheH
s([Te(M11) +In(33)

D(é(h)|le(h)) < -
Proof: Quantifyingoverp € {X, ..., Z}andh €
H(p) in (4) givesVs > 0,V°S,Vp € {%, ..., B},
Vh € H(p),

D(&(h)|le(h)) < lnm(p)ln:rln(sz)

But thisimpliesthelemma. O
Lemma3.limposesaconstraintandhenceabound,
one(h). Morespecifically we have thefollowing where
lub {z : @®[z]} denotesthe leastupperbound (the
maximum)of theset{z : ®[x]}.
efh) <1 ub {q: Dty < "D HRCE), g
Thisis ouruncomputabl®ound.It is uncomputablde-
causethemn numberss(1), ..., s(2) areunknown. Ig-
noringthis problem however, we canseethatthisbound
is typically significantlytighterthan (7). More specifi-
cally, we canrewrite (7) asfollows.

e(h) <1ub {q: D(Em)lg) < Gy (1)

Sinces(X) < In|H|, andsince'2 is smallfor large
m, We have that (9) is never significantly looserthan
(20). Now considera hypothesigh suchthatthe bound
on e(h) givenby (7), or equialently, (10), is signifi-
cantly lessthan 1/2. Assumingm is large, the bound
givenby (9) mustalsobesignificantlylessthanl/2. But
for ¢ significantly lessthan 1/2 we will typically have
that s([[¢]]) is significantly smallerthanin |#|. For
example,supposeH is the setof all decisiontreesof
sizem/10. For largem, arandomdecisiontreeof this
sizewill have errorratenear1/2. The setof decision
treeswith error rate significantly smallerthan 1/2 will
be an exponentiallysmall faction of the setof all pos-
sibletrees. Sofor ¢ smallcomparedo 1/2 we getthat
s([Tq11) is significantlysmallerthanln |H|. This will
malke the boundgiven by (9) significantlytighter than
theboundgivenby (10).

We now shaw thatthedistribution of true errorscan
bereplacedgssentiallyby the histogramof traininger

rors. We first introducethefollowing definitions.
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Thedefinitionof § (£, §) is motivatedby the follow-
ing lemma.

Lemma32 Vs >0,V°S,Vge {£, ..., 2},

s(q) < 5(q, 26)

Beforeproving lemma 3.2 we notethatby conjoin-
ing (9) andlemma3.2we getthefollowing. Thisis our
mainresult.

Theorem 3.3 V4 > 0,V%S,Vh € H,

5(ITq11, 5)+ln(47’")}

m

e(h) <lub {q : D(e(h)llg) <

As for lemma3.1,theboundimplicit in theorem3.3
is typically significantlytighterthanthe boundin (7) or
its equivalentform (10). Theargumentor theimproved
tightnessof theorem3.3 over (10) is similar to the ar-
gumentfor (9). More specifically consideahypothesis
h for which the boundin (10) is significantlylessthan
1/2. Sinces([[q]], d) < In|H]|, the setof valuesof ¢
satisfyingthe conditionin theorem3.3 mustall be sig-
nificantly lessthan 1/2. But for large m we have that

\/% is small. Soif ¢ is significantlylessthan

1/2 thenall hypothesesn #([[q]],48) have empirical
error ratessignificantlylessthan1/2. But for mosthy-
pothesisclassese.g.,decisiontrees the setof hypothe-
seswith empiricalerrorratesfar from 1/2 shouldbe an
exponentiallysmall fraction of the class.Hencewe get
thats([[q]], ) issignificantlylessthanin |#| andthe-
orem3.3is tighterthan(10).

Theremaindeof thissectionis aproofof lemma3.2.
Ourdeparturgoointfor theproofis thefollowing lemma
from [6].

Lemma 3.4 (McAllester 99) For any measue on any
hypothesisclasswe havethe following whee E;, f (h)
denotesheexpectatiorof f(h) underthegivenmeasue
onh.

V6> 0W0S Ejpelm DEm-—eh)? ¢ %m

Intuitively, this lemmastatesthat with high confi-
denceover the choice of the samplemost hypotheses
have empirical error neartheir true error. This will al-
low usto provethats([[q]], d) boundss([[¢]]). More
specifically by consideringhe uniform distribution on

H(%), lemmag3.4impliesthefollowing.

(i)

2m—1)(e(h)—e(r))? 5 8M 1
=7 2

IN
|

(S(Zm—n(é(h)—e(mﬂ) 4m

IA
|

PThNH (%)

@m-1)(e(h)—e(r))? _ 8M 1
PrhNH(ﬁ) (e < 6) -2
n(&m
Hhe%(%):lé(m—e(h)ls ;Tflji}‘ > Lk
n(&m
Hhem%):|é(h>—£|s%+ ;Tflji}‘ > Lk

(&)
m m

Lemma3.2 now follows by quar tificationover q €
1 m
1 m 0O

g ey .

4 Asymptotic Analysisand Phase
Transitions

The boundsgivenin (9) andtheorem3.3 exhibit phase
transitions.More specifically the boundingexpression
canbediscontinuousn § andm, e.g.,arbitrarily small
changesn § cancausedarge changesn the bound. To
seehow this happensonsiderthe following constraint
onthe quantityq.

< *Ulall) +In(%*)

D(é(n)llq)

(11)

The boundgivenby (9) is the leastupperboundof the
valuesof ¢ satisfying(11). Assumethatm is sufficiently

largethatwe canthink of s([ld1D asa continuousunc-
tion of ¢ which we will write as 5(¢q). We canthen
rewrite (11) asfollowswhere) is aquantitynotdepend-
ing ong ands(q) doesnotdependond.

D(e(h)|lq) < 5(q) + A (12)

For ¢ > é(h) wethatD(é(h)||q) is amonotonicallyin-
creasingfunction of ¢. It is reasonabléo assumehat
for ¢ < 1/2 we alsohave that3(q) is a monotonically
increasingfunction of ¢. But even underthesecon-
ditions it is possiblethat the feasiblevaluesof ¢, i.e.,
thosesatisfying(12), canbe divided into separatede-
gions. Furthermorejncreasing\ cancausea new fea-
sible regionto comeinto existence.Whenthis happens
thebound,whichis theleastupperboundof thefeasible
values,canincreasediscontinuously At a more intu-
itive level, considera large numberof high error con-
ceptsandsmallernumberof lower errorconcepts At a
certainconfidencdevel the high error conceptscanbe
ruled out. But asthe confidencerequiremenbecomes
morestringentsuddenly(anddiscontinuouslythe high
error conceptamustbe considered.A similar disconti-
nuity canoccurin samplesize.Phasdransitionsn shell
decompositiorboundsare discussedn more detail by
Haussleetal. [1].



Phasdransitioncomplicateasymptoticanalysis But
asymptoticanalysislluminatesthenatureof phaseran-
sitions. As mentionedn theintroduction,in theasymp-
totic analysisof learningtheoremboundst is important

thatonenot hold H fixed asthe samplesizeincreases.

If we hold H fixed thenlim,,, o I"T‘n”' = 0. But this
is not what one expectsfor large samplesin practice.
As the samplesize increasene typically useslarger
hypothesisclasses.Intuitively, we expectthat even for

very largem we have that 24l is far from zero.

For the asymptotmanalyssof the boundin (9) we
assumaean infinite sequencef hypothesisclassesH;,
Ho, Hsz .. .andaninfinite sequencef datadistributions
D1, Dy, D3, ... Letsy(£) bes(£) definedrelativeto
Hm andD,,. In theasymptouoanalysm/ve assumehat

thesequencef functionsw, viewedasfunctions
of ¢ € [0, 1], corvergeuniformly to a continuousfunc-
tion 5(g). This meanghatfor ary € > 0 thereexistsa k
suchthatfor all m > k we have thefollowing.

sm([1q11)
Vq € [0,1] |T

—3(g)| <e
Given the functionss’"%ﬂ and their limit function

3(p), we definethe following functionsof anempirical
errorrateé.

o) = (rrqm+ln<7m)}

| ub {q 1 D(é]lg) < .

B(é) = lub{q:D(¢|lg) <35(q)}

The function B,,, (¢) correspondslirectly to the upper
boundin (9). The function B(é) is intendedto be the
large m asymptoticlimit of B,,(¢). However, phase
transitionscomplicateasymptoticanalysis. The bound
B(é) neednotbeacontinuoudunctionof é. A valueof
é wheretheboundB(é) is discontinuougorrespondo
aphasdransitionin thebound.At aphasdransitionthe
sequenceB,, (¢) neednot corverge. Away from phase
transitions however, we have thefollowing theorem.

Theorem 4.1 If the bound B(é) is continuousat the
point é (so we are not at a phasetransition), and the

functions 2=141) ' viewed as functionsof ¢ € [0, 1],
cornverge uniformly to a continuousfunctions(q), then
we havethefollowing.

im B (¢) = B(é)

m—o0

Proof: DefinethesetF,, (é) asfollows.
Foe) = {q sm<rrqﬂ>+ln(7m)}

This givesthefollowing.
B, (é) =1ub F,(é)

D(é|lg) <

Similarly, defineF'(¢, €) andB(é, ¢) asfollows.

Fé e = {qge0,1]: D(élq) < 5(q) +¢}

B(é,e) = lubF(é e

We first show thatthecontinuityof B(é) atthepoint
¢ impliesthe continuity of B(é, €) atthe point (¢, 0).
We notethatthereexists a continuousfunction f(é, )

with f(é, 0) = & andsuchthatfor ary e sufiiciently
near0 we have thefollowing.

D(f(€, €)llg) = D(ellq) — €
We thengetthefollowing equation.

B(é, €) = B(f(z, €))
Since f is continuous,and B(¢é) is continuousat the
point é, we getthat B(é, ¢) is continuousat the point
(&, 0).

We now provethelemma.Thefunctionsof theform
m convergeuniformly to thefunctions(q).
This |mpI|esthatfor ary € > 0 thereexistsa k suchthat
for all m > k we have thefollowing.

F(é, —€) C Fin(é) CF(e, €)
But thisin turnimpliesthefollowing.
B(é, —€) < B (é) < B(¢, ¢) (13)

Thelemmanow follows from thecontinuityof thefunc-
tion B(é, €) atthepoint(é, 0). O

Theorem4.1 can be interpretedas saying that for
large samplesizes,andfor valuesof é otherthanthe
specialphasdransitionvalues theboundhasawell de-
fined valueindependenbf the confidenceparameted
anddeterminednly by a smoothfunctions(g). A sim-
ilar statementanbe madefor theboundin theoren3.3
— for large m, and at points other than phasetransi-
tions, the boundis independenbf é andis determined
by asmoothlimit curve.

For the asymptoticanalysisof theorem3.3 we as-
sumeaninfinite sequencé&{, Hs, Hs, . .. of hypothesis
classesandaninfinite sequencesy, Ss, Ss, ... of sam-
plessuchthat sampleS,, hassizem. Let Hm(%, d)
andén (£, §) be (L, 6) ands(L, §) respectiely
definedrelative to hypothesislassH,, andsampleS,,,.
Let Uy, (L) bethe setof hypothesesn H,, having an

empirical error of exactly % in the sampleS,,. Let
um (L) beln(max(l, [Un(L£)[). In the analysisof

theorem3.3 we allow that the functions % are
only locally uniformly cornvergentto a continuousunc-
tion @(q), i.e., for ary ¢ € [0,1] andary € > 0 there
existsanintegerk andrealnumbery > 0 satisfyingthe
following.

um([[P11)
m

Ym >k, Vpe (g—7, ¢+7) | —u(p)| <e

Locally uniformcorvergenceplaysarolein theanalysis
in section6.



Theorem 4.2 If thefunctions@ corvemgelocally
uniformly to a continuousfunction a(q) then, for any

fixedvalueof §, thefunctionsww alsocorverge
locally uniformlyto @(g). If thecorvergenceof “={l¢11)
is uniform, thensois the convergenceof =11l 9).

Proof: Consideran arbitraryvalueg € [0,1] and
€ > 0. We will constructthe desiredk and~y. More
specifically selectk sufficiently largeand-~ sufficiently
smallthatwe have thefollowing properties.

un ([T _ gl < €

VYm >k, Vp € (q—2v, ¢+27) 3

_ _ €
Vp € (g — 27, ¢+ 27v) |a(p) —u(g)| < 3
1 ln(%)
% oh—1 7
Ink €
b
E =3

Consideranm > kandp € (g — v, ¢+ 7). It now
sufficesto shaw thefollowing.

3m([Tp11, 9)

m

Becausel,,([[p]]) is a subsetof H,,([[p]], ) we
have thefollowing.
sm((1P11: 9) o um([TP11) _€

— a(p) 3

—U(p)‘ <e

We canalsoupperboundé’"”[nM asfollows.

o (i)

Ha((D110)] < 3

| —p|<7y
< Z etm ()
& —pl<y
< Z e () +5)
|2 —p|<y
< Z em(@(p)+3)
|2 —p|<y
< mem@@+EF
§ , 0 _ 2¢ Inm
(L8 g 2, Iom
< up) te

A similarargumentshowvsthatif % corverges
uniformly to @(g) thensodoes®= 71l o

GivenquantitiesWﬂM thatcorvergeuniformly

to a(q) theremainderof the analysisis identicalto that
for theasymptoticanalysisof (9). We definethefollow-
ing upperbounds.

B,.(¢) =

m

| ub {‘“D(éllq) < 5m (1411, 6)+]n(Tm) }

B(e) = lub{q:D(éllg) <a(q)}

Againwe saythaté is ata phaseransitionif the func-

tion B(é) is discontinuousat the valueé. We thenget
the following whoseproof is identical to that of theo-
rem4.1.

Theorem 4.3 If the bound B(é) is continuousat the
point é (so we are not at a phasetransition), and the

functionsw cornverge uniformlyto @(q), thenwe
havethefollowing.

lim B,,(é) = B(é)

5 Asymptotic Optimality of (9)

Formula(9) canbeviewedasproviding anupperbound
one(h) asafunctionof é(h) andthefunctions. In this
sectionwe shaw thatfor arny entrogy curve s andvalueé
thereexistsa hypothesislassanddatadistribution such
thatthe upperboundin (9) is realizedup to asymptotic
equality Up to asymptoticequality (9) is the tightest
possibleboundcomputablerom é(h) andthe m num-
berss(L), ..., s(22).

TheclassicalVC dimensionsoundsarenearlyop-
timal over boundscomputabldrom é(h*) andthe class
H. Them numberss(X), ..., s(2) depencbn both
andthedatadistribution. Hencetheboundin (9) usesn-
formationaboutthedistributionandhencecanbetighter
thanclassicalvVC bounds. A similar statementapplies
to the boundin theorem(3.3) computedfrom the em-
pirically obsenablenumberss(L), ..., 3(2). In this
casethe boundusesmoreinformationfrom the sample
thanjust é(h). The optimality theoremgiven herealso
differs from the traditionallower boundresultsfor VC
dimensionn thatherethelowerboundsmatchtheupper
boundsup to asymptoticequality

Thedeparturgointfor ouroptimality analysids the
following lemmafrom [2].

Lemma 5.1 (Cover and Thomas) If p isthefractionof
headsout of m tossef a coinwhere thetrue probabil-
ity of headsis p thenfor ¢ > p wehavethefollowing.
_ 1 —mDGllp)

Pr(p > >
7“(p_q)_mJrl



This lower boundon Pr(p > q) is very closeto
Chernof’s 1952 upperbound(1). Thetightnessof (9)
is a direct reflection of the tightness(1). To exploit
Lemmab.1we needto constructhypothesislasseand
datadistributionswheredistinct hypothese$ave inde-
pendentrainingerrors.More specifically we saythata

setof hypothesegh,, ..., h,} hasindependentrain-
ing errorsif therandomvariablesé(h,), ..., é(h,) are
independent.

By anargumentsimilar to thederivationof (3) from
(1) we canprove thefollowing from Lemmab5.1.

ln(%) —In(m+1)

Pr (D(min(ﬁ, Plp) > ) 6 4)

Lemmab.2 Let X beanyfinite set,S a randomvari-
able and®[S, z, §] aformulasud thatfor everyz € X
andé > 0 wehavePr(Q[S,z,d]) > 6, and Pr(Vz €
X O[S, z, 6]) = [[,ex Pr(©[S, =, é]). Wethen

haveVd > 0¥S 3z € X O[S, z, M),

7| X
Pr oof:
1 In(%
Pr(O[s,, 1) > )
In In( %
Pr(=0[S,z, &) < 1-4E
In(})

IA A
®
|
5
=}
o=
<
|
>

Pr(vz € X-0[S, z, "3))
O
Now defineh*(£) to bethe hypothesisf minimal
training errorin theset#(L). Letglb {z : ®[z]}
denotethe greatestower bound(the minimum) of the
set{z : ®[z]}. We now havethefollowing lemma.

Lemma5.3 If thehypothesem theclass%( Hqﬂ) are
independenthenVs > 0, VS, Vg € {%

m
D(min(é, ¢ — =)|lq)

é(h* <glb{eé:

(h(2) <9 < #@=In(m+1)—In(n(F))

Proof: To provelemmab.2let ¢ be afixedrational
numberof theform % Assumingindependeniiypothe-
seswe canapplyingLemmab.3to (14) to getVé > 0,
V3S,3h e H(L),

s(q) —In(m 4+ 1) —

m

Letw bethehypothesisn H(q) satisfyingthisformula.
We now haveé(h*(q)) < é(w) andg — L < e(w) < gq.
Thesetwo conditionsimply V& > 0, V¢S,

D(min(é(h*(q)),q — =)lla)

~ 3(a)=In(m+1)—In(n §)
- m

D(min(&(h), e(h))||e(h)) > In(In(}))

Thisimpliesthefollowing.

{ D(min(é, ¢ — 5;)lla) }
é(h" (@) <glb Sé:
</

s(¢)—In(m+1)—In(In(}))

Lemmab.2 now follows by quantificationover g €

(L, my.

O
For ¢ € [0,1] we have thatlemma3.1 implies the

following.
D (ellfTa11 - %)
< s(rrqm:n(%m—)

We now have upperandlower boundson the quan-
tity é(h*([T¢1])) which agreeup to asymptoticequality
— in alargem limit wheres’"([nM corverges(point-
wise) to a continuousfunction s(q) we have that the

upperandlower boundon é(h*([[¢]])) both corverge
(pointwise)to thefollowing.

é(h*(q)) =gl b {&: D(éllq) < 5(q)}

This asymptoticvalueof é(h*(¢)) is a continuousunc-
tion of ¢. Sinceq is heldfixedin calculatingthe bounds
oné([Tq]1), phaseransitionsarenot anissueanduni-

form corvergenceof the functions% is not re-
quired. Notethatfor largem andindependenhypothe-
seswe getthaté(h*(q)) is determinedasa function of

thetrueerrorrateq and s([[all)

The following lemmastatesthat any limit function
3(p) is consistentwith the possibility that hypotheses
areindependentThis, togethewith lemmab.2implies
thatnouniformboundone(h) asafunctionof é(h) and
[H(L)|, ..., |H(2)| canbeasymptoticallytighterthan
9).

e(r*([Tq11)) > glb {é :

Theorem 5.4 Let 35(p) be any continuousfunction of

€ [0,1]. Theee existsan infinite sequencef hypoth-
esisspacesH, Hs, Hs, - - -, and sequencef datadis-
tributions Dy, Dy, D3, ... sut thatead class#,,, has
independenhypothesedor data distribution D,, and

suc that Sm(gnﬂ cornverges(pointwise)to 5(p).

Proof: Firstwe shaw thatif [H,, ()| = e™¥()
thenthefunctionss’”(;ﬂ cornverge(pointwise)to 5(p).
Assume|Hn, (L)| = em*(). In this casewe have the

following.
Sm\||P _
TP _ ()
Sinces(p) is continuousfor ary fixedvalueof p we get
thats’"qnM corvergesto 3(p).
Recallthat D,, is a probability distribution on pairs
(z, y) withy € {0,1} andz € X, for somesetX,,.



WetakeH,, to beadisjointunionof setSHm(%) where

|’Hm(%)| is selectedasabove. Let fy, ..., fx betheel-
ementf H,, with N = |H,,|. Let X,,, bethesetof all
N-bit bit stringsanddefine f;(z) to bethe valueof ith
bit of the bit vectorz. Now definethe distribution D,,,
on pairs{z, y) by selectingy to be 1 with probability
1/2 andthenselectingeachbit of z independentlyhere
theith bit is selectedo disagreewith y with probability
£ wherek is suchthat f; € H,(£). O

6 Relating s§and s

In this sectionwe show thatin largem limits of thetype
discussedn section4 the histogramof empiricalerrors
neednot corverge to the histogramof true errors. So
evenin the large m asymptoticlimit, the boundgiven
by theorem3.3 is significantly wealer thanthe bound
givenby (9).

To show that3([[q]], d) canbeasymptoticallydif-
ferentfrom s([[¢]]) we considerthe caseof indepen-
dent hypotheses. More specifically given a continu-
ous function 5(p) we constructan infinite sequencef
hypothesisspacesH, Ha, Hs, ... andaninfinite se-
guenceof datadistributions D;, D2, Ds, ... usingthe
constructionin the proof of theorem??. We note that
if 5(p) is differentiablewith boundederivative thenthe

functionss*"([nﬂ corvergeuniformly to 5(p).

For a given infinite sequencalatadistributionswe
generataninfinite samplesequence,, Sa, Ss, .. ., by
selectingS,, to consistsof m pairs{z, y) drawn IID
from distribution D,,,. For agivensamplesequenceand
h € H,, wedefineé,,(h) ands,, (£, §) in amanner
similar to é(h) and (£, 4) but for sampleS,,. The
mainresultof this sectionis thefollowing.

Statement 6.1 If each H,,, hasindependenhypotheses
underdatadistribution D,,,, andthefunctions%
converge uniformly to a continuousfunctions(p), then
foranyd > 0 andp € [0,1], we havethe following
with probability 1 over the genetion of the samplese-
guence

p A(IT110) _

up 3(q) — D(pllq)
qE[O,l]

We call this a statementatherthan a theorembe-
causethe proof hasnot beenworkedout to a high level
of rigor. Nonethelessye believe the proof sketchgiven
belov canbeexpandedo afully rigorousargument.

Beforegiving the proof sketchwe notethatthelim-
iting value of W is independentf §. Thisis
consistentvith theoremé.2. Defines(p) asfollows.

sup 5(q) — D(pl|q)
qE[O,l]

5(p) =

Note that 3(p) > 5(p). This givesan asymptoticver-
sion of lemma3.2. But since D(p||¢g) canbe locally
approximatedisc(p— ¢)? (upto its seconcrderTaylor
expansion),f 5(p) is increasingat the point p thenwe
alsogetthats(p) is strictly largerthans(p).

Proof Outline: To prove statemen®.1 we first de-
fine #p(p, q) forp,q € {X, ..., 2} to betheset
of all h € H,,(q) suchthaté,,(h) = p. Intuitively,
H.(p, q) is the setof conceptswith true error rate
nearq that have empirical error rate p. Ignoring fac-
tors that are only polynomialin m, the probability of
a hypothesiswith true error rate ¢ having empiricaler-
ror ratep canbewritten as(approximately—mP(@ll9)
So the expectedsize of H,,(p, ¢) canbe written as
[Hm (q)|e~™P@ll9) or alternatiely, (approximatelyps
em3(@) e—mD(plla) gr ¢m(5(0)—D(pll)) . More formally,
we have thefollowing for ary fixedvalueof p andg.

i I(max(l, EQHn (1711, [a1DD)

m—00 m

= max(0, 5(¢) — D(p||q))

We now shaw thatthe expectationcanbeeliminated
from the above limit. First, considerdistinct valuesof
p andq suchthat s(q) — D(p||¢) > 0. Sincep and
g aredistinct, the probability that a fixed hypothesidn
Hm([Tq]1) isin Hp ([Tp]1, [1g]]) declinesexponen-
tially in m. Sinces(q) — D(p||q) > 0 theexpectedsize
of Hm ([[p]1, [Tq]]1) grows exponentiallyin m. Since
the hypothesesareindependentthe distribution of pos-
siblevaluesof |H.,([Tp]], [T¢]])| becomesssentially
aPoissommasddistribution with anexpectedhumberof
arrivals growing exponentiallyin m. The probability
that |#,,,([[p]], [[q]])| deviatesfrom its expectation
by asmuchasafactorof 2 declinesexponentiallyin m.
We saythata samplesequences safeafter k if for all
m > k we have that |[H,,([[p]], [[¢]])| is within a
factorof 2 of its expectation. Sincethe probability of
beingunsafeat m declinesexponentiallyin m, for ary
0 thereexistsa k suchthatwith probabilityatleastl — §
the samplesequencés safeafterk. Soforany é > 0
we havethatwith probabilityatleastl — § thesequence
is safeafter somek. But sincethis holdsfor all § > 0,
with probability 1 sucha k mustexist.

o (AL [P ([P0, Ta11)D)

m—00 m
= 5(q) — D(pllg)
We now defines,,([[p]1, [[q]]) asfollows.

sm([TP11, [1g11) = In(max (1, [Hum([Tp]1, [Tg]1D)

It is alsopossibleto shav for p = ¢ we have thatwith
probability 1 we have that s’"(”’ﬂmw approaches
3(p) andthatfor distinctp andgq with 5(¢) — D(p||q) <




0 we have that M approache$. Putting

thesetogetheryleldsthatwnh probability 1 we have the
following.

i 201211, 1)

m— oo m

=max(0, 5(¢) — D(pllg)) (15)

DefineUy, (£) andu, (£
have thefollowing equality

Um(p) = qu{%, e

We will now shav thatwith probability 1 we have that
"’"T(”) approaches$(p). First, considerap € [0, 1] such
thats(p) > 0. Let Sinces(q) — D(q||p) is acontinuous
function, and ([0, 1] is a compactset, sup,¢(o,1) 5(q) —

(p||q) mustberealizedat somevalueg* € [0,1]. Let
g* besuchthats(q*) — D(p||q*) equalss(p). We have

thatu([Tp]1) > sm([[p]], [Tg*T). This, together
with (15), impliesthefollowing.

(Wpﬂ)

) asin sectiord4. We now

%}Hm(p; (I)

Wl

lim 1nf
m—00

> 5(p)

We will now saythatthe samplesequences safeatm
and £ if |H.,.([Tp]1, [T£71)| doesnot exceedtwice
theexpectat|0r0f|H 51]] [Tg*11)|- Assuminguni-

form corvergenceof M the probability of not

beingsafeatm and-- k declmesexponentlallym m ata
rateat leastasfastasthe rateof declineof the probabil-
ity of not being safeat m and[[¢*]]. By the union
boundthis implies that for a given m the probability
that there exists an unsafe— also declinesexponen-
t|aIIy We say that the sequences safeafter NV if it
is safefor all m and T’Z with m > N. The probabil-
ity of not being being safe after N also declinesex-
ponentiallywith N. By an argumentsimilar to that
given above, this implies that with probability 1 over
thechoiceof thesequencehereexistsa N suchthatthe
sequencés safeafter N. Butif we aresafeatm then

[Un([TPID| < 2mE[Hm(p, [[¢*11)|. This implies
thefollowing.
imsup U121 5

Puttingthetwo boundstogethemwe getthefollowing.

L ([T
m

m—0o0

= 3(p)

The abore argumentestablishegto somelevel of
rigor) pointwisecornvergenceof "*"(mﬁ to 5(p). It is
also possibleto establisha corvergencerate thatis a
continuousfunction of p. Thisimpliesthatthe corver-
genceof W canbemadelocally uniform. Theo-
rem4.2thenimpliesthedesiredresult. O

7 Future Work

A practicaldifficulty with the boundimplicit in theo-
rem 3.3is thatit is usuallyimpossibleto enumerate¢he
elementof anexponentiallylarge hypothesiclassand
henceimpracticalto computethe histogramof training
errorsfor the hypothesesn the class. In practicethe
valuesof s(£) might be estimatecusingsomeform of
Monte-CarloMarkov chainsamplingover the hypothe-
ses.For certainhypothesispace# mightalsobepossi-
ble to directly calculatethe empirical error distribution
without evaluatingevery hypothesis.

Herewe have emphasize@symptoticpropertiesof
our boundbut we have not addressedatesof corver
gence Forfinite samplesizesherateatwhichthebound
convergesto its asymptotichehaior canbe important.
Beforementioningsomewaysthatthe corvergencerate
might be improved, however, we note that nearphase
transitionsstandardhotionsof corvergenceratearein-
appropriate.Neara phasetransitionthe boundis “un-
stable”— replacingd by §/2 canalter the boundsig-
nificantly. In fact, neara phasetransitionit is likely
that e(h*) is significantly different for different sam-
pleseventhoughé(h*) is highly predictablelntuitively,
we would like a notion of corvergencerate that mea-
suresthe size of the “region of instability” arounda
phasdransition.As thesamplesizeincreaseshephrase
transitionbecomesharperandthe region of instability
smaller It would be niceto have a formal definitionfor
the region of instability and the rate at which the size
of this region goesto zero,i.e., therateat which phase
transitionsin the boundbecomesharp.

Therateof convergenceof our boundmight beim-
provedin variousways:

Remawing thediscretizatiorof trueerrors.

Usingone-sidedounds.

Using nonuniformunionboundsover discreteval-
uesof theform £

Tighteningthe Chernof boundusingdirectcalcu-
lation of Binomial coeficients.

e Improving Lemma3.4.

The above ideasmay allow oneto remove all In(m)
termsfrom the statemenof thebound.

8 Conclusion

Traditional PAC boundsarestatedn termsof thetrain-
ing error and classsize or VC dimension. The com-
putableboundgiven hereis typically muchtighter be-
causeit exploits the additionalinformationin the his-
togramof trainingerrors. Theuncomputabl®ounduses
the additional(unavailable)informationin the distribu-
tion of true errors. Any distribution of true errorscan



berealizedin a casewith independenhypothesesWe
have shavn thatin suchcaseghis uncomputabléound
is asymptoticallyequalto actual generalizationerror.
Hencethis is the tightestpossiblebound,up to asymp-
totic equality over all boundsexpressedisfunctionsof
é(h*) andthe distribution of true errors. We have also
shavn thatthe useof the histogramof empiricalerrors
resultsin aboundthat,while still tighterthantraditional
boundss looserthanthe uncomputablédoundevenin
thelarge sampleasymptotidimit.
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