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Abstract. We show that forms of Bayesian and MDL inference that are
often applied to classification problems can be inconsistent. This means
that there exists a learning problem such that for all amounts of data
the generalization errors of the MDL classifier and the Bayes classifier
relative to the Bayesian posterior both remain bounded away from the
smallest achievable generalization error. From a Bayesian point of view,
the result can be reinterpreted as saying that Bayesian inference can be
inconsistent under misspecification, even for countably infinite models.
We extensively discuss the result from both a Bayesian and an MDL
perspective.

1 Introduction

Overfitting is a central concern of machine learning and statistics. Two
frequently used learning methods that in many cases ‘automatically’ pro-
tect against overfitting are Bayesian inference [Bernardo and Smith, 1994]
and the Minimum Description Length (MDL) Principle [Rissanen, 1989,
Barron et al., 1998, Grünwald, 2005, 2007]. We show that, when applied
to classification problems, some of the standard variations of these two
methods can be inconsistent in the sense that they asymptotically overfit :
there exist scenarios where, no matter how much data is available, the
generalization error of a classifier based on MDL or the full Bayesian pos-
terior does not converge to the minimum achievable generalization error
within the set of classifiers under consideration.

This result may be viewed as a challenge to Bayesian inference. Given
a powerful piece of information (an objectively correct “prior” on a set
of classifiers), transforming this information into a Bayesian prior on a
set of distributions in a straightforward manner and applying Bayes rule
yields significantly suboptimal behavior – while another simple approach
yields optimal behavior. The key is the transformation from classifiers
(functions mapping each input X to a discrete class label Y ) to (condi-
tional) distributions. Such a transformation is necessary because Bayes



rule cannot be directly applied to classifiers. We do the conversion in a
straightforward manner, crossing a prior on classifiers with a prior on error
rates for these classifiers. This conversion method is a completely stan-
dard tool for Bayesians active in the field of machine learning – we tested
this with some professing Bayesians, see Section 6.3.4 – yet it inevitably
leads to (sometimes subtly) ‘misspecified’ probability models not contain-
ing the ‘true’ distribution D. The result may therefore be re-interpreted
as ‘Bayesian inference can be inconsistent under misspecification for com-
mon classification probability models’. Since, in practice, Bayesian infer-
ence for classification tasks is frequently and inevitably based on mis-
specified probability models, the result remains relevant even if (as many
Bayesians do, especially those not active in the field of machine learning)
one insists that inference starts directly with a probability model, rather
than a classification model that is then transformed into a probability
model – see Section 6.

There are two possible resolutions to this challenge. Perhaps Bayesian
inference is an incomplete characterization of learning: there exist pieces
of information (e.g. prior information on deterministic classifiers rather
than distributions) which can not be well integrated into a prior distribu-
tion and so learning algorithms other than Bayesian inference are some-
times necessary. Or, perhaps there is some less naive method allowing a
prior to express the available information. We discuss this issue further
in Section 6.

1.1 A Preview

1.1.1 Classification Problems A classification problem is defined
on an input (or feature) domain X and output domain (or class label)
Y = {0, 1}. The problem is defined by a probability distribution D over
X ×Y. A classifier is a function c : X → Y. The error rate of any classifier
is quantified as:

eD(c) = E(x,y)∼DI(c(x) 6= y)

where (x, y) ∼ D denotes a draw from the distribution D and I(·) is the
indicator function which is 1 when its argument is true and 0 otherwise.

The goal is to find a classifier which, as often as possible according to
D, correctly predicts the class label given the input feature. Typically, the
classification problem is solved by searching for some classifier c in a lim-
ited subset C of all classifiers using a sample S = (x1, y1), . . . , (xm, ym) ∼
Dm generated by m independent draws from the distribution D. Natu-
rally, this search is guided by the empirical error rate. This is the error
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rate on the subset S defined by:

êS(c) := E(x,y)∼SI(c(x) 6= y) =
1

|S|
∑

(x,y)∈S

I(c(x) 6= y).

where (x, y) ∼ S denotes a sample drawn from the uniform distribution
on S. Note that êS(c) is a random variable dependent on a draw from
Dm. In contrast, eD(c) is a number (an expectation) relative to D.

1.1.2 The Basic Result The basic result is that certain classifier
learning algorithms may not behave well as a function of the informa-
tion they use, even when given infinitely many samples to learn from.
The learning algorithms we analyze are “Bayesian classification” (Bayes),
“Maximum a Posteriori classification” (MAP), “Minimum Description
Length classification” (MDL) and “Occam’s Razor Bound classification”
(ORB). These algorithms are precisely defined later. Functionally they
take as arguments a training sample S and a “prior” P which is a proba-
bility distribution over a set of classifiers C. The result applies even when
the process creating classification problems draws the optimal classifier
from P (c). In Section 3 we state the basic result, Theorem 2. The theorem
has the following corollary, indicating suboptimal behavior of Bayes and
MDL:

Corollary 1. (Classification Inconsistency) There exists an input
domain X and a prior P (c) on a countable set of classifiers C such that:

1. (inconsistency according to true distribution) There exists a learning
problem (distribution) D such that the Bayesian classifier cBayes(P,S),
the MAP classifier cmap(P,S), and the MDL classifier cmdl(P,S) are
asymptotically suboptimal with respect to the ORB classifier corb(P,S).
That is, for c∗ ∈ {cBayes(P,S), cmap(P,S), cmdl(P,S)},

lim
m→∞

Pr
S∼Dm

(

eD(corb(P,S)) + 0.05 < eD(c∗)
)

= 1. (1)

2. (inconsistency according to prior) There exists a randomized algorithm
selecting learning problems D in such a way that
– (a) the prior P (c) is ‘objectively correct’ in the sense that, for all
c ∈ C, with probability P (c), c is the optimal classifier, achieving
minc∈C eD(c).
– (b) (1) holds no matter what learning problem D/classifier c is se-
lected. In particular, (1) holds with prior probability 1.

How dramatic is this result? We may ask
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1. Are the priors P for which the result holds natural?

2. How large can the suboptimality become and how small can eD(corb(P,S))
be?

3. Does this matter for logarithmic loss (which is what MDL approaches
seek to minimize [Grünwald, 2007]) rather than 0-1 loss?

4. Is corb(P,S) an algorithm which contains information specific to the
distribution D?

5. Is this theorem relevant at small (and in particular noninfinite) sample
sizes?

We will ask a number of more detailed questions from a Bayesian per-
spective in Section 6 and from an MDL perspective in Section 7. The
short answer to (1) and (2) is: the priors P have to satisfy several re-
quirements, but they correspond to priors often used in practice. The size
of the suboptimality can be quite large, at least for the MAP and MDL
classifiers (the number of 0.05 was just chosen for concreteness; other val-
ues are possible) and eD(corb(P,S)) can be quite small - see Section 5.1
and Figure 1. The short answer to (3) is “yes”. A similar result holds for
logarithmic loss, see Section 6.1.

The answer to (4) is “no”. The algorithm corb(P,S), which minimizes
the Occam’s Razor bound (ORB) (see [Blumer et al., 1987] or Section 4.2),
is asymptotically consistent for any D:

Theorem 1. (ORB consistency) For all priors P nonzero on a set
of classifiers C, for all learning problems D, and all constants K > 0 the
ORB classifier corb(P,S) is asymptotically K-optimal:

lim
m→∞

Pr
S∼Dm

(

eD(corb(P,S)) > K + inf
c∈C

eD(c)

)

= 0.

The answer to (5) is that the result is very relevant for small sample
sizes because the convergence to the probability 1 event occurs at a speed
exponential in m. Although the critical example uses a countably infinite
set of classifiers, on a finite set of n classifiers, the analysis implies that
for m < log n, Bayesian inference gives poorer performance than Occam’s
Razor Bound optimization.

Overview of the Paper The remainder of this paper first defines precisely
what we mean by the above classifiers. It then states the main inconsis-
tency theorem which implies the above corollary, as well as a theorem
that provides an upper-bound on how badly Bayes can behave. In Sec-
tion 4 we prove the theorems. Technical discussion, including variations
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of the result, are discussed in Section 5.1. A discussion of the result from
a Bayesian point of view is given in Section 6, and from an MDL point
of view in Section 7.

2 Some Classification Algorithms

The basic inconsistency result is about particular classifier learning algo-
rithms which we define next.

2.1 The Bayesian Classification algorithm

The Bayesian approach to inference starts with a prior probability distri-
bution P over a set of distributions P. P typically represents a measure
of “belief” that some p ∈ P is the process generating data. Bayes’ rule
states that, given sample data S, the posterior probability P (· | S) that
some p is the process generating the data is:

P (p | S) =
p(S)P (p)

P (S)
. (2)

where P (S) := Ep∼P [p(S)] =
∑

p∈P P (p)p(S), the sum being replaced by
an integral when P is continuous and P admits a density. Note that in
Bayesian statistics, p(S) is usually denoted as P (S | p).

In classification problems with sample size m = |S|, each p ∈ P is a
distribution on (X × Y)m and the outcome S = (x1, y1), . . . , (xm, ym) is
the sequence of labeled examples.

If we intend to perform classification based on a set of classifiers C
rather than distributions P, it is natural to introduce a “prior” P (c) that
a particular classifier c : X → {0, 1} is the best classifier for solving
some learning problem. This, of course, is not a Bayesian prior in the
conventional sense because classifiers do not induce a measure over the
training data. In order to apply Bayesian inference, we somehow need to
convert the set of classifiers into a corresponding set of distributions P.
With such a conversion, the prior P (c) will induce a conventional Bayesian
prior on P after all.

One common conversion [Jordan, 1995, Tipping, 2001, Grünwald,
1998] transforms the set of classifiers C into a simple logistic regression
model – the precise relationship to logistic regression is discussed in Sec-
tion 5.2. In the special case considered in this paper, c(x) ∈ {0, 1} is
binary valued. Then (but only then) the conversion amounts to assum-
ing that the error rate θ of the optimal classifier is independent of the
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feature value x. This is known as “homoskedasticity” in statistics and
“label noise” in learning theory. More precisely, we let P consist of the
set of distributions pc,θ, where c ∈ C and θ ∈ [0, 1]. These are defined as
conditional probability distributions over the labels given the unlabeled
data:

pc,θ(y
m | xm) = θmêS(c)(1 − θ)m−mêS(c). (3)

This expresses that there exists some θ such that ∀x Pc,θ(c(X) 6= y | X =
x) = θ. (homoskedasticity). Note that

pc,θ(y|x) =

{

θ if c(x) 6= y

1 − θ if c(x) = y.

For each fixed θ < 0.5, the log likelihood log pc,θ(y
m | xm) is linearly

decreasing in the empirical error that c makes on S. By differentiating
with respect to θ, we see that for fixed c, the likelihood (3) is maximized
by setting θ := êS(c), giving

log
1

pc,êS(c)(ym | xm)
= mH(êS(c)), (4)

where H is the binary entropy H(µ) = µ log 1
µ + (1− µ) log 1

1−µ , which is
strictly increasing for µ ∈ [0, 0.5). Here, as everywhere else in the paper,
log stands for binary logarithm. Thus, the conversion is “reasonable” in
the sense that, both with fixed θ < 0.5 and with the likelihood-maximizing
θ = êS(c) which varies with the data, the likelihood is a decreasing func-
tion in the empirical error rate of c, so that classifiers which achieve small
error on the data correspond to a large likelihood of the data.

We further assume that some distribution px on Xm generates the
x-values, and, in particular that this distribution is independent of c and
θ. With this assumption, we can apply Bayes rule to get a posterior on
pc,θ, denoted as P (c, θ | S), without knowing px, since the px(x

m)-factors
cancel:

P (c, θ | S) =
pc,θ(y

m|xm)px(x
m)P (c, θ)

P (ym | xm)px(xm)
=

pc,θ(y
m|xm)P (c, θ)

Ec,θ∼P [pc,θ(ym | xm)]
. (5)

As is customary in Bayesian statistics, here as well as in the remainder of
this paper we defined the prior P over (c, θ) rather than directly over pc,θ.
The latter choice would be equivalent but notationally more cumbersome.

To make (5) applicable, we need to specify a prior measure on the
joint space C × [0, 1] of classifiers and θ-parameters. In the next section
we discuss the priors under which the theorems hold.
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Bayes rule (5) is formed into a classifier learning algorithm by choosing
the most likely label given the input x and the posterior P (·|S):

cBayes(P,S)(x) :=

{

1 if Ec,θ∼P (·|S)[pc,θ(Y = 1|X = x)] > 1
2 ,

0 if Ec,θ∼P (·|S)[pc,θ(Y = 1|X = x)] < 1
2 .

(6)

If Ec,θ∼P (·|S)[pc,θ(Y = 1|X = x)] = 1
2 , then the value of cBayes(P,S) is

determined by an independent toss of a fair coin.

2.2 The MAP classification algorithm

The integrations of the full Bayesian classifier can be too computation-
ally intensive, so in practice one often predicts using the Maximum A
Posteriori (MAP) classifier. This classifier is given by:

cmap(P,S) = arg max
c∈C

max
θ∈[0,1]

P (c, θ | S) = arg max
c∈C

max
θ∈[0,1]

pc,θ(y
m | xm)P (c, θ)

with ties broken arbitrarily. Integration over θ ∈ [0, 1] is easy compared to
summation over c ∈ C, so one sometimes uses a learning algorithm (SMP)
which integrates over θ (like full Bayes) but maximizes over c (like MAP):

csmp(P,S) = arg max
c∈C

P (c | S) = arg max
c∈C

Eθ∼P (θ)pc,θ(y
m | xm)P (c | θ).

2.3 The MDL Classification algorithm

The MDL approach to classification is transplanted from the MDL ap-
proach to density estimation. There is no such thing as a ‘definition’ of
MDL for classification because the transplant has been performed in var-
ious ways by various authors. Nonetheless, as we discuss in Section 7,
many implementations are essentially equivalent to the following algo-
rithm [Quinlan and Rivest, 1989, Rissanen, 1989, Kearns et al., 1997,
Grünwald, 1998]:

cmdl(P,S) = arg min
c∈C

{

log
1

P (c)
+ log

(

m

mêS(c)

) }

. (7)

The quantity minimized has a coding interpretation: it is the number of
bits required to describe the classifier plus the number of bits required to
describe the labels on S given the classifier and the unlabeled data. We
call − log P (c) + log

(

m
mêS(c)

)

the two-part MDL codelength for encoding
data S with classifier c.

7



3 Main Theorems

We prove inconsistency for some countable set of classifiers C = {c0, c1, . . .}
which we define later. The inconsistency is attained for priors with ‘heavy
tails’. Formally, for Theorem 2 (inconsistency of Bayes, MDL, MAP and
SMP), we require P (ck) to be such that for all k,

log
1

P (ck)
≤ log k + o(log k). (8)

This condition is satisfied, for example, by Rissanen’s (1983) universal
prior for the integers. Another simple prior satisfying (8) can be defined
as follows: group the classifiers c1, c2, . . . as C0 := {c1}, C1 := {c2, c3},
C2 := {c4, . . . , c7} and so on, so that Ca contains 2a classifiers. Then the
prior of any classifier in Ca is defined as

P (c) =
1

a(a + 1)
2−a.

The sensitivity of our results to the choice of prior is analyzed further
in Section 5.1. The prior on θ can be any distribution P on [0, 1] with
a density w that is continuously differentiable and bounded away from 0
on [0, 0.5), i.e. for some γ > 0,

for all θ ∈ [0, 0.5), w(θ) > γ. (9)

For example, we may take the uniform distribution on [0, 1] with w(θ) ≡ 1.
We can also take the uniform distribution on [0, 0.5), with w(θ) ≡ 2.

For our result concerning the full Bayesian classifier, Theorem 2, Part
(b), we need to make the further restriction3

P (θ ≥ 0.5) = 0. (10)

3 Without this restriction, we may put nonzero prior on distributions pc,θ with θ >
1/2. For such distributions, the log likelihood of the data increases rather than
decreases as a linear function of the error that c makes on the data. This implies
that with a uniform prior, under our definition of the Bayes MAP classifier, in
some cases the MAP classifier may be the classifier with the largest, rather than the
smallest empirical error. As pointed out by a referee, for this reason the term “Bayes
MAP classifier” may be somewhat of a misnomer: it does not always coincide with
the Bayes act corresponding to the MAP distribution. If one insists on defining the
Bayes MAP classifier as the Bayes act corresponding to the MAP distribution, then
one can achieve this simply by restricting oneself to priors satisfying (10), since all
our results still hold under the restriction (10).
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For ease of comparison with other results (Section 6), we shall also allow
discrete priors on θ that put all their mass on a countable set, [0, 1] ∩
Q. For such priors, we require that they satisfy, for all a ∈ N, all b ∈
{0, 1, . . . , ⌊a/2⌋}:

P

(

θ =
b

a

)

≥ K1a
−K2 (11)

for some fixed constants K1,K2 > 0. An example of a prior achieving
(11) is P (θ = b/a) = 1/(a(a + 1)⌊a/2 + 1⌋).

We assume that the priors P (θ) on [0, 1] and the prior P (c) on C
are fully dependent so that every classifier can have its own error rate.
We require each classifier to have the same prior for θ. Thus, P (c, θ) =
P (c)P (θ|c) where for every c, P (θ|c) is set to P (θ). Note that given a
sample S, the posterior P (θ | c, S) can depend on c. In the theorem,
H(µ) = µ log 1

µ + (1 − µ) log 1
1−µ stands for the binary entropy of a coin

with bias µ. The function g(µ) appearing in Part (b) of the theorem is
defined as

g(µ) = µ + sup {ν | ν ≥ 0 ; H(ν) < H(µ) − 2µ}. (12)

This function will be analyzed later.

Theorem 2. (Classification Inconsistency) There exists an input
space X and a countable set of classifiers C such that the following holds:
let P be any prior satisfying (8) and (9). Then, for all µ ∈ (0, 0.5),

(a) For all µ′ ∈ [µ,H(µ)/2), there exists a D with minc∈C eD(c) =
eD(c0) = µ such that, for all large m, with am = 3exp(−2

√
m),

Pr
S∼Dm

(

eD(cmap(P,S)) = µ′) ≥ 1 − am

Pr
S∼Dm

(

eD(csmp(P,S)) = µ′) ≥ 1 − am

Pr
S∼Dm

(

eD(cmdl(P,S)) = µ′) ≥ 1 − am. (13)

(b) If the prior P further satisfies (10), then for all µ′ ∈ [µ, g(µ)), there
exists a D with minc∈C eD(c) = eD(c0) = µ such that, for all large m,
with am = (6 + o(1)) exp(−(1 − 2µ)

√
m),

Pr
S∼Dm

(

eD(cBayes(P,S)) ≥ µ′) ≥ 1 − am. (14)

Since H(µ)/2 > µ for all µ ∈ (0, 0.5) (Figure 1), inconsistency of cmap(P,S),
csmp(P,S) and cmdl(P,S) can occur for all µ ∈ (0, 0.5). The theorem states
that Bayes is inconsistent for all large m on a fixed distribution D. This
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is a significantly more difficult statement than “for all (large) m, there
exists a learning problem where Bayes is inconsistent”.4 Differentiation of
0.5H(µ)−µ shows that the maximum discrepancy between eD(cmap(P,S))
and µ is achieved for µ = 1/5. With this choice of µ, 0.5H(µ) − µ =
0.1609 . . . so that, by choosing µ′ arbitrarily close to H(µ), the discrepancy
µ′−µ comes arbitrarily close to 0.1609 . . .. These findings are summarized
in Figure 1. Concerning cBayes(P,S), since H(µ)−2µ > 0 for all µ ∈ (0, 0.5),
H(0) = 0 and H(ν) is monotonically increasing between 0 and 0.5, we
have g(µ) > µ for all µ ∈ (0, 0.5). Hence, inconsistency can occur for all
such µ. Since H(ν) is monotonically increasing in ν, the largest value of
ν can be obtained for the µ for which H(µ) − 2µ is largest. We already
noted that this is maximized for µ = 0.2. Then the largest ν such that
H(ν) < H(µ)−2µ = 2 ·0.1609... can be numerically calculated as νmax =
0.0586.... Thus, in that case we can get eD(cBayes(P,S)) arbitrarily close
to µ + νmax = 0.2586....5

How large can the discrepancy between µ = infc eD(c) and µ′ =
eD(cBayes(P,S)) be in the large m limit, for general learning problems? The
next theorem, again summarized in Figure 1, gives an upper bound which
holds for all learning problems (distributions D), namely, µ′ < H(µ):

Theorem 3. (Maximal Inconsistency of Bayes) Let Si be the se-
quence consisting of the first i examples (x1, y1), . . . , (xi, yi). For all pri-
ors P nonzero on a set of classifiers C, for all learning problems D with
0 < infc∈C eD(c) = µ < 0.5, for all δ > 0, for all large m, with Dm-
probability ≥ 1 − 2 exp(−2

√
m),

1

m

m
∑

i=1

∣

∣yi − cBayes(P,Si−1)(xi)
∣

∣ ≤ H(µ) + δ.

The theorem says that for large m, the total number of mistakes when
successively classifying yi given xi made by the Bayesian algorithm based
on Si−1, divided by m, is not larger than H(µ). By the law of large
numbers, it follows that for large m, eD(cBayes(P,Si−1)(xi)), averaged over
all i, is no larger than H(µ). Thus, it is not ruled out that sporadically,
for some i, eD(cBayes(P,Si−1)(xi)) > H(µ); but this must be ‘compensated’

4 In fact, a meta-argument can be made that any nontrivial learning algorithm is
‘inconsistent’ in this sense for finite m.

5 While we have no formal proof, we strongly suspect that g(µ) can be replaced by
H(µ)/2 in Part 2 of the theorem, so that the suboptimality for cBayes(P,S) would be
just as large as for the other three classifiers. For this reason we did not bother to
draw the function g(µ) in Figure 1.
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Fig. 1. A graph depicting the set of asymptotically allowed error rates for different
classification algorithms. The x-axis depicts the optimal classifier’s error rate µ (also
shown as the straight line). The lower curve is just 0.5H(µ) and the upper curve is
H(µ). Theorem 2 says that any (µ, µ′) between the straight line and the lower curve
can be achieved for some learning problem D and prior P . Theorem 3 shows that the
Bayesian learner can never have asymptotic error rate µ′ above the upper curve.

for by most other i. We did not find a proof that eD(cBayes(P,Si−1)(xi)) <
H(µ) for all large i.

4 Proofs

4.1 Inconsistent Learning Algorithms: Proof of Theorem 2

Below we first define the particular learning problem that causes inconsis-
tency. We then analyze the performance of the algorithms on this learning
problem.

4.1.1 The Learning Problem For given µ and µ′ ≥ µ, we construct
a learning problem and a set of classifiers C = {c0, c1, . . .} such that c0 is
the ‘good’ classifier with eD(c0) = µ and c1, c2, . . . are all ‘bad’ classifiers
with eD(cj) = µ′ ≥ µ. x = x0x1 . . . ∈ X = {0, 1}∞ consists of one binary
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feature per classifier, and the classifiers simply output the value of their
special feature. The underlying distribution D depends on two parameters
0 < ph < 1 and η ∈ [0, 1/2). These are defined in terms of the µ and µ′

mentioned in the theorem, in a way to be described later.

To construct an example (x, y), we first flip a fair coin to determine
y, so y = 1 with probability 1/2. We then flip a coin with bias ph which
determines if this is a “hard” example or an “easy” example. Based upon
these two coin flips, for j ≥ 1, each xj is independently generated accord-
ing to the following 2 cases.

1. For a “hard” example, and for each classifier cj with j ≥ 1, set xj =
|1 − y| with probability 1/2 and xj = y otherwise. Thus, x1, x2, . . .
becomes an infinite sequence of realizations of i.i.d. uniform Bernoulli
random variables.

2. For an “easy” example, we flip a third coin Z with bias η. If Z = 0
(‘example ok’), we set, for every j ≥ 1, xj = y. If Z = 1, we set, for
all j ≥ 1, xj = |1− y| otherwise. Note that for an “easy” example, all
bad classifiers make the same prediction.

The bad classifiers essentially predict Y by random guessing on hard
examples. On easy examples, they all make the same prediction, which
is correct with probability 1 − η > 0.5. It remains to define the input x0

of the “good” classifier c0 with true error rate µ. This is done simply by
setting x0 = |1 − y| with probability µ and x0 = y otherwise.

The setting of ph and η is different for, on the one hand, the (S)MAP
and MDL inconsistency proofs, and on the other hand, the full Bayes
inconsistency proof. To get a first, intuitive idea of the proof, it is best to
ignore, for the time being, the parameter values for the full Bayes proof.

In the MAP and MDL inconsistency proof, we set ph := 2µ′ and η = 0.
In the Bayes proof, we first set ph := 2µ. We then define ν := µ′ − µ
and we set η := ν/(1 − 2µ). By the conditions of the theorem, we have
0 < H(ν) < H(µ)−2µ. Note that for such ν, H(ν) < 1−2µ and therefore
2ν ≤ 1 − 2µ so that η < 1/2. As is easily checked in the (S)MAP and
MDL case, and somewhat harder to check in the full Bayes case, the error
rate of each ‘bad’ classifier is eD(cj) = µ′ for all j ≥ 1.

Discussion The inputs x are infinite-dimensional vectors. Neverthe-
less, the Bayesian posterior can be arbitrarily well approximated in finite
time for any finite sample size m if we order the features according to the
prior of the associated classifier. We need only consider features which
have an associated prior greater than 1

2m since the minus log-likelihood of
the data is always less than m+O(log m) bits. This follows because by (9)
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and (11), the prior P (θ) puts sufficient mass in a neighborhood of θ = 0.5.
For such θ, the distribution pc,θ(y|x) becomes uniform, independently of
c.

The (constructive) proof of Theorem 2 relies upon this problem, but
it’s worth mentioning that other hard learning problems exist and that
this hard learning problem can be viewed in two other ways:

1. The input space has two bits (the hardness bit and the “correct value”
bit) and the classifiers are stochastic. Stochastic classifiers might be
reasonable (for example) if the task is inferring which of several stock
“experts” are the best on average. The stock pickers occasionally make
mistakes as modeled by the stochasticity.

2. The input space consists of one real valued feature. Each bit in the
binary expansion of the real number is used by a different classifier as
above.

4.1.2 Bayes and MDL are inconsistent We now prove Theorem 2.
Stage 1 and 2 do not depend on the specific choices for ph and η, and are
common to the proofs for MAP, SMP, MDL and full Bayes. In Stage 1 we
show that for some function k(m), for every value of m, with probability
converging to 1, there exists some ‘bad’ classifier c∗ = cj with 0 < j ≤
k(m) that has 0 empirical error on hard examples, whereas the good
classifier has empirical error close to its expected generalization error. Up
to sublinear terms, we find that

log k(m) = mph. (15)

The precise expression is given in (18). In Stage 2 we rewrite the log
posterior odds ratio between the good classifier c0 and c∗. Up to sublinear
terms (see (26)), this ratio turns out to be equal to

mH(êS(c∗)) − mH(êS(c0)) + mph. (16)

In Stage 3 we combine (15) and (16) to show that, with the choice ph =
2µ′, η = 0, the posterior on c∗ becomes exponentially larger than the
posterior on c0, from which inconsistency of MAP, SMP and MDL readily
follows. In Stage 4, we show that with the choice ph = 2µ, η = ν/(1−2µ),
the posterior on c∗ still becomes exponentially larger than the posterior on
c0, but now additionally, the classification performance of the Bayesian
classifier (a mixture that puts nearly all its weight on bad classifiers),
cannot exceed that of c∗.
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Stage 1 Let mh denote the number of hard examples generated within
a sample S of size m. Let êS,h(c) be the number of mistakes that the
classifier c makes on the subset Sh of S of hard examples, divided by
mh = |Sh|. Let k be a positive integer and Ck = {cj ∈ C : 1 ≤ j ≤ k}. For
all ǫ > 0 and m ≥ 0, we have:

Pr
S∼Dm

(∀c ∈ Ck : êS,h(c) > 0)

(a)
= Pr

S∼Dm

(

∀c ∈ Ck : êS,h(c) > 0 | mh

m
> ph + ǫ

)

Pr
S∼Dm

(mh

m
> ph + ǫ

)

+ Pr
S∼Dm

(

∀c ∈ Ck : êS,h(c) > 0 | mh

m
≤ ph + ǫ

)

Pr
S∼Dm

(mh

m
≤ ph + ǫ

)

(b)

≤ e−2mǫ2 + Pr
S∼Dm

(

∀c ∈ Ck : êS,h(c) > 0 | mh

m
≤ ph + ǫ

)

(c)

≤ e−2mǫ2 + (1 − 2−m(ph+ǫ))k
(d)

≤ e−2mǫ2 + e−k2−m(ph+ǫ)
. (17)

Here (a) follows because P (a) =
∑

b P (a|b)P (b). (b) follows by ∀a, P :
P (a) ≤ 1 and the Chernoff bound. (c) holds from independence and
since (1 − 2−m(ph+ǫ))k is monotonic in ǫ, and (d) by ∀x ∈ [0, 1], k > 0 :
(1 − x)k ≤ e−kx. We now set ǫm := m−0.25 and

k = k(m) =
2mǫ2

m

2−m(ph+ǫm)
. (18)

Note that, up to sublinear terms, this is equal to (15). With (18), (17)
becomes

Pr
S∼Dm

(∀c ∈ Ck(m) : êS,h(c) > 0) ≤ 2e−2
√

m (19)

On the other hand, by the Chernoff bound we have PrS∼Dm(êS(c0) <
eD(c0) − ǫm) ≤ e−2

√
m for the optimal classifier c0. Combining this with

(19) using the union bound, we get that, with Dm-probability larger than
1 − 3e−2

√
m, the following event holds:

∃c ∈ Ck(m) : êS,h(c) = 0 and êS(c0) ≥ eD(c0) − ǫm. (20)

Stage 2 In this stage, we calculate, for large m, the log ratio between the
posterior on some c∗ ∈ Ck(m) with êS,h(c

∗) = 0 and the posterior on c0.
We have:

log
maxθ P (c0, θ | xm, ym)

maxθ P (c∗, θ | xm, ym)
= log

maxθ P (c0)P (θ)P (ym | xm, c0, θ)

maxθ P (c∗)P (θ)P (ym | xm, c∗, θ)
=

log max
θ

P (c0)P (θ)P (ym | xm, c0, θ)−log max
θ

P (c∗)P (θ)P (ym | xm, c∗, θ).

(21)
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Using (4), (9) and (11), we see that, uniformly for all samples S with
êS(c0) < 1/2, the leftmost term is no larger than

log
(

max
θ

P (c0)P (θ)
)

·
(

max
θ′

P (ym | xm, c0, θ
′)
)

= −mH(êS(c0))+O(1).

(22)

Similarly, uniformly for all samples S with êS,h(c
∗) = 0, êS(c∗) < 1/2, the

rightmost term in (21) satisfies

− log max
θ

P (c∗)P (θ)P (ym | xm, c∗, θ) ≤ − log P (c∗)+mH(êS(c∗))+O(1),

(23)
where the constant in the O-notation does not depend on c∗. Using con-
dition (8) on prior P (c∗) and using c∗ ∈ Ck(m), we find:

− log P (c∗) = log
1

P (c∗)
≤ log k(m) + o(log k(m)), (24)

where log k(m) = log 2
√

m + mph + m0.75, so that

log
1

P (c∗)
≤ mph + o(m) (25)

which implies that (23), is no larger than mph + mH(êS(c∗)) + o(m).
Thus, for all large m, the difference between the leftmost term and the
rightmost term in (21) satisfies

log
maxθ P (c0, θ | xm, ym)

maxθ P (c∗, θ | xm, ym)
≤ −mH(êS(c0)) + mph + mH(êS(c∗)) + o(m),

(26)
as long as êS(c0) and êS(c∗) are both less than 0.5.

Stage 3(a) (MAP) Recall that, for the MAP result, we set η := 0 and
ph := 2µ′. Let us assume that the large probability event (20) holds. This
will allow us to replace the two ‘empirical entropies’ in (26), which are ran-
dom variables, by corresponding ordinary entropies, which are constants.
By (20), êS,h(c

∗) = 0, so that we have (since η = 0) that êS(c∗) = 0 and
then also H(êS(c∗)) = 0. Because H(µ) is continuously differentiable in
a small enough neighborhood around µ, by (20) we also have, for some
constant K,

H(êS(c0)) ≥ H(eD(c0)) − Kǫm + O(1) = H(µ) + O(m−1/2).

Plugging these expressions for H(êS(c∗)) and H(êS(c0)) into (26), and
using the fact that we set ph = 2µ′, we see that, as long as µ′ < H(µ)/2,
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there exists a c > 0 such that for all large m, (26), and hence (21) is
smaller than −cm. Thus, (21) is less than 0 for large m, implying that then
eD(cmap(P,S)) = µ′. We derived all this from (20) which holds with proba-
bility ≥ 1−3 exp(−2

√
m). Thus, for all large m, PrS∼Dm

(

eD(cmap(P,S)) = µ′) ≥
1 − 3 exp(−2

√
m), and the result follows.

Stage 3(b) (SMP) We are now interested in evaluating, instead of the
posterior ratio (21), the posterior ratio with the error rate parameters
integrated out:

log
P (c0 | xm, ym)

P (c∗ | xm, ym)
= log P (c0)P (ym | xm, c0) − log P (c∗)P (ym | xm, c∗).

(27)
By Proposition 2 in the appendix, we see that, if (20) holds, then (21)
is no larger than (27) plus an additional term of order O(log m). To see
this, apply the first inequality of (54) to the term involving c0, and the
second inequality of (54) to the term involving c∗. The result now follows
by exactly the same reasoning as in Stage 3(a).

Stage 3(c) (MDL) By part (1) of Proposition 2 in the appendix, the
MDL procedure is equal to SMP with the uniform prior w(θ) ≡ 1. Thus,
the MDL case is a special case of the SMP case for which we already
proved inconsistency above.

Stage 3(d) (Bayes) In order to prove the inconsistency for the full
Bayesian classifier, we construct a setup where on on hard examples,
all classifiers, even the ‘good’ classifier c0, predict c(X) = 1 with prob-
ability 1/2, independently of the true value of Y . To this end, we refine
our learning problem by setting x0 = |1 − y| with probability 1/2 for a
“hard” example, and x0 = y with probability 1 for an “easy” example.
By setting ph := 2µ, we still get that eD(c0) = µ. In order to make the
error rate for the bad classifiers c1, c2, . . . still larger than for c0, we now
set η to a value larger strictly than 0.

We let êS,easy(c) denote the empirical error that classifier c achieves on
the easy examples in S, i.e. the number of mistakes on the easy examples
in S divided by |S|− |Sh|. Now set ǫm as in Stage 1 and define the events
(sets of samples Sm of length m) A and B as

A = {Sm : ∃j > 0 : |êS,easy(cj)−η| > ǫm} ; B = {Sm :
mh

m
≥ ph + ǫm},

16



and let Ac and Bc be their respective complements. We have

Pr
S∼Dm

(A ∪ B) =

Pr (A ∪ B | B) Pr (B) + Pr (A ∪ B | Bc) Pr (Bc) ≤ Pr (B) + Pr (A | Bc)

≤ e−2
√

m + 2e−2m(1−ph−ǫm)ǫ2m = e−2
√

m + 2e−2
√

m(1−ph)+2m0.25 ≤
3e−(1−ph)

√
m(1 + o(1)), (28)

where the second inequality follows by applying the Chernoff bound to
both terms (recall that on easy examples, all classifiers cj with j > 1
output the same prediction for Y ). Combining this with the result of
Stage 1 using the union bound and using ph = 2µ, we get that, with
Dm-probability at least 1−6(1+o(1))e−

√
m(1−2µ), (20) and Ac and Bc all

hold at the same time. Let us assume for now that this large probability
event holds. We must then have that some c∗ ∈ Ck(m) achieves empirical
error 0 on hard examples (which occur with probability 2µ) and at least
η +O(m−1/2) on easy examples (which occur with probability 1− 2µ), so
that

êS(c∗) = (1 − 2µ)η + O(m−1/2) = ν + O(m−1/2), (29)

where ν = µ′ − µ. By continuity of H, we also have that H(êS(c∗)) =
H(ν) + O(m−1/2).

Entirely analogously to the reasoning in Stage 3(a), we can now re-
place the empirical entropies in the expression (26) for the log-likelihood
ratio between c∗ and c0 by the corresponding ordinary entropies. This
gives

log
maxθ P (c0, θ | xm, ym)

maxθ P (c∗, θ | xm, ym)
≤ −mH(µ) + m2µ + mH(ν) + o(m), (30)

By definition of ν, ν = µ′ − µ satisfies −H(µ) + H(ν) + 2µ < 0, so that
there exists a c > 0 such that for all large m, (30) is smaller than −cm.
Reasoning entirely analogously to Stage 3(b), we see that (30) still holds
if we integrate out θ, rather than maximize over it: there exists a c > 0
such that for all large m,

log
P (c0 | xm, ym)

P (c∗ | xm, ym)
≤ −mH(µ) + m2µ + mH(ν) + o(m) ≤ −cm. (31)

Furthermore, by (29) and our condition on the prior, the posterior on θ
given c∗ must concentrate on ν (even though c∗ varies with m): we must
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have that, for every open set A containing ν, the posterior distribution
of θ given c∗ and sample S satisfies

P (θ ∈ A | c∗, S)
m→∞→ 1. (32)

We now show that (31) and (32), both of which hold with high proba-
bility, imply that the full Bayesian classifier based on sample S errs with
probability at least µ + ν = µ′:

Pr
X,Y ∼D

(Y 6= cBayes(P,S)(X)) = Pr
X,Y ∼D

(Y 6= cBayes(P,S)(X) | Ex. hard)ph+

Pr
X,Y ∼D

(Y 6= cBayes(P,S)(X) | Ex. easy)(1 − ph) ≥

1

2
2µ + Pr

X,Y ∼D
(Y 6= cBayes(P,S)(X) | Ex. easy)(1 − 2µ) ≥

µ + Pr
X,Y ∼D

(Y 6= cBayes(P,S)(X) | Ex. easy, corrupted)(1 − 2µ)η =

µ + Pr
X,Y ∼D

(Y 6= cBayes(P,S)(X) | Ex. easy, corrupted, Y = 1)(1 − 2µ)η.

(33)

Here the first inequality follows by symmetry: on hard examples, Y = 1
with probability 1/2 and all classifiers independently output Y = 1 with
probability 1/2. The final equality follows again by symmetry between
the case Y = 1 and Y = 0. Depending on the sample S, the probability
in the final line of (33) is either equal to 1 or to 0. It is equal to 1 if
cBayes(P,S)(X) = 0. By (6), a sufficient condition for this to happen is if
S is such that

Ec,θ∼P (·|S)[pc,θ(Y = 1|X = x)] <
1

2
. (34)

This expectation can be rewritten as

∑

c∈C

∫

θ∈[0,0.5)
P (θ | c, S)P (c | S)pc,θ(Y = 1|X = x)dθ =

∑

c∈C
P (c | S)u(c, S, x) =

P (c0 | S)u(c0, S, x) + P (c∗ | S)u(c∗, S, x) +
∑

c 6∈{c0,c∗}
P (c | S)u(c, S, x),

(35)

where u(c, S, x) :=
∫

θ∈[0,0.5) P (θ | c, S)pc,θ(Y = 1|X = x)dθ. Note that

we integrate here over [0, 0.5), reflecting the extra condition (10) that we
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required for the full Bayesian result. Since the example in the final line
(33) is corrupted, for the x occurring there we have that cj(x) = 0 for
j ≥ 1, so that pcj ,θ(Y = 1 | X = x) < 1/2 for all θ < 1/2. It follows that
for this x, (35) is no greater than

P (c0 | S) + P (c∗ | S)u(c∗, S, x) +
∑

c 6∈{c0,c∗}
P (c | S)

1

2
.

By (31) and (32), for all δ > 0, for all large m this is no greater than

a(e−cm · 1 + (1 − e−cm)(ν + δ)) + (1 − a)
1

2
. (36)

for some a that may depend on m but that satisfies 0 < a < 1 for all
m. Therefore, and since ν < 1/2, (36) is less than 1/2 for all large m.
But this implies (by the reasoning above (34)) that cBayes(P,S)(x) = 0. It
follows by (33) that, for large m,

Pr
X,Y ∼D

(Y 6= cBayes(P,S)(X)) ≥ µ + (1 − 2µ)η = µ + ν = µ′.

All this is implied under an event that holds with probability at least
1 − 6(1 + o(1))e−

√
m(1−2µ) (see above), so that the result follows.

4.2 A Consistent Algorithm: Proof of Theorem 1

In order to prove the theorem, we first state the Occam’s Razor Bound
classification algorithm, based on minimizing the bound given by the
following theorem.

Theorem 4. (Occam’s Razor Bound) [Blumer et al., 1987] For all pri-
ors P on a countable set of classifiers C, for all distributions D, with
probability 1 − δ:

∀c : eD(c) ≤ êS(c) +

√

ln 1
P (c) + ln 1

δ

2m
.

The algorithm stated here is in a suboptimal form, which is good enough
for our purposes (see [McAllester, 1999] for more sophisticated versions):

corb(P,S) := arg min
c∈C







êS(c) +

√

ln 1
P (c) + ln m

2m







.
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Proof of Theorem 1 Set δm := 1/m. It is easy to see that

min
c∈C

eD(c) +

√

ln 1
P (c) + ln m

2m

is achieved for at least one c ∈ C = {c0, c1, . . .}. Among all cj ∈ C achiev-
ing the minimum, let c̃m be the one with smallest index j. By the Chernoff
bound, we have with probability at least 1 − δm = 1 − 1/m,

eD(c̃m) ≥ êS(c̃m) −
√

ln(1/δm)

2m
= êS(c̃m) −

√

lnm

2m
, (37)

whereas by Theorem 4, with probability at least 1 − δm = 1 − 1/m,

eD(corb(P,S)) ≤ min
c∈C

êS(c) +

√

− ln P (c) + ln m

2m
≤

êS(c̃m) +

√

− lnP (c̃m) + ln m

2m
.

Combining this with (37) using the union bound, we find that

eD(corb(P,S)) ≤ eD(c̃m) +

√

− lnP (c̃m) + ln m

2m
+

√

ln m

2m
,

with probability at least 1− 2/m. The theorem follows upon noting that
the right-hand side of this expression converges to infc∈C eD(c) with in-
creasing m.

4.3 Proof of Corollary 1

The corollary relies on Theorem 1 and a slight generalization of the proof
of Theorem 2. For Theorem 1 pick K < 0.05. In Theorem 2 choose
µ = 1/5, µ′ = 1/5 + .15. Now part 1 follows. For part 2, consider The-
orem 2 with the same µ and µ′. From the theorem we see that for the
learning problem for which (13) holds, c0 is the optimal classifier. Denote
this learning problem by D0. We define Dj as the learning problem (dis-
tribution) in the proof (see Section 4.1.1), but with the role of x0 and xj

interchanged. As a result, cj will be the ‘good’ classifier with error rate
µ and c0 will be one of the bad classifiers with rate µ′. Then the good
classifier and one of the bad classifiers will have a different prior proba-
bility, but otherwise nothing changes. Since the proof of Theorem 2 does
not depend on the prior probability of the good classifier – it can be as
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large or small as we like as long as it is greater than 0 –, the proof goes
through unchanged, and for all learning problems Dj, (13) will hold.

We now generate a learning problem Dj by first sampling a classifier
cj according to P (c), and then generating data according to Dj. Then,
no matter what cj we chose, it will be the optimal (‘good’) classifier, and,
as we just showed, (13) will hold. Theorem 1 (with K < 0.05) can now
be applied with D = Dj , and the result follows.

4.4 Proof of Theorem 3

Without loss of generality assume that c0 achieves minc∈C eD(c). Consider
both the 0/1-loss and the log loss of sequentially predicting with the
Bayes predictive distribution P (Yi = · | Xi = ·, Si−1) given by P (yi |
xi, S

i−1) = Ec,θ∼P (·|Si−1)pc,θ(yi|xi). Every time i ∈ {1, . . . ,m} that the

Bayes classifier based on Si−1 classifies yi incorrectly, P (yi | xi, S
i−1)

must be ≤ 1/2 so that − log P (yi | xi, S
i−1) ≥ 1. Therefore, if for some

α > 0, êS(c0) < 0.5 − α, then

m
∑

i=1

− log P (yi | xi, S
i−1) ≥

m
∑

i=1

|yi − cBayes(P,Si−1)(xi)|. (38)

On the other hand we have

m
∑

i=1

− log P (yi | xi, S
i−1) = − log

m
∏

i=1

P (yi | xi, x
i−1, yi−1) =

− log

m
∏

i=1

P (yi | xm, yi−1) = − log

m
∏

i=1

P (yi|xm)

P (yi−1|xm)
= − log P (ym | xm) =

− log
∑

j=0,1,2...

P (ym | xm, cj)P (cj)
(a)

≤

− log P (ym | xm, c0) − log P (c0)
(b)

≤ mH(êS(c0)) + O(log m), (39)

where the constant in the O(log m) term may depend on α. Here inequal-
ity (a) follows because a sum is larger than each of its terms, and (b)
follows by Proposition 2 in the appendix. By the Chernoff bound, for all
small enough ǫ > 0, with probability larger than 1 − 2 exp(−2mǫ2), we
have |êS(c0) − eD(c0)| < ǫ. We now set ǫm = m−0.25. Using the fact that
H(µ) in (39) is continuously differentiable in a neighborhood of µ and
µ < 1/2, it follows that with probability larger than 1 − 2 exp(−2

√
m),
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for all large m,

m
∑

i=1

− log P (yi | xi, S
i−1) ≤ mH(eD(c0)) + Km0.75 + O(log m), (40)

where K is a constant not depending on m. Combining (40) with (38) we
find that with probability ≥ 1−2 exp(−2

√
m),

∑m
i=1 |yi−cBayes(P,Si−1)(xi)| ≤

mH(eD(c0)) + o(m), which is what we had to prove.

5 Technical Discussion

5.1 Variations of Theorem 2 and dependency on the prior

Prior on classifiers The requirement (8) that − log P (ck) ≥ log k +
o(log k) is needed to obtain (25), which is the key inequality in the proof
of Theorem 2. If P (ck) decreases at polynomial rate, but at a degree d
larger than one, i.e. if

− log P (ck) = d log k + o(log k), (41)

then a variation of Theorem 2 still applies but the maximum possible
discrepancies between µ and µ′ become much smaller: essentially, if we
require µ ≤ µ′ < 1

2dH(µ) rather than µ ≤ µ′ < 1
2H(µ) as in Theorem 2,

then the argument works for all priors satisfying (41). Since the derivative
dH(µ)/dµ → ∞ as µ ↓ 0, by setting µ close enough to 0 it is possible
to obtain inconsistency for any fixed polynomial degree of decrease d.
However, the higher d, the smaller µ = infc∈C eD(c) must be to get any
inconsistency with this argument.

Prior on error rates Condition (9) on the prior on the error rates is
satisfied for most reasonable priors. Some approaches to applying MDL
to classification problems amount to assuming priors of the form p(θ∗) = 1
for a single θ∗ ∈ [0, 1] (Section 7). In that case, we can still prove a version
of Theorem 2, but the maximum discrepancy between µ and µ′ may now
be either larger or smaller than H(µ)/2 − µ, depending on the choice of
θ∗.

5.2 Properties of the transformation from classifiers to
distributions

Optimality and Reliability Assume that the conditional distribution of y
given x according to the ‘true’ underlying distribution D is defined for
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all x ∈ X , and let pD(y|x) denote its mass function. Define ∆(pc,θ) as the
Kullback-Leibler (KL) divergence [Cover and Thomas, 1991] between pc,θ

and the ‘true’ conditional distribution pD:

∆(pc,θ) := KL(pD‖pc,θ) = E(x,y)∼D[− log pc,θ(y|x) + log pD(y|x)],

and note that for each fixed c, minθ∈[0,1] ∆(pc,θ) is uniquely achieved for
θ = eD(c) (this follows by differentiation) and satisfies

min
θ

∆(pc,θ) = ∆(pc,eD(c)) = H(eD(c)) − KD, (42)

where KD = E[− log pD(y|x)] does not depend on c or θ, and H(µ) is the
binary entropy.

Proposition 1. Let C be any set of classifiers, and let c∗ ∈ C achieve
minc∈C eD(c) = eD(c∗).

1. If eD(c∗) < 1/2, then

min
c,θ

∆(pc,θ) is uniquely achieved for (c, θ) = (c∗, eD(c∗)).

2. minc,θ ∆(pc,θ) = 0 iff pc∗,eD(c∗) is ‘true’, i.e. if ∀x, y : pc∗,eD(c∗)(y|x) =
pD(y|x).

Proof. Property 1 follows from (42) and the fact that H(µ) is mono-
tonically increasing for µ < 1/2. Property 2 follows directly from the
information inequality [Cover and Thomas, 1991], using the fact that we
assume pD(y|x) to be well-defined for all x, which implies that X has a
density pD(x) with pD(x) > 0 for all x.

Proposition 1 implies that the transformation is a good candidate for
turning classifiers into probability distributions.

Namely, let P = {pα : α ∈ A} be a set of i.i.d. distributions indexed by
parameter set A and let P (α) be a prior on A. By the law of large numbers,
for each α ∈ A, −m−1 log pα(ym | xm)P (α) − KD → KL(pD‖pα). By
Bayes rule, this implies that if the class P is ‘small’ enough so that the
law of large numbers holds uniformly for all pα ∈ P, then for all ǫ > 0,
the Bayesian posterior will concentrate, with probability 1, on the set of
distributions in P within ǫ of the p∗ ∈ P minimizing KL-divergence to D.
In this case, if C is ‘simple’ enough so that the corresponding P = {pc,θ :
c ∈ C, θ ∈ [0, 1]} admits uniform convergence [Grünwald, 1998], then the
Bayesian posterior asymptotically concentrates on the pc∗,θ∗ ∈ P = {pc,θ}
closest to D in KL-divergence. By Proposition 1, this pc∗,θ∗ corresponds
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to the c∗ ∈ C with smallest generalization error rate eD(c∗) (pc∗,θ∗ is
optimal for 0/1-loss), and for the θ∗ ∈ [0, 1] with θ∗ = eD(c∗) (pc∗,θ∗ gives
a reliable impression of its prediction quality). This convergence to an
optimal and reliable pc∗,θ∗ will happen if, for example, C has finite VC-
dimension [Grünwald, 1998]. We can only get trouble as in Theorem 2 if
we allow C to be of infinite VC-dimension.

Analogy to Regression In ordinary (real-valued) regression, Y = R, and
one tries to learn a function f ∈ F from the data. Here F is a set of
candidate functions X → Y. In order to apply Bayesian inference to this
problem, one assumes a probability model P expressing Y = f(X) +
Z, where Z is independent noise with mean 0 and variance σ2. P then
consists of conditional density functions pf,σ2 , one for each f ∈ F and
σ2 > 0. It is well known that if one assumes Z to be normally distributed
independently of X, then the pf,σ2 become Gaussian densities and the log
likelihood becomes a linear function of the mean squared error [Rissanen,
1989]:

− ln pf,σ2(yn | xn) = βσ

n
∑

i=1

(yi − f(xi))
2 + n ln Z(βσ). (43)

where we wrote βσ = 1/2σ2 and Z(β) =
∫

y∈Y exp(−βy2)dy. Because least
squares is an intuitive, mathematically well-behaved and easy to perform
procedure, it is often assumed in Bayesian regression that the noise is
normally distributed – even in cases where in reality, it is not [Grünwald,
1998, Kleijn and van der Vaart, 2004].

Completely analogously to the Gaussian case, the transformation used
in this paper maps classifiers c and noise rates θ to distributions pc,θ so
that the log likelihood becomes a linear function of the 0/1-error, since
it can be written as:

− ln pc,θ(y
n | xn) = βθ

n
∑

i=1

|yi − c(xi)| + n lnZ(βθ). (44)

where we wrote βθ = ln(1 − θ) − ln θ and Z(β) =
∑

y∈Y exp(−βy)
[Grünwald, 1998, Meir and Merhav, 1995]. Indeed, the models {pc,θ} are
a special case of logistic regression models, which we now define:

Logistic regression interpretation let C be a set of functions X → Y, where
Y ⊆ R (Y does not need to be binary-valued). The corresponding logistic
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regression model is the set of conditional distributions {pc,β : c ∈ C;β ∈
R} of the form

pc,β(y 6= x | x) :=
e−β|y−c(x)|

1 + e−β
(45)

This is the standard construction used to convert classifiers with real-
valued output such as support vector machines and neural networks into
conditional distributions [Jordan, 1995, Tipping, 2001], so that Bayesian
inference can be applied. By setting C to be a set of {0, 1}-valued clas-
sifiers, and substituting β = ln(1 − θ) − ln θ as in (44), we see that the
construction is a special case of the logistic regression transformation
(45). It may seem that (45) does not treat y = 1 and y = 0 on equal
footing, but this is not so: we can alternatively define a symmetric ver-
sion of (45) by defining, for each c ∈ C, a corresponding c′ : X → {−1, 1},
c′(x) := 2c(x) − 1. Then we can set

pc,β(1 | x) :=
eβc(x)

eβc(x) + e−βc(x)
; pc,β(−1 | x) :=

e−βc(x)

eβc(x) + e−βc(x)
. (46)

By setting β = 2β′ we see that pc,β as in (45) is identical to pc,β′ as in
(46), so that the two models really coincide.

6 Interpretation from a Bayesian perspective

We already addressed several questions concerning the relevance of our re-
sult directly below Corollary 1. Here we provide a more in-depth analysis
from a Bayesian point of view.

6.1 Bayesian Consistency

It is well-known that Bayesian inference is strongly consistent under very
broad conditions ([Doob, 1949, Blackwell and Dubins, 1962]; see also
[Barron, 1985]). Such Bayesian consistency results take on a particularly
strong form if the set of distributions under consideration is countable.
In our setting we can achieve this by adopting a discrete prior satisfying
(11). In that case, the celebrated [Doob, 1949] consistency theorem6 says
the following for our setting. Let C be countable and suppose D is such
that, for some c∗ ∈ C and θ∗ ∈ [0, 1] ∩ Q, pc∗,θ∗ is equal to pD, the true
distribution/ mass function of y given x. Then with D-probability 1, the
Bayesian posterior concentrates on c∗: limm→∞ P (c∗ | Sm) = 1.

6 In particular, see Eq. (3.6) in [Doob, 1949] combined with the remark at the end of
Section 3 of Doob’s paper.
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Consider now the learning problem underlying Theorem 2 as described
in Section 4.1. Since c0 achieves minc∈C eD(c), it follows by part 1 of
Proposition 1 that minc,θ ∆(pc,θ) = ∆(pc0,eD(c0)). If ∆(pc0,eD(c0)) were 0,
then by part 2 of Proposition 1, Doob’s theorem would apply, and we
would have P (c0 | Sm) → 1. Theorem 2 states that this does not happen.
It follows that the premise ∆(pc0,eD(c0)) = 0 must be false. But since
∆(pc,θ) is minimized for (c0, eD(c0)), the Proposition implies that for no
c ∈ C and no θ ∈ [0, 1] ∩ Q, pc,θ is equal to pD(·|·) - in statistical terms,
the model P = {pc,θ : c ∈ C, θ ∈ [0, 1]∩Q} is misspecified. Thus, the result
can be interpreted in two ways:

1. ‘ordinary’ Bayesian inference can be inconsistent under misspecifi-
cation: We exhibit a simple logistic regression model P and a true
distribution D such that, with probability 1, the Bayesian posterior
does not converge to the distribution pc0,eD(c0) ∈ P that minimizes,
among all p ∈ P, the KL-divergence to D (equivalently, pc0,eD(c0) min-
imizes the D-expected log loss among all distributions in P). Thus,
the posterior does not converge to the optimal pc0,eD(c0) even though
pc0,eD(c0) has substantial prior mass and is partially correct in the
sense that c0, the Bayes optimal classifier relative to pc0,eD(c0), has
true error rate eD(c0), which is the same true error rate that it would
have if pc0,eD(c0) were ‘true’.

2. ‘pragmatic’ Bayesian inference for classification can be suboptimal :
a standard way to turn classifiers into distributions so as to make
application of Bayesian inference possible may give rise to suboptimal
performance.

6.2 Two types of misspecification

pc0,eD(c0) can be misspecified in two different ways. To see this, note that
pc0,eD(c0) expresses that

y = c0(x) xor z, (47)

where z is a noise bit generated independently of x. This statement may
be wrong under distribution D either because (a) c0 is not the Bayes
optimal classifier according to D; or (b) c0 is Bayes optimal, but z is
dependent on x under D. Let us consider both of them in more detail.

(a) no Bayes optimal classifier in C The way we defined the learning
problem D used in the proof of Theorem 2 (Section 4.1) is an example
of this case.
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This type of misspecification is subtle, because if we consider the
optimal c0 in isolation, ignoring the features Xi which do not influence
the prediction made by c0, then the conditional distribution P (Y =
1 | c0(X), θ∗) becomes correct after all, in the sense that it is identical
to the true conditional probability. That is: for all x0 ∈ {0, 1}, we have

pc0,eD(c0)(Y = 1 | X0 = x0) = Pr
X,Y ∼D

(Y = 1 | c0(X) = x0,X0 = x0),

so pc0,eD(c0)(· | X0 = x0) is ‘true’. This may imply that the set of
distributions corresponding to C is well-specified, since c0 only ‘listens’
to feature X0. Yet still, misspecification occurs because for some x ∈
{0, 1}∞,

pc0,eD(c0)(Y = 1 | X = x)6= Pr
X,Y ∼D

(Y = 1 | c0(X) = x0,X = x).

(b) C contains Bayes act, but D is heteroskedastic It may seem that
our theorem is only applicable to misspecification of type (a). But it
is easy to see that it is just as applicable to the - arguably less serious
- misspecification of type (b). Namely, in the proof of Theorem 2 (Sec-
tion 4.1), we could have equally used the following slightly modified
learning problem : step 1 and step 2 remain identical, so c1, c2, . . . are
defined as before. The optimal c0 is now defined by modifying step 3
as follows: for an easy example, we set x0 = y. For a hard example, we
set x0 = |1− y| with probability µ/2µ′. Then the proof of Theorem 2
holds unchanged. But now c0 is the Bayes optimal classifier relative
to D, as is easy to see.

6.3 Why is the result interesting for a Bayesian?

Here we answer several objections that a cautious Bayesian might have
to this work.

6.3.1 Bayesian inference has never been designed to work un-
der misspecification. So why is the result relevant?
We would maintain that in practice, Bayesian inference is applied all the
time under misspecification in classification problems [Grünwald, 1998].
It is very hard to avoid misspecification with Bayesian classification, since
the modeler often has no idea about the noise-generating process. Even
though it may be known that noise is not homoskedastic, it may be prac-
tically impossible to incorporate all ways in which the noise may depend
on x into the prior.
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6.3.2 It is already well-known that Bayesian inference can be
inconsistent even if P is well-specified, i.e. if it contains D [Dia-
conis and Freedman, 1986, Barron, 1998]. So why is this result
interesting?
The (in)famous inconsistency results by [Diaconis and Freedman, 1986]

are based on nonparametric inference with uncountable sets P. It follows
from [Barron, 1998] that their theorems require that the true distribution
D has ‘extremely small’ prior density in the following sense: the prior mass
of ǫ-Kullback-Leibler balls around D is exponentially small in 1/ǫ. Since
such priors do not allow one to compress the data, from an MDL per-
spective it is not at all surprising that they lead to inconsistent inference
[Barron, 1998]. In contrast, in our result, rather than small prior densities
we require misspecification. Since Diaconis and Freedman do not require
misspecification, in a sense, our result is weaker. On the other hand, in
our setting, the prior on the p ∈ P closest in KL divergence to the true
conditional distribution pD can be arbitrarily close to 1, whereas Diaconis
and Freedman require the prior of the ‘true’ pD to be exponentially small
in the sense explained above. In this sense, our result is stronger than
theirs.

Barron [1998] exhibits an example of Bayesian inconsistency that is
closer in spirit to ours. In his example, the prior density of KL-neighborhoods
of the true D can be substantial. Nevertheless, his example requires that
P contains uncountably many distributions. It is not possible to extend
Barron’s example to a case with only countably many distributions, since
in that case, the posterior must concentrate7 on the true D by Doob’s
result. Our result shows that even in the countable case, as soon as one
allows for slight misspecification, the posterior may not converge to the
best distribution in P. Indeed, by an appropriate setting of the parame-
ters µ and µ′ it is seen from Theorem 2 that for every ǫ > 0, no matter
how small, we can exhibit a D with

min
c,θ

KL(pD‖pc,θ) = ǫ

for which Bayes is inconsistent with D-probability 1. This is interest-
ing because even under misspecification, Bayes is consistent under fairly
broad conditions [Bunke and Milhaud, 1998, Kleijn and van der Vaart,
2004], in the sense that the posterior concentrates on a neighborhood of
the distribution that minimizes KL-divergence to the true D. We showed

7 More precisely, the posterior mass on the set of all distributions in P that are
mutually singular with D must go to 0 with D-probability 1.
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that if such conditions are violated, then consistency may fail dramati-
cally. Thus, we feel our result is relevant at least from the inconsistency
under misspecification interpretation.

6.3.3 So how can the result co-exist with theorems establishing
Bayesian consistency under misspecification?
Such results are typically proved under either one of the following two

assumptions:

1. The set of distributions P is ‘simple’, for example, finite-dimensional
parametric. In such cases, ML estimation is usually also consistent -
thus, for large m the role of the prior becomes negligible. In case P
corresponds to a classification model C, this would occur if C were
finite or had finite VC-dimension for example.

2. P may be arbitrarily large or complex, but it is convex : any finite
mixture of elements of P is an element of P. An example is the family
of Gaussian mixtures with an arbitrary but finite number of compo-
nents. Theorem 5.5 of [Li, 1997] shows that for general convex i.i.d.
families (not just Gaussian mixtures), under conditions on the priors,
two-part MDL (essentially the version of MDL that we consider here)
is consistent in the sense of expected Kullback-Leibler risk. Although
we have no formal proof, Li’s result strongly suggests that with such
priors, the Bayesian MAP and full Bayesian approach will also be
consistent.

Our setup violates both conditions: C has infinite VC-dimension, and the
corresponding P is not closed under taking mixtures. The latter issue is
discussed further in Example 1.

6.3.4 How ‘standard’ is the conversion from classifiers to prob-
ability distributions on which the results are based?
One may argue that the notion of ‘converting’ classifiers into probability
distributions is not always what Bayesians do in practice. For classifiers
which produce real-valued output, such as neural networks and support
vector machines, the transformation coincides with the logistic regres-
sion transformation, which is a standard Bayesian tool; see for example
[Jordan, 1995, Platt, 1999, Tipping, 2001]. But the theorems are based
on classifiers with 0/1-output. With the exception of decision trees, such
classifiers have not been addressed frequently in the Bayesian literature.
Decision trees have usually been converted to conditional distributions
somewhat differently: one uses the same logistic transformation as we do,
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but one assumes a different noise rate in each leaf of the decision tree
[Heckerman et al., 2000]; thus, the transformation is done locally for each
leaf rather than globally for the whole hypothesis. Since the noise rate can
depend on the leaf, the set of all decision trees of arbitrarily length on a
given input space X coincides with the set of all conditional distributions
on X . Thus it avoids the misspecification, and therefore the inconsistency
problem, but at the cost of using a much larger model space.

Thus, here is a potentially weak point in the analysis: we use a trans-
formation that has mostly been applied to real-valued classifiers, whereas
here the classifiers are 0/1-valued. Nevertheless, to get an idea of how rea-
sonable our transformation is, we simply tested it with three professing
Bayesians. We did this in the following way: we first described the set of
classifiers C used in the learning problem, and we said that we would like
to perform Bayesian inference based on some prior over C. We then asked
the Bayesian how (s)he would handle this problem. All three Bayesians
said that they would construct conditional distributions according to the
logistic transformation, just as we did. We take this as evidence that
the logistic transformation is reasonable, even for classifiers with binary
outputs.

Whether the inconsistency results can be extended in a natural way
to classifiers with real-valued output such as support vector machines
remains to be seen. The fact that the Bayesian model corresponding to
such neural networks will still typically be misspecified strongly suggests
(but does not prove) that similar scenarios may be constructed.

6.3.5 Is there an alternative, more sophisticated transforma-
tion that avoids inconsistencies? Even though the transformation we
perform is standard, there may exist some other method of transforming
a set of classifiers+prior into a set of distributions+prior that avoids the
problems. There are only two obvious options which suggest themselves:

1. Avoiding Misspecification First, we can try to avoid misspecifica-
tion; then by the strong Bayesian consistency theorems referred to in
Question 6.3.2, we should be guaranteed to converge to the optimal
classifier. However, as we explain below, this is often not practical.

2. Ensuring P is Convex Second, rather than using the set of trans-
formed classifiers P, we could put a prior on its convex closure P (this
is the set of all finite and infinite mixture distributions that can be
formed from elements of P. Note in particular that P and P are sets
of distributions defined on one outcome, not on a sample of m > 1
outcomes). Then, we can once again apply the consistency theorem for
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convex P referred to in Question 6.3.3, and we should be guaranteed
to converge to the optimal distribution. Computational difficulties
aside, this approach will not work, because now the distribution we
converge to may not be the distribution we are interested in, as we
describe further below.

Thus, the only two straightforward solutions to the transformation prob-
lem are either impractical or do not work. We discuss both of these in
detail below. There may of course exist some clever alternative method
that avoids all problems, but we have no idea how it would look like.

1. Can we ensure consistency by avoiding misspecification? ¿From a sub-
jective Bayesian perspective, one might require the learning agent to think
hard enough about his or her prior probabilities so that the set of condi-
tional distribution P does contain D, the true state of nature. In practice
this means that one should ensure that C contains the Bayes optimal clas-
sifier with respect to D, and that P should contain distributions in which
the noise z (Equation (47)) can depend on the feature value x. In prac-
tical machine learning applications one will often have no idea how the
Bayes optimal classifier behaves or how the noise depends on x. Thus, the
only way to proceed seems to design a prior on all possible classifiers and
all possible noise rate functions. Now the inconsistency problem is solved,
because the (‘nonparametric’) model thus constructed is guaranteed to
contain the true (conditionalized) distribution D, so common Bayesian
consistency theorems (see above) apply. However, the cost may be enor-
mous: the model space is now much larger and it seems that a lot more
data may be needed before a reasonable approximation of D is learned
– although interestingly, recent work by M. Hutter [2005] suggests that
under suitable priors, reasonable approximations may be learned quite
fast. It is not clear whether or not something like this can be done in our
context.

2. Can we ensure consistency by using convex models? Suppose we first
use the logistic transformation to transform the classifiers C into a set
of conditional distributions P, and we then put a prior on its convex
closure P and use Bayesian inference based on P . Now , Li’s result (Sec-
tion 6.3.3) suggests that the Bayesian posterior predictive distribution is
(under weak conditions on the prior) guaranteed to converge to the closest
distribution p∗ to D within P, as measured in KL-divergence. However,
as the following example shows, p∗ may end up having larger generaliza-
tion error (expected 0/1-loss) than the optimal classifier c∗ in the set C
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on which P was based. Thus, existing theorems suggest that with a prior
on P , the Bayesian posterior will converge, but below we show that if it
does converge, then it will sometimes converge to a distribution that is
suboptimal in the performance measure we are interested in.

Example 1 (classification error and taking mixtures). We consider the fol-
lowing learning problem. There are three classifiers C = {c1, c2, c3} and
three features X1,X2,X3 taking values in {0, 1}. Each classifier simply
outputs the value of the corresponding feature. The underlying distribu-
tion D is constructed as follows. We distinguish between three ‘situations’
s1, s2, s3 (these are the values of some random variable S′ ∼ D that is
not observed). To construct an example (x, y), we first flip a fair coin to
determine y, so y = 1 with probability 1/2. We then flip a fair three-sided
coin to determine what situation we are in, so S′ = sj with probability
1/3, for j ∈ {1, 2, 3}. Now if we happen to be in situation sj, we

1. Set xj = y (so cj will predict Y correctly).
2. Flip a fair coin, determine the outcome z ∈ {0, 1}, and set xj′ = z for

the two values of j′ ∈ {1, 2, 3} that are not equal to j.

Thus, the value of xj′ is determined completely at random, but must be
the same for both features not equal to j. We thus have for j = 1, 2, 3:

eD(cj) =
1

3
· 0 +

2

3
· 1

2
=

1

3
, (48)

KL(pD‖pcj ,eD(c)) = E(x,y)∼D[− log pcj,eD(cj)(y|x) + log pD(y|x)] =

H(eD(cj)) − KD = H(
1

3
) − KD > .9 − KD. (49)

Equation (49) follows by (42), and as in that equation, H is the binary
entropy as defined above Theorem 2, and KD is the conditional entropy
of y given x according to D, which does not depend on j.

Thus, the distribution(s) in P := {pcj ,θ | j ∈ {1, 2, 3}, θ ∈ [0, 1]}
closest to the underlying D in KL-divergence have KL divergence H(1

3 )−
KD to D.

Now consider the set of conditional distributions P defined as the
convex closure of P. It is easy to see that each element of P can be
written as a three-component mixture

pα,θ := α1pc1,θ1 + α2pc2,θ2 + α3p(c3, θ3),

for some vector α = (α1, α2, α3) with nonnegative entries summing to 1,
and (θ1, θ2, θ3) with nonnegative entries ≤ 1. Thus, the distribution in P
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that is closest to D in KL divergence is the distribution that achieves the
minimum over α and θ of the expression

KL(pD‖pα,θ) = E(x,y)∼D[log
1

pα,θ(y|x)
] − KD. (50)

This expression is uniquely minimized for some p∗ with parameters

α∗
1 = α∗

2 = α∗
3 =

1

3
and some θ∗ ∈ [0, 1] with θ∗ = θ1 = θ2 = θ3. (51)

To see this, note that by symmetry of the problem, KL(pD‖pα,θ) =
KL(pD‖pα′,θ′) where α

′ := (α2, α1, α3) and θ
′ := (θ2, θ1, θ3). Since P

is closed under mixing, for any γ ∈ [0, 1], pγ := γpα,θ + (1 − γ)pα′,θ′

must be in P . By strict convexity of KL divergence [Cover and Thomas,
1991] and symmetry of the problem, KL(pD‖pγ) is uniquely minimized
for γ = 1/2, and then pγ satisfies α1 = α2 and θ1 = θ2. In the same way
one shows that the minimizing α and θ have to satisfy α2 = α3, θ2 = θ3

and α1 = α3, θ1 = θ3, and (51) follows. Now plugging the minimizing
parameters (51) into (50) gives

KL(pD‖p∗) = min
θ∈[0,1]

KL(pD‖pα∗,θ∗) =

min
θ

−1

2
[log(1 − θ) + log(1 + θ)− log 3]−KD =

1

2
log 3−KD < .8−KD ,

(52)

which is strictly smaller than (49). Therefore, while (a) Li’s consistency
result (Section 6.3.3) for convex P suggests that both the Bayesian pos-
terior and Bayesian MAP conditional distribution will converge (in ex-
pected KL-divergence), to p∗, it turns out that, (b) the classification error
rate of the Bayes classifier cp∗ corresponding to the resulting conditional
distribution p∗ is equal to

Ex,y∼D[|y − cp∗(x)|] =

[

1

2
· 1 +

1

2
· 0

]

=
1

2
,

which is worse than the optimal classification error rate that can be ob-
tained within P: since P ⊂ P, by (48) this error rate must be ≤ 1/3.

Concluding, with D-probability 1, for large m, the error rate of the
Bayes classifier based on the Bayesian posterior relative to P will have
classification error that is larger than that of the Bayesian posterior rela-
tive to P: it is clear that by enlarging the model P to its convex closure,
rather than sometimes not converging at all, we may now converge to
a suboptimal distribution: instead of solving the problem, we merely re-
placed it by another one.
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6.3.6 Isn ’t the example just ”unnatural”? Upon hearing our
results, several people objected that our learning problem is “unnatural”.
We agree that it is unlikely that one will ever deal with such a scenario
in practice. However, this does not rule out the possibility that related
phenomena do occur in more practical settings; see [Clarke, 2004] for an
example in a regression context. Part of the problem here is of course
that it is not really clear what “unnatural” means. Indeed, it is certainly
not our aim to show that “Bayesian inference is bad”. Instead, one of our
main messages is that more research is needed to determine under what
types of misspecification Bayes performs well, and under what types it
does not.

7 Interpretation from an MDL Perspective

We now discuss the interpretation of our result from an MDL Perspective.
Similar to the Bayesian analysis, we do this by answering objections that
a cautious description length minimizer might have to this work.

7.1.1 Why is the two-part code (7) the appropriate formula to
work with? Shouldn’t we use more advanced versions of MDL
based on one-part codes? Equation (7) has been used for classification
by various authors; see, e.g., [Rissanen, 1989, Quinlan and Rivest, 1989]
and [Kearns et al., 1997]. [Grünwald, 1998, Chapter 5] first noted that in
this form, by using Stirling’s approximation, (7) is essentially equivalent
to MAP classification based on the models pc,θ as defined in Section 2. Of
course, there exist more refined versions of MDL based on one-part rather
than two-part codes [Barron et al., 1998]. To apply these to classification,
one somehow has to map classifiers to probability distributions explicitly.
This was already anticipated by Meir and Merhav [1995] who used the
transformation described in this paper to define one-part MDL codes. The
resulting approach is closely related to the Bayesian posterior approach
cBayes(P,S), suggesting that a version of the inconsistency Theorem 2 still
applies. Rissanen [1989] considered mapping classifiers C to distributions
{pc,θ∗} to a single value of θ∗, e.g., θ∗ = 1/3. As discussed in Section 5.1,
a version of Theorem 2 still applies to the resulting distributions.

We should note that both Wallace and Patrick [1993] and Quinlan and
Rivest [1989] really use an extension of the coding scheme expressed by
(7), rather than the exact formula (7) itself: both publications deal with
decision trees, and apply (7) on the level of the leaf nodes of the decision
trees. The actual codelength for the data given a decision tree becomes a
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sum of expressions of the form (7), one for each leaf. This means that they
are effectively estimating error rates separately for each leaf. Since their
model consists of the set of all decision trees of arbitrary depth, they can
thus essentially model almost any conditional distribution of Y given X.
This makes their approach nonparametric, and therefore, broadly speak-
ing, immune to misspecification as long as data are i.i.d., and therefore
immune to our results: inconsistency can only arise if the coding scheme
(7) is applied to a model that can only present homoskedasticity, whereas
the data generating distribution is heteroskedastic. It is not clear though
whether the use of nonparametric models such as decision trees always
solves the problem in practice, as we already discussed in Section 6.3.5.,
Question 1. As a further (but inessential) difference, Quinlan and Rivest
[1989] use one extra bit on top of (7) for each leaf node of the decision
tree. Wallace and Patrick [1993] point out that this is unnecessary, and
use more general codes based on Beta-priors, of which our code (7) is a
special case, obtained with the uniform prior (see Proposition 2 in the
Appendix). As can be seen from the proof of Theorem 2, the use of gen-
eral Beta-priors in the definition of MDL will not affect the inconsistency
result.

7.1.2 Does the coding scheme for hypotheses make sense from
an MDL perspective? MDL theory prescribes the design of codes for
hypothesis spaces (roughly corresponding to priors) that minimize worst-
case regret or redundancy [Barron et al., 1998, Grünwald, 2007] of the
resulting codelength of hypothesis + data. It may seem that our coding
scheme for hypotheses does not satisfy this prescription. But in fact, it
does: if no natural grouping of the hypotheses in subclasses exists (such as
with Markov chains, the class of k-th order Markov chains being a natural
subclass of the class of k+1-st order chains), then the ‘best’, from an MDL
perspective, code one can assign is a code such that the code length of ci

goes to infinity as slowly as possible with increasing index i [Grünwald,
2007], such as Rissanen’s universal code for the integers (Equation 8).
But this is exactly the type of codes to which our Theorem 2 applies!

Lest the reader disagree with this: according to ‘standard’ MDL the-
ory, if P is well-specified and countable then the coding scheme should
even be asymptotically irrelevant: any coding scheme for the hypothe-
sis where the codelength of any P ∈ P does not depend on n, will lead
to asymptotically consistent MDL inference under very weak conditions
[Barron and Cover, 1991]; see also Chapter 5, Theorem 5.1 of [Grünwald,
2007]. Special types of codes minimizing worst-case regret are only needed
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to speed up up learning with small samples; for large samples, any code
will do. Thus, our result shows that if a set of classifiers C is used (corre-
sponding to a misspecified probability model P), then the choice of prior
becomes of crucial importance, even with an infinite amount of data.

7.1.3 It seems that MDL can already be inconsistent even if P

is well-specified. So why is the result interesting? This question
mirrors Question 6.3.2. In Section 1.2 of [Wallace and Dowe, 1999b], a
very simple problem is discussed for which a straightforward implemen-
tation of a two-part code estimator behaves quite badly, even though the
true distribution is contained in the model P, and P only contains 1
continuous-valued parameter. This suggests that MDL may be inconsis-
tent in a setting that is much simpler than the one we discuss here. But
this is not quite the case: if the true distribution is contained in P, then
any two-part code will be asymptotically consistent, as long as the code
is ‘universal’; see Theorem 15.3 in Chapter 15 of [Grünwald, 2007]. Under
the definition of MDL that has generally been adopted since Barron et al.
[1998], an estimator based on a two-part code can only be called ‘MDL
estimator’ if the code is universal. Thus, it may either be the case that the
two-part code defined by Wallace and Dowe [1999b] is not universal, and
hence not an MDL code, or their two-part code must be asymptotically
consistent after all. We suspect that the latter is the case. From an MDL
perspective, the interest in our example is that, under misspecification,
we can get inconsistency, even though we do use a universal two-part
code.

7.1.4 Haven’t Kearns et al. [1997] already shown that MDL is
no good for classification? It may seem that the results are in line
with the investigation of Kearns et al. [1997]. This, however, is not clear –
Kearns et al. consider a scenario in which two-part code MDL for classifi-
cation shows quite bad experimental performance for large (but not infi-
nite!) sample sizes. However, according to Viswanathan et al. [1999], this
is caused by the coding method used to encode hypotheses. This method
does not take into account the precision of parameters involved (whereas
taking the precision into account is a crucial aspect of MDL!). In the
paper [Viswanathan et al., 1999], a different coding scheme is proposed.
With this coding scheme, MML (an inference method that is related to
MDL, see below) apparently behaves quite well on the classification prob-
lem studied by Kearns et al. In contrast to Kearns’ example, in our case
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(a) there is no straightforward way to improve the coding scheme; (b)
MDL fails even on an infinite sample.

7.1.5 What about MML? The Minimum Message Length (MML)
Principle [Wallace and Boulton, 1968, Comley and Dowe, 2005, Wal-
lace, 2005] is a method for inductive inference that is both Bayesian and
compression-based. The similarities and differences with MDL are sub-
tle; see, for example, Section 10.2 of [Wallace, 2005] or Section 17.4 of
[Grünwald, 2007], or [Wallace and Dowe, 1999a,b]. An anonymous referee
raised the possibility that MML may be consistent for the combination
of the learning problem and the misspecified probability model discussed
in this paper. We suspect that this is not the case, but we are not sure
of this, and for the time being, the question of whether or not MML can
be inconsistent under misspecification in classification contexts remains
open. For the well-specified case, it is conjectured on page 282 of [Wallace
and Dowe, 1999a] that only MML or closely related techniques can in-
fer fully-specified models with both statistical consistency and invariance
under one-to-one parameterization.

Related Work Yamanishi [1998] and Barron [1990] proposed modifications
of the two-part MDL coding scheme so that it would be applicable for
inference with respect to general classes of predictors and loss functions,
including classification with 0/1-loss as a special case. Both Yamanishi
and Barron prove the consistency (and give rates of convergence) for their
procedures. Similarly, McAllester’s (1999) PAC-Bayesian method can be
viewed as a modification of Bayesian inference that is provably consistent
for classification, based on sophisticated extensions of the Occam’s Ra-
zor bound, Theorem 4. These modifications anticipate our result, since it
must have been clear to the authors that without the modification, MDL
(and discrete Bayesian MAP) are not consistent for classification. Never-
theless, we seem to be the first to have explicitly formalized and proved
this.

8 Conclusion and Future Work

We showed that some standard versions of MDL and Bayesian inference
can be inconsistent for a simple classification problem, and we extensively
discussed the interpretation of this result. As possible future work, it
would be interesting to investigate
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1. Whether there is a more natural learning problem, especially a more
natural feature space, with respect to which an analogue to our result
still holds.

2. Whether a similar result holds for regression rather than classification
problems. We conjecture that the answer is yes, but the suboptimality
will be less dramatic.
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Appendix: Proposition 2 and its Proof

Proposition 2. Consider any given sample S of arbitrary size m.

1. Let c ∈ C be an arbitrary classifier and let P (θ|c) be given by the
uniform prior with P (θ | c) ≡ 1. Then

− log P (ym | xm, c) = − log

∫ 1

0
P (ym | xm, c, θ)dθ =

log(m + 1) + log

(

m

mêS(m)

)

. (53)

so that, if the uniform prior is used, then cmdl(P,S) = csmp.
2. Suppose that P (θ | c) satisfies (9) or (11), and that for some α > 0,

êS(c) < 0.5 − α. Then

mH(êS(c)) = log
1

P (ym | xm, c, êS(c))
≤ log

1

P (ym | xm, c)
≤

log
1

P (ym | xm, c, êS(c))
+ fα(m) = mH(êS(c)) + fα(m), (54)
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where fα(m) = O(log m), and the constant in the O-term may depend
on α.

Proof. We recognize the integral in (53) as being a beta-integral. Straight-
forward evaluation of the integral (e.g. by partial integration) gives the
result of part (1). For part (2), the leftmost and rightmost equalities follow
by straightforward rewriting. The first inequality follows because

log
1

P (ym | xm, c)
= log

1
∫

P (ym | xm, c, θ)P (θ)dθ
≥ log

1

P (ym | xm, c, êS(c))
,

since the likelihood P (ym | xm, c, θ) is maximized at θ = êS(c). For the
second inequality, we first consider the case that P (θ|c) satisfies (9). Then
using (53),

log
1

P (ym | xm, c)
≤ − log

∫ 0.5

0
P (ym | xm, c, θ)dθ − log γ ≤

− log

∫ 1

0
P (ym | xm, c, θ)dθ + log

∫ 1
0 P (ym | xm, c, θ)dθ

∫ 0.5
0 P (ym | xm, c, θ)dθ

− log γ =

log(m + 1) + log

(

m

mêS(m)

)

− log γ + o(1), (55)

where the constant in the o(1) depends on α. The result for P (θ) satisfying
(9) now follows upon noting that for all s ∈ {0, 1, . . . ,m}, mH(s/m) ≥
log

(m
s

)

. This is the case because mH(s/m) is the number of bits needed
to encode m outcomes with s ones, using a Bernoulli distribution with
parameter s/m; whereas log

(

m
s

)

is the number of bits needed to encode
m outcomes with s ones, using a Bernoulli distribution with parameter
s/m, conditioned on the relative frequency of 1s being s/m – thus, the
same sequence is encoded using the same code, but conditioned on extra
information, so that equally many or less bits are needed.

Now consider the case that P (θ|c) satisfies (11). Then

P (ym | xm, c) =
∑

θ∈[0,1]∩Q

P (ym | xm, c, θ)P (θ|c) ≥

P (ym | xm, c, êS(c))P (êS(c) = θ|c) ≥ P (ym | xm, c, êS(c))K1m
−K2, (56)

for some constants K1 and K2. The result now follows by taking negative
logarithms.
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