COVER TREES FOR NEAREST NEIGHBOR

ALINA BEYGELZIMER, SHAM KAKADE, AND JOHN LANGFORD

ABSTRACT. We present a tree data structure for fast nearest neighbor operaiigenerah-point metric
spaces. The data structure requié#s:) spaceregardlessof the metric’s structure. If the point set has an
expansion constant > 2 in the sense of Karger and Ruhl [KRO2], the data structure can beraotesi
in O (c°nlogn) time. Nearest neighbor queries obeying the expansion bound requit&’ logn) time.

In addition, the nearest neighbor 6f(n) points can be queried i®(c'®n) time. We experimentally test
the algorithm showing speedups over the brute force search varyimgdre 1 and 2000 on natural machine
learning datasets.

1. INTRODUCTION

Nearest neighbor search is a fundamental problem with a number ofajppiigin peer-to-peer networks,
lossy data compression, vision, dimensionality reduction, computational pjateachine learning, and
physical simulation. The standard setting is as follows: Given &'satn points in some metric space
(X, d), the problem is to preprocessso that given a query point € X, one can efficiently find a point
g € S which minimizesd(p, ¢). For general metrics, finding (or even approximating) the nearesthbaigh
of a point require$2(n) time. However, the metrics and datasets of practical interest typically have so
structure which may be exploited to yield significant computational speedups.

Most research has focused on the special case when the metric is Bocliddhough many strong
theoretical guarantees have been made here, this case is quite limiting inty eBsiettings when the data
do not naturally lie in a Euclidean space or when the data is embedded in aimighsibnal space, but has
a low dimensional intrinsic structure [TSL0OO, RS00] (as is common in many maddénning problems).

Several notions of metric structure and algorithms exploiting this structure een proposed [Cla99,
KR02, KLO4a]. Karger and Ruhl [KR02] stated a notion of the intrinsic disienality of a dataset and
an efficient randomized algorithm for metric spaces in which this dimension i8. skr@uthgamer and
Lee [KLO4a] suggested a more robust notion of intrinsic dimensionalitye(bas the theory of analysis
in metric spaces [GKLO03]), and presented a simpler deterministic data seucalled anavigating net
that is efficient with respect to this notion. A navigating net is a leveled dudestgclic graph where each
consequent level “covers” the dataset on a finer scale; adjaces l@ne connected by pointers allowing
navigation between scales. Both of these algorithms ez) query time (assuming the Karger-Ruhl
abstract dimension is constant).

In machine learning applications, most of these theoretically appealing algsréte not used in prac-
tice (in both the Euclidean and the general case) for a variety of readdren the Euclidean dimension is
small, one typical approach uses KD-trees (see [FBL77]). If the metrionsEuclidean (or the Euclidean
dimension is largepall treesfOmMo87] [UhI91] provide compelling performance in many practical applica-
tions [GMOO0]. These methods currently have only trivial query time guaesofO(n), although improved
performance may be provable given some form of structure.

We propose a simple data structurescaer tree for exact and approximate nearest neighbor operations.
The data structure improves over the results in [KR02, KLO4a] by makingphee requiremetinear in
the dataset size. This space bound is independent of any dimensionslity@®ns while a navigating net
[KLO4a] has linear space only when the abstract dimensionality is assurbeadtmstant with respect to the
dataset size. As we observe experimentally (see Section 4), it is commibre ikarger-Ruhl dimension to
grow with the dataset size, so this latter assumption seems unrealistic in pr@eticgorithms are simple

beygel@us.ibm.com, sham@gatsby.ucl.ac.uk, ji@tti-c.org.
1

COVER TREES FOR NEAREST NEIGHBOR 2

since the data structure being manipulated is a tree — in fact, our data str{aswrgraph) is a subgraph
of a navigating net [KL0O4a] (with slightly different parameters). We alsavjule experiments (and public
code [Lan04]) suggesting this approach may be competitive with currectigal approaches.

1.1. Intrinsic Dimensionality. We consider both notions of intrinsic dimensionality, proposed by Karger
and Ruhl [KR02] and Krauthgamer and Lee [KLO4a]. As usual, wetkethe closed ball of radiusaround
pin S C X by Bs(p,r) ={q € S :d(p,q) <r}, and when clear from context, we just writp, r).

Karger and Ruhl [KRO2] consider classes of metrics that satisfy atgroaund. Thesxpansion constant
of S is defined as the smallest valae> 2 such that|Bg(p,2r)| < ¢|Bs(p,r)| for everyp € X and
r > 0. If S is arranged uniformly on some surface of dimensipthenc ~ 27, which suggests defining the
expansion dimension ¢f as dinkr(S) = log c. However, as previously observed in [KR02, KL04a], some
metrics that should intuitively be considered low-dimensional turn out to lsage growth constants. For
example, adding a single point in a Euclidean space may make the KR-dimensioaritrarily.

The doubling constanfdefined in [KLO4a] and motivated by the theory of analysis on metric §)ace
provides a more robust alternative. The doubling constant is the minimure ¥auch that every ball
in X can be covered by balls in X of half the radius. The doubling dimension §fis then defined as
dimk. (S) = log c. This notion of dimensionality is strictly more general than the KR dimension,@grsh
in [GKLO3]. Furthermore, the doubling dimension/efdimensional Euclidean spacesi$k). A drawback
(so far) of working with the doubling dimension is that only weaker result® eeen provable, and even
those apply only to approximate nearest neighbors. The algorithm in [&Ld2pends on the aspect ratio
(the ratio of the largest to the smallest interpoint distance). Although thergcire [KLO4b] eliminates
this dependence and makes the space consumgtioh, independent of the doubling dimension (while the
algorithm in [KLO4a] is exponential in the dimension), no linear-space dlgaris known even in the case
when the dimension is constant.

1.2. New Algorithmic Results. We present the cover tree data structure and algorithms for using it. First,
let us look at how our algorithm fares whan dimensionality assumption is made. For this case, the query
time isQ(n).

] | Cover Tree] Ball Tree| Nav. Net| [KROZ2] |
Construction Space O(n) O(n) O(n?) | O(n?)
Construction Time| O(n?) O(n?) | O(n?) | O(n?
In our analysis, we focus primarily on the expansion constant, becasgetimits results on exact nearest
neighbor queries. If is the expansion constant 8f then we can state the dependence enplicitly:
] | Cover Tree| Nav. Net | [KRO2] |
Construction Space O(n) PWpn [PWpnn
Construction Time| O(c*nlnn) | CDnlnn | CDnlnn
Insertion/Removall O(fInn) | ®Dinn | P Inn
Query O(cPmnn) | Dnn | CDinn
Batch Query O(cn) | @DOnlnn | COnlnn
It is important to note that the algorithms here (as in [KLO4a] but not [KIR@2Jrk for arbitrary metrics
(with no assumptions on the structure); only the analysis is done with respbet assumptions.
The main advantage of our data structure is its linear space bound inéggpenhdny assumptions made
about the dataset. The algorithms are also simple since the structure they latarigoa tree. Comparison
of time complexity in terms: can be subtle (see the discussion at the end of Section 3.1). Also, such a
comparison is somewhat unfair since past work did not explicitly try to optimiee thependence. We
make the dependence precise because further progress must optimize it.
The algorithms easily extend to approximate nearest neighbor queriest$awish a bounded doubling
dimension, as in [KLO4a]. The query times of both algorithms@fig A) + (1/€)°(M), whereA is the

COVER TREES FOR NEAREST NEIGHBOR 3

aspect ratio and is the approximation parameter. Note that, unlike the navigating net, our spage)is
independent of the doubling dimension.

Finally, we provide several algorithms of practical interest. These includeyaconstruction (which
amortizes the construction cost over queries), a batch constructionh(vghénpirically superior to a se-
guence of single pointinsertions), and a batch query (which amortizgsitrg time over multiple queries).

1.3. Experimental Results. We experimentally compared our algorithm to an optimized brute force search
and to thesb(S) algorithm [Cla02] on a number of benchmark machine learning datasetsagpesirs to be

the first such empirical study looking directly at the viability of algorithms baseitrinsic dimensionality.
Figure 4.1(a) shows speedups ranging from a factor of 1 to 200@ndéem on the dataset. For fairness, we
(1) report every dataset tested, (2) include the time to construct the ttege See Section 4 for details.

2. CONSTRUCTING ANDUSING A COVER TREE

2.1. The Cover Tree Datastructure. A cover treeT’ on a data sef is a leveled tree where each level is
a “cover” for the level beneath it. Each level is indexed by an integde saghich decreases as the tree is
descended. Lat; denote the set of nodes at level
A cover tre€l’ on a dataset obeys the following invariants for ail
(1) (nesting)C; C Ci—1.
(2) (covering tree) For every € C;_1, there exists g € C; satisfyingd(p, ¢) < 2¢, and exactly one
suchgq is a parent op.
(3) (separation) For afh, g € C;, d(p,q) > 2°.

These invariants are essentially the same as used in navigating nets [K&xzkgit for (2) where we require
only one parent of a node rather than all possible parents. (For pedr/inC;_1, a navigating net keeps
all nodes inC; that are within distance?2?, wherey > 4 is some constant.) Despite potentially throwing
out most of the links in a navigating net, all runtime properties can be maintained.

We make use of an implicit and an explicit representation of the cover trezimiglicit representation
consists of the (infinitely many) level$; and the pointers from every node to its children in the level beneath
it. The levelC,, consists of a single node, called tlo®t of the tree. It is simplest to describe the algorithms
in terms of this implicit representation. However, we must use and analyegplieit representation, which
takes onlyO(n) space. First, note that if a poipffirst appears in levelthen it is in all levels below (and,
as the following proof shows; is a child of itself in all of these levels). The explicit representation of the
tree coalesces all nodes in which the only child is a self-child. This implies vieay explicit node either
has a parent other than the self-parent or a child other than the selfsghilth immediately gives a®(n)
space bound, independent of the growth constant

Theorem 2.1. (Space bound) A cover tree requires space at rogst).

Proof. Every point has at most one parent other than itself in the explicit tree. To see thisnagsg p
andq’ # p are two parents gb. The scale at which andq’ are parents must be different by the covering
tree invariant. Nesting implies thatis a sibling of the parent at some lower scalédf ¢ is the parent at the
lower scale, then separation implié®, ¢’) > 27 which implies tha’ can not be a parent at scgle

Every time a point is a parent of itself, it also has another point as a chilts€piently, there are at most
O(n) links andn points implying the space bound. O

2.2. Single Point Operations. We now present the basic algorithms for cover trees and prove thedctorr
ness. The runtime analysis is given in Section 3.

2.2.1. Finding the nearest neighbor of a pointo find the nearest neighbor of a pojnin a cover tree,
we descend through the tree level by level, keeping track of a sahset C; of nodes that may contain
the nearest neighbor pfas a descendant. The algorithm iteratively constr@gts by expanding?); to its
children inC;_1 then throwing away any chilg that cannot lead to the nearest neighbop.of

COVER TREES FOR NEAREST NEIGHBOR 4

Algorithm 1 Find-Nearest (cover treeT', query point p)

(1) setQy = Co.
(2) fori from co down to—oo
(a) consider the set of children &f;:
@ = { Children(q) : ¢ € Q;}.
(b) form next cover set: '
Qi-1={q€Q: d(p,q) <d(p,Q) +2'}
(3) returnarg mingeq_.. d(p, q).

For simplicity of exposition, it is easier to think of the tree as having an infinite murablevels (with
C'», containing only the root of the tree, and with ., = S). In what follows, let Childrefp) be the set of
children of node and letd(p, Q) = min,cq d(p, ¢) be the distance to the nearest point in a@et

Note that although the algorithm is stated using an infinite loop over the impliciseptation, it only
needs to operate on the explicit representation.

Theorem 2.2. If T'is a cover tree orb, thenFind-Nearest (7, p) returns the nearest neighbor pfin S.

Proof. For anyq in C;_; the distance betweerand any descendadtis bounded byi(q, ¢’) < Z;’fﬁl 2V =

2¢. Consequently, step 2(b) can never throw out a grandparent oétirest neighbor of. Eventually, there
are no descendants @f not in Q;, and the nearest neighbor must b&in O

This algorithm can be used for proximity searches in a more general sefisection Bound defined on
finite sets is said to beonotonidf for any setsA and B, Bound B) > Bound A) wheneverB C A.

Example 2.3. (e-nearest neighbors) Given a popt S ande > 0, find the set of all points iB(p, €). In
this case, Bound) = ¢ for all A.

Example 2.4. (k-nearest neighbors) Given a pojnt S and a numbek, return the closest points top in
S. In this case, Bound}) is the distance to thkth closest point ir.

The algorithm can be modified as follows to work with any monotonic bound:

(1) In Step 3, find the subset of points of interes@iiby brute force.
(2) In Step 2(b), substitute Bou@) for d(p, Q).

2.2.2. Approximating the nearest neighbor of a poifthe Cover Tree can also be used to approximate
nearest neighbors. Given a poimte X and some: > 0, we want to find a poing € S satisfying
d(p,q) < (14 €)d(p,S). The main idea is to maintain a lower bound as well as an upper bound, stopping
when the interval implied by the bounds is sufficiently small. When analyzed eghect to the doubling
constant, the proof of the time bound is essentially the same as in [KLO4afpaVier, the space bound is
now linear (independent of the doubling constant), giving a strict impnave: over the results in [KLO4a].

Algorithm The only change is in line 2, where instead of descending the tree untibinbip Q); is
explicit, we stop as soon &1 (1 + 1/¢) < d(p, Q;).

Proof of correctness Suppose that the descent terminated in lévelThen either2t1(1 + 1/¢) <
d(p, Q;) or all points in@; are implicit (in which case we actually return the exact nearest neighbet).
us consider the former case. SinQg is at distance at mo¥'*! from the exact nearest neighbor of
(Theorem 2.2), and satisfies the triangle inequality, we hav@, Q;) < d(p, S) + 2i*1. Combining with
201 (1 + 1/e) < d(p, Q;), this gives2it1(1 + 1/e) < d(p, S) + 21, or2¢+! < ed(p, S). Hence, we have
d(p,Q;) < (1+€)d(p,S). O

The time complexity follows from inspection of Lemma 2.6 in [KLO4a]. In particubar approximate
query takes at mosf’ () log A + (1/¢€)°Uo2¢) wherec is the doubling constant anil is the aspect ratio.

2.2.3. Single Point Insertion.The insertion algorithm (algorithm 2) is similar to the find nearest neighbor
algorithm although the algorithm is stated recursively. HéJgis a subset of the points at levielwhich
may contairp as a descendant (after insertion). The algorithm starts@ith= C., the root node of .

COVER TREES FOR NEAREST NEIGHBOR 5

Algorithm 2 Insert(point p, cover set Q);, level 7)
(1) setQ = {Childrer(q) : ¢ € Q;}.
(2) if d(p, Q) > 2° then return “no parent found”
(3) else
(@) setQ;—1 ={ge@Q: d(p,q) <2'%. ,
(b) if Insert(p, Q;—1,i — 1) =“no parent found” and(p, Q;) < 2'
(i) pick q € Q; satisfyingd(p, q) < 2'.
(i) insertp into Childrer(q).
(iii) return “parent found”
(c) else return “no parent found”

Algorithm 3 Remove(point p, cover sets{Q;, Qi+1, ..., Qo }, level)

(1) setQ = {Childrer(q) : ¢ € Qi}
(2) setQi—1={qeQ: d(p,q) <2}
(3) Rernove(T! b, {Qi—17 Qi7 ey QOO}’ P —]-)
(4) if d(p,@) = 0 then
(a) removep from C;_;
(b) Removep from Children(Parent(p))
(c) for everyq € Childrenp)
(i) sets/ =i —1.
(i) while d(q, Qyr) > 27
(A) insertq into Cy (and@);/)
(B) seti/ =i +1
(iii) pick ¢’ € Qy satisfyingd(q, ¢') < 27
(iv) makeq’ pointtog

The proof of correctness implicitly shows that the datastructure alwagtsex
Theorem 2.5. If T'is a cover tree orp, thenlnsert(p, C, 00) returns a cover tree o8 U {p}.

Proof. Let us prove that the algorithm is guaranteed to insertzangt already contained in the cover tree.
(If pisinthe tree, this can be determined with a single invocation of the searchdpreceThe sef) starts
non-empty. Since is not already in the tree(p, S) is nonzero, and the condition in line 2 must eventually
hold. Since the root is has scale, there will be some minimal scaiebetweemo and the scale where line
2 first holds such that(p, ;) < 2* and so 3.(b) holds.

We now prove that the insertion maintains all the cover tree invariangsislinserted in level — 1, we
know thatd(p, @Q;) < 2', and thus we can always find a parent Q; with d(p,q) < 2°, satisfying the
covering tree invariant. Ongeis inserted in level — 1, it is implicitly inserted in every level beneath it (as
a child of itself in the previous level), maintaining the nesting invariant. Nextlesvdhat doing so does
not violate the separation condition in lower levels.

To prove the separation condition in leviel 1, considerg € C;_1. If ¢ € @, thend(p, q) > 271, If
q ¢ Q, then at some iteratioil > ¢, some parent of, sayq’ € Cy_1, was eliminated (in Step 3a), which

implies thatd(p, ¢') > 27 Using the covering tree invariant at levelve have

%

d(p,q) > d(p.q)— > 2 =dp.q)— (2" —2)=2"—(2" —2) =2,
j=i'—1

which proves the desired separatiép, C;_1) > 2. Separation at levels below is proved similarlyC]

2.2.4. Single Point RemovalThe removal (Algorithm 3) is similar to insertion, with extra complexity due

to coping with children of removed nodes.

Theorem 2.6. Given a cover tred’ on S, Remove(p, Cw,, 00) returns a cover tree o — {p}.

COVER TREES FOR NEAREST NEIGHBOR 6

Algorithm 4 Construct(pointp, point setSNEAR, FAR), leveli)

(1) if NEAR = ()
(2) then returnp, FAR)
(3) else

(@) (SELF, NEAR)= Construct (p, SPLIT(d(p,-),2" !, NEAR),i — 1)
(b) add ELFto Childrer(p;)
(c) while NEAR # ()
(i) pick g in NEAR
(i) (CHILD, UNUSED) = Construct (g, SPLIT(d(q,-), 2!, NEAR,FAR),i — 1)
(iii) add CHILD to Childrer(p;)
(iv) let (NEw-NEAR, NEW-FAR) =SPLIT(d(p, -), 2!, UNUSED)
(v) add NEw-FAR to FAR, and NEW-NEAR to NEAR.
(d) return(p;, FAR).

Proof. As before, set§); maintain points in level closest tg, as we descend through the tree decrementing
1. The recursion stops when it reaches the level below whishalways implicit.
For each level explicitly containingp, we removep from C; and from the list of children of its parent
in C;y1. This does not disturb the nesting and the separation invariants. Focleitth of p (by this time
p has already been removed from the list of its children), we go up the tr&mtpfor a new parent. More

precisely, if there exists a nodé € C; such thatd(q, ¢’) < 2° we makeg’ a parent ofg; otherwise, we
insertq in level C; and repeat, propagatirgup the tree until a parent is found. Insertion does not violate the

separation and the nesting constraints, sifgeC;) > 2¢ (otherwise we would not be insertingin C;).
This propagation process is guaranteed to terminate gireceovered by the root (at the scale of the root).
Hence the covering tree invariant is enforced for all childrep.of O

2.3. Batch and Lazy Variants. In this section, we present batch and lazy variants of practical interest.

2.3.1. Batch Constructionlt is common to start with some large dataset (instead of receiving points one
by one in an online manner). It is thus natural to try to amortize the construstigtrover points. We now
present such a batch algorithm. The analysis is given in the next secti@oréfically, the algorithm has
the same guarantees as a series of single point insertions; howeligriname empirical studies show that
it is considerably faster (roughly twice as fast, although a controlled cosgpehas yet to be done).

At each step in the recursive construction, the algorithm has a poiset of points MAR which must
be inserted beneath and a set of pointsAR which mightbe inserted beneagh The algorithm first finds
the near and far sets for itself (as a child), and then does the same fenmhemg elements of BAR. It
then returns the created node, together with any unused elememtg.of F

To describe the algorithm, we need a helper function, 1§(d(p, -), r, S1, S2, ...) which splits the ele-
ments ofSy, S, ... into points satisfyingi(p, q) < r and points satisfyin@r > d(p,q) > r. All such
points are removed from’, So,.... The batch construction algorithm (algorithm 4) starts with a call to
Construct(p € S, S — {p},0). The proof is removed due to space limitations (see [BKL04]).

Theorem 2.7. (Batch CorrectnegsConstruct (p € S, S — {p},0) returns a valid cover tree fof.

Proof. Nesting holds because we explicitly construct the self-child of a point. Gayéolds because all
children ofp are always in the near set and thus at distance at2hosb show separation at levglnote that
for any pointsu, v satisfyingd(u, v) < 2, the procedure is first called on eitheor v. Assume without loss
of generality that it is called on. Thenv is in NEAR (otherwise it would already be in the tree contradicting
the3?§)s(g_r)nption that came first), and the algorithm makesgither a child or a grandchild of at steps 3éb)
or iii).

2.3.2. Finding nearest neighbors of many pointt/e can modify the previous query algorithm to simul-
taneously find the nearest neighbors of multiple points (similar to a method us€d-irees [GMOQ]).
The set of query points is given by a cover tree (which can be donedprqressing the query set). This
allows the descent of the search tree to be amortized over all queries imptbe time complexity from

COVER TREES FOR NEAREST NEIGHBOR 7

Algorithm 5 Find-All-Nearest (query cover treep;, cover set ;)

(1) if i = —oo then for eachu € L(p;)
returnarg minyeq___ d(a, b) as the nearest neighbor @f
(2) else
(a) if j < ithen
(i) Set@ = {Children(q) : ¢ € Q;}.
(i) SetQi—1 = {q € Q: d(pj,q) < mingeqd(pj,q) +2' +27+2}.
(iii) Find-All-Nearest (p;, Qi—1)
(b) else for eaclg;—; € Children(p;)
Find-All-Nearest (Qj—lv Q)

O(c*?n1nn)to O(c'%n). In Algorithm 5, we abuse notation by lettipgienote the subtree of the query tree
rooted at node. Since a point can appear in different levels, a subscript disambigastescessary.(p)
denotes the set of leaves of the explicit part of preubtree. The procedure is recursive, starting with the
root of the query cover tree anid,,. The correctness argument is similar to Theorem 2.2.

2.3.3. Lazy ConstructionWhen few queries are done, the overhead of the construction maydte gitgan
the brute force query cost. This drawback disappears with lazy caotistiu The basic idea is to make the
nodes of a cover tree lmpieriesmodified to hold a list of points. Now every poipts in the list of nodey

at some level must satisfy the following invariants:

(1) (closeness)(p,q) < 2. '
(2) (minimal level) There does not exigt# ¢ with d(p, ¢') < 2¢ 1.

Note, in particular, that we do not impose any separation constraint a@sniodhe same layer.
The cover tree over completed queries is constructed using a variasingfl@ point insertion (see Section
2.2.3) modified to satisfy the above invariants. We only need the following matibinsa

(1) For everyg; in Q;, at every levef, compute (and record) the distance to every point attached to
(2) Atthe insertion level (say leve) attach every point within distanc from level:’ > i. Remove
all newly attached points from higher level lists.

Note that levels fo which might have been implicit in the cover tree may not necessarily be implicit in the
lazy cover tree. This is actually desirable because it organizes poirtisegdtag in a finer manner.

Theorem 2.8. (CorrectnessThe above maodifications preserve the lazy cover tree invariants.

Proof. Closeness is preserved because we explicitly only attach points within digfardinimal level is
preserved because we only attach points from higher levels. d

Queries on a lazy cover tree are exactly the same as on a cover treeteategvery point in the list of
every node is treated as a leaf. Several observations are in order.

(1) If every point is queried, the resulting cover tree is exactly the sameakl be constructed using
single point insertion.

(2) The set of distance calculations required for insertion is a subset gkt required for a query. This
holds because the distance constraint of step 3(E)dert is stronger than the distance constraint
in step 2(b) ofFind-Nearest. Consequently, the query can fully amortize the insertion.

3. THE RUNTIME ANALYSIS

In this section, the distinction between implicit and explicit representation @&t@8 2.1) is important.

3.1. Query analysis. We start with three lemmas about some structural properties of the datasructu
Lemma 3.1. (Width bound) The number of children of any ngds bounded by*.

COVER TREES FOR NEAREST NEIGHBOR 8

Proof. Letp be in leveli. The number of its children is at mdg(p, 29N C;—1|, which is certainly bounded
by |B(p,2:T1) N Ci-1]. The idea of the proof is to bound the number of disjoint balls of ragius that
we can pack intd3(p, 2¢+1). Each of these balls can cover at most one poit;in, thereby bounding the
number of children. For any chilgof p, sinced(p, q) < 2¢, we haveB(p,2:*1) C B(q,2*?) implying
|B(p,2")| < |B(q,27%%)| < | B(q,27%)|.

The ballsB(q, 2°=2?) must be disjoint for aly € C;_,, since the points il ; are at leasp’~! apart. We
also know that eact(q,2'2) is contained withinB(p, 2'*1), sinced(p,q) < 2'. Then the number of
disjoint balls around the children that can be packed itp, 2:*1) is bounded by

i+1
B2 _
|B(q,2"-2)]
which gives a bound on the number of childrempof O

|B(p,2") N Cy—q| <

The following lemma is useful in bounding the depth of the tree. It says thagiitis a point in some
annulus centered around then the volume growth of a sufficiently large ball aroyndontaining the
annulus is non-trivial. In other words, it gives a lower bound on themelgrowth in terms of the growth
constant, while the definition ot gives an upper bound.

Lemma 3.2. (Growth Bound For all pointsp € S andr > 0, if there exists a poin € S such that
2r < d(p,q) < 3r, then

B0 = (145) 1B

Proof. SinceB(p,r) C B(q,3r + r), we have
|B(p,r)| < |B(g,4r)| < ?B(g,7)].
And since the ball83(p, r) and B(q, r) are disjoint and are subsets Bfp, 4r), we have
|B(p,4r)| = |B(p,7)| +|B(g,7)|-
The result follows by combining these inequalities. d

Using this, we can prove a bound on tplicit depth of any poinp, defined as the number of explicit
grandparent nodes on the path from the roat to the lowest level in whichp is explicit.

Lemma3.3. (Depth BoundiThe maximum depth of any pojnin the explicit representation i9 (c?logn).

Proof. DefineS; = {q € S : 2iT! < d(p,q) < 272} First let us show that if point € S; is a grandparent
of p, thenq € C;. If ¢ € C; for somej, then any of its grandchildren is at mast away implying; > i.
Nesting says that € C;, sinceC; C C;.

Now let us consider the grandparentpadnh levelsC;, C; 11, Ciio, C;13. There are at most four of these,
due to the tree property. In fact, there can be no other unique graamdpabove level + 3 in S;. Recall
thatif ¢ € S;, thend(p, q) < 272, If ¢ is also inC;, 3, the well-separateness constraint implies that there
can be no other point i; which is also inC; ;3. Nesting implies that there are no other grandparents in
j > 1+ 3, else these grandparents would also b€in;.

Thus any annulus; can only contain unique grandparentspadp to leveli + 3. Now we just need to
bound the number of non-empsy aroundp containing all points ir6. To do this, apply the growth bound

with r = 429 whereq is the nearest neighbor pfto discover B(p, 4r)| > (1 + 5) |B(p,r)| = (1+ %).
. d(p,
Then, find the next nearest pomzisatlsfylngd(p, q) > 8r, and apply the growth bound with = @
to discover|B(p, 4r)| > (1 + Ci?) since each application of the growth bound is disjoint (note that this
process may significantly undercount points). This process can batezhat mo% before the

lower bound exceeds the upper boundnofUpon termination, every point can be associated with the
maximalr satisfying2r < d(p,q). The set of points associated with every step in the process lie in at

most 4 annuliS;. Consequently, there are at m@(@%) nonempty annuli around ary This is

O(c?logn) sincec > 2. The number of explicit grandparentsS$pis constant, completing the proof. O

COVER TREES FOR NEAREST NEIGHBOR 9

We can now state and prove the main theorem.

Theorem 3.4. (Query Timég If the datasetS U {p} has expansion constaatthe nearest neighbor gfcan
be found in time) (c'?log n).

Proof. Let Q* be the last explicit); considered by the algorithm. Lemma 3.3 bounds the explicit depth of
any point in the tree (and in particular any point@t) by £k = O (02 log n) Consequently, the number
of iterations is at most|Q*| < k - max; |Q;|. In each iteration, at mogP(max; |@Q;|) time is required to
determine which elements need explicit descent, implying a bouait{ bfnax; |Q;|?) on the query time.

Also note that in Step 2(a), the number of children encountered is atimbstax; |Q;| using Lemma
3.1. Step 2(b) never does more work than Step 2(a). Step 3 requiresiahmg |@Q;| work. Consequently,
the running time is bounded Y (k max; |Q;|? + k max; |Q;|c*)) finishing the proof, provided that we can
show thatmax; |Q;| < c°.

Consider anyy;_; constructed during theth iteration. Recall thaf) = { Children(q) : ¢ € Q;}, and
letd = d(p, Q). We have

Qi-1 = {q€Q:d(p,q) <d+2'}=B(p,d+2)NQ C B(p,d+2")NCi_y,

where the first equality follows by definition ¢f;—; and the second fro® C C;_;.
First suppose that > 2!+, Then we have
d
5(n5)]

Now sinced < d(p, S) + 2! (as a consequence &f C C; 1), andd > 2+!(by assumption), we also have
d(p,S) > d —2' > 2'. HenceB (p, ¢) = {p}, and|Q;_1| < 2.

We are left with the casé < 2!*!. Consider a poiny € C;_1 which is also inB(p,d + 2°). As in
the proof of Lemma 3.1, we will bound the number of disjoint balls of radiag that can be packed into
B(p,d+ 2"+ 2=2). Any such ball can contain at most one pointin ; (due to the separation constraint),
implying a bound on@;_1|. We have

[B(p,d+2'+27%) <[B(q,2(d +2') +2'77)| <
|B(g, 242 + 241+ 2172)| < [B(q,2'"%)| < ®|B(g,27?)],
and thUSQZ‘,ﬂ < ‘B(p, d—+ 21) N Cifl‘ < .]

IB(p,d+2Y)| < |B(p,2d)| <

Comparing the time complexity of navigating nets and cover trees in terms of itsidiepee on the
expansion constant is non-trivial. Our data structure does run-time ¢atigms which were done in the
preprocessing stage of the navigating nets algorithm. Navigating nets can bea more greedy (depth
first search) mode, while cover trees use a from of a fused depthraadth first search. The tradeoff is
even more subtle because the radius of the balls used to form the coversiawvibating nets is larger than
the radius used in the cover tree, implying that a node may have to maintain nildrerch

3.2. Insertion and Removal.
Theorem 3.5. Any insertion or removal takes time at més{c% log n).

Proof. First we show that all but one node in each cover set are either exgamtheir children or removed

in the next two cover sets. To see why, note that eg¢cis contained in a ball of radiu&*! around the
point p we are inserting (by definition). Fikxand assume that some nogl@ppears (either explicitly or
implicitly) in all of Q;, Q;_1, Q;—2. Then no other nodg € Q; can appear if);_», since the separation
constraint in level says thati(q, ¢') > 2¢ while the maximum distance betweere Q; - and any other
node inQ;_» can be at mos?’. Thusgq is either removed or expanded to its children, in which case it has to
consume one level of its explicit depth.

Let k = c?log|S| be the maximum explicit depth of any point, given by Lemma 3.3. Then the total
number of cover sets with explicit nodes is at mdst+ &k = 4k, where the first term follows from the fact
that any node that is not removed must be explicit at least once evegyitarations, and the additional
accounts for a single point that may stay implicit for more than three iterations.

COVER TREES FOR NEAREST NEIGHBOR 10

Thus the total amount of work in Steps 1 and 2 is proportion& tb max; |@Q;|). Step 3 requires work
no greater than step 1. For every); is a valid set of children for a hypothetical node at leivel 1, and
thus|Q;| < ¢* from Lemma 3.1. Multiplying these bounds together we get the resuilt.

To obtain the bound for the removal, we can use a similar argument to showtthast one point
can be propagated up more than twice in the search for a parent. Thus iBté&fgorithm 3 takes at most
O(k max; |Q;]) steps total. Other steps require work no greater than for insertion, congptle¢iproof. [

3.3. Batch Operations.
Theorem 3.6. (Construction TimpConstruct (p € S, S — {p},0) requires time at mosD(c’n logn).

Proof. (sketch) The maximum amount of work in levelhssociated with poinp is proportional to the
number of siblings within distanc&*? + 2:+1 since all elements in levéldoing work related tg must
have a parent at leveh- 1, for whichp is in the FAR set (and thus at distarié?). The maximum number

of such siblings is:* using an argument similar to the growth bound. The maximum number of explicit

levels which nearby points can haved$c? log n) (similar to the insertion proof). Multiplying max sibling
level * max siblings/level * number of points, we get O(c*{6}n\log n) wordnapleting the proof. d

Theorem 3.7. (Batch Query TimeFind-All-Nearest (T, C..) requires timeO(c'6n).

Proof. (sketch) The proof is similar to the query proof, except that the coveatsievel: has a radius
increased by2‘*! due to the need to the need to cover the nearest neighbor of grandelufdies query

cover tree. This increases the size of the cover set by a factdwdfich increases the-complexity byc*.

The dependence anrather tham log n is due to amortizing the descent of the cover tree over the leaf
nodes. In particular, Step 2(a)(i) is executed on each explicit node gttance. All other steps have the
same or lower time complexity. O

4. EXPERIMENTAL RESULTS

We tested the algorithm on several datasets drawn from the UCI machinénpand KDD archives
[UCI], the KDD 2004 championship [KDDCup], the Mnist handwritten digitognition dataset [mnist],
and the Isomap “Images” dataset [isomap]. For each dataset, we giogrikd {1,2,3,5,10}-nearest neigh-
bors of each point using the Euclidean metric (results witli;ametric were qualitatively similar). The
results, compared to an optimized brute force algorithm, are summarized i Bidia).

We used the following optimizations of the basic algorithms to obtain the results ineFdgla):

(1) Similar to [Mo0o00], we cache summary information in each node; in partiouacache the maxi-
mum distance to any grandchild, the distance to the parent, and the scale.

(2) Since the upper bound can be tightened as a cover set is expémel@lder of expansion is im-
portant. Ideally, we might expand from the closest to furthest on the\ttteat closer nodes are
more likely to have closer children. We used@w) lazy sorting which recurses only on the low
direction of quicksort.

(3) Our theoretical results use scales that are powegs df turns out that a smaller base provides
speedups in practice.

(4) We relax the separation invariant in batch construction.

A natural question is whether the expansion constant is a relevant gianttyalysis. Since it is defined as
the worst-case expansion over all points, it may not be the best medswarlness of NNS. Figure 4.1(c)
illustrates this point by showing two datasets on 5000 points each with the sarstecase expansion con-
stant but different distributions of expansion across points, andurptisingly, very different speedups.
Figure 4.1(d) suggests that, for example, the 80th percentile (over daspExpansion constant seems to
be a better predictor of performance. Figure 4.1(e) shows the spe&dupFigure 4.1(a) (as stalactite im-
pulses) against the respective normalized expansion constants ar@D#eiersions (stalagmite impulses).
The 80th percentile (dashed stalagmites) are more predictive of the gpeedu

Finally, we did experiments comparing cover trees to Clarksei{’S) data structure [Cla02] developed
for the same setting as ours (see also [Cla99]). For each dataset, weadithearest neighbor queries of
every point using the “d” method in [Cla02] that was reported to be unifosuperior to all other methods

COVER TREES FOR NEAREST NEIGHBOR

(a) (b)
1,2,3,5,10-Nearest Neighbor Speedup Dataset Size vs. Speedup, K=2
_I TTTTTTTTTTTTTTFT 100M 1000 k T T T 1
1000 F 10M
=}
=] I S 100 4
S 100 1M 5 . "
8_ | g L I |
o 10 100K @ 10 b . i
o - " n
1 [10K - LN |
NCBONCChHipCC SN ERSOHRT 1 - E.“.“I ol el
=4=1= %_g,gg §-§-§g g o3 §-§ &@'2 100 1000 10000 100000
2354 Clﬁk—'r—‘ﬁ o g*—'bt‘-‘r; Sl number of points
o8cs E£2598&
Q%8s £°%2°a
(©) (d)
Expansion constant over 5000 datapoints Expansion constant vs Speedup, n = 5000
5000 T T T T
o worst-case [B]
£ 4000 1000 per " E
g a]
g 3000 S 1wl : o e]
o @ 0
S 2000 2 -]
S %) O [i
c o
] E
% 1000
i 1 1 1 1 il i
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
() number of points with expansion at most ¢ expansion constant
e
100 100 ¢
10 t E 10 £
| | | | ||| 11 I |
0.1 | 0.1 |
DB ONTC o Ca e @ e DB ONGC R Cm e e @
ECCPESEEETEEEEEEE = %-3%_5555552%%%&&%
as35a 115520571515 € a35a 121552 0 5,715)18 €
$acy >§_QE‘8 S8cy >,._g.95‘8
2a®go £§°a8a a®go S£Ca8a

FIGURE4.1. a) The speedup of the cover tree algorithm over the brute foacehsehen
querying for the nearest (1,2,3,5,10) neighbors (left to right in thehjrapevery point in
the dataset (logscale); 1-nearest neighbor query correspond#f-search. Datasets are
sorted by byte size in ascending order; the size is shown using a dashedtin The
speedup versus the number of data points in each dataset. Largertslhtse larger
potential speedups. (c) The cumulative distribution of expansion cdastaross points
for two datasets with the same maximum expansion. We achieve very little speadup
the 'mnist’ dataset and about a factor idf speedup on the bio_test dataset. (d) A graph
showing speedup vs the worst case expansion constant and spesdtiepB0th percentile
(over datapoints) expansion constant on various 5000 point datdeisen as prefixes of
datasets form [UCI, KDDCup, mnist, isomap]. (e) The speedup (logsoaé thesb(S)
data structure [Cla02] for the (1,2) neighbors (solid and dashed lirspectvely). One
datapoint (images) is missing due to parsing issues withs&h€) code. (f) Construction
times. The speedup over thé(.S) data structure [Cla02]. Notice considerable savings in
the construction times on the two datasets (bio_test and bio_train), on witighoutper-
forms the cover tree.

11

COVER TREES FOR NEAREST NEIGHBOR 12

100 g
10
EEEEL ||JJJ|
0n 0= QOS> 0non -
L2EETIRREEB8TBYS eSS
= S OO0 ® ED o
Ec 9 E g c v ® X 9 > Q9 =
S > o8 g X = S o =68 =20 S
= 5 0 c C 5 X
o = O o
8 2ee E 5373
= = s c

FIGURE4.2. The speedup of the cover tree algorithm ovektti®') data structure [Cla02]
when querying for the nearest neighbor of very point in the datasetg@é-search); points
are strings under edit distance. Dashed spikes show the correspapéiedup in the con-
struction times. Datasets are sorted by byte size in ascending order, Krtorl84M.

available in thesb(S) package. We included the construction time when evaluating both algorithms and
used the same timing mechanisms and the same implementation of the distance fu@tioakyorithm

was significantly faster on almost every dataset tested; the speedngm@&om 0.8 to 30) are shown in
Figure 4.1(e). The respective constuction times are shown in Figurg.ANifice considerable savings in

the construction times of the cover tree on the onlu two datasets (bio_testoarichim), on whichsb(.S)

is superior (for 1-nearest neighbor). It should be noted, howdvat thek-nearest neighbor implemen-
tation in sb(.S) is via a reduction to fixed-radius queries; a better scheme might be pogsiblié,is not
straightforward.

Figure 4.2 shows the speedup of the cover tree sbE¥) for strings under the edit distance. For more
details, the code, and the datasets see [Lan04, BKL04].

AcknowledgementVe would like to thank Piotr Indyk, David Karger, Robert KrauthgameneslLee, and
Alexander Gray for helpful discussions and comments.

REFERENCES

[AMN+98] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman and\Wu. An optimal algorithm for approximate nearest
neighbor searchinglournal of the ACM45(6) : 891-923, 1998.

[AM] S. Arya and D. M. Mount. ANN: Library for Approximate NearestNeighbor Searching,
http://www.cs.umd.edu/~mount/ANN/.

[BKLO4] A. Beygelzimer, S. Kakade, J. Langford. Cover trees foearest neighbor, preprint, 2004. Available at
http://hunch.net/~jl/projects/cover_tree/cover_tree.html

[Cla99] K. Clarkson: Nearest Neighbor Queries in Metric Spabéscrete & Computational Geometr2(1): 63-93 (1999)

[Cla02] K. Clarkson: Nearest Neighbor Searching in Metric SpacepeBmental Results for sb(S), 2002, http://cm.bell-
labs.com/who/clarkson/Msb/readme.html.

[DIIMO4] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni. Localitgensitive hashing scheme based on p-stable distributions,
Proceedings of the 20th Annual Symposium on Computational Geqr2ed4.

[FBL77] J.H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithan finding best matches in logarithmic expected time”,
ACM Transactions on Mathematical SoftwaBé3):209-226, September 1977.

[GMOO] A. Gray and A. Moore. N-Body Problems in Statistical LearniRgyceedings of NIPRS000.

[GKLO3] A. Gupta, R. Krauthgamer, and J. R. Lee. Bounded gedesetiractals, and low-distortion embeddin§spceedings
of the 44th Annual IEEE Symposium on Foundations of Computer SckEweb43, 2003.

[isomap] Isomap datasets, http://isomap.stanford.edu/datasets.html

[KRO2] D. Karger and M. Ruhl. Finding Nearest Neighbors in GrowtlstReted MetricsProceedings of STOQ002.

[KDDCup] The 2004 KDD-cup dataset, http://kodiak.cs.cornell.edutiagd

[KLO4b] R. Krauthgamerand J. Lee. The black-box complexity ofaseneighbor searcRroceedings of the 31st International
Colloguium on Automata, Languages and Programming (ICARB)A4.

[KLO4a] R. Krauthgamer and J. Lee. Navigating nets: Simple algorittunproximity searchProceedings of the 15th Annual
Symposium on Discrete Algorithms (SOD291-801, 2004.

[Lan04] J. Langford, Cover Tree code written in C++, http://hunch.nettejigats/cover_tree/cover_tree.html

[Moo00]
[mnist]
[OmMo87]
[RS00]
[TSLOO]

[uci
[UhI91]

COVER TREES FOR NEAREST NEIGHBOR 13

A. Moore, Using the Triangle Inequality to Survive High Dimems&bData, Proceedings of the Twelfth Conference
on Uncertainty in Atrtificial Intelligence, 2000.

The MNIST database of handwritten digits, http://yann.lecun.caodb/exnist/

S. M. Omohundro, Efficient Algorithms with Neural NetworkiBeior.J. of Complex Systemb(2):273-347, 1987.
Sam Roweis and Lawrence Saul, “Nonlinear dimensionality temuby locally linear embedding”, Science v. 290
no. 5500, Dec. 22, 2000. pp. 2323-2326.

Josh Tenenbaum, Vin de Silva and John Langford. A Gloledretric Framework for Nonlinear Dimensionality
Reduction. Science 290, 2319-2323, 2000

UCI machine learning repository (http://www.ics.uci.edu/~mlearnf] KDD Archive (http://kdd.ics.uci.edu/).

J. K. Uhlmann, Satisfying general proximity/similarity queries witketric trees.Information Processing Letters
40:175-179, 1991.

