PROPERTIES OF TWIST EXTRUSION AND ITS POTENTIAL FOR SEVERE PLASTIC DEFORMATION

Y. Beygelzimer, V. Varyukhin, S. Synkov, D. Orlov, A. Reshetov, A. Synkov, O. Prokof'eva, R. Kulagin

Donetsk Institute for Physics and Technology
National Academy of Sciences of Ukraine
72 R. Luxembourg, Donetsk, 83114, Ukraine
Twist Extrusion: Why care?

Kinematics of TE is substantially different from that of other SPD processes (like ECAP and HPT).

New potential for investigating and forming new structures with new properties.
Experimental investigation of TE kinematics

1. We used experimental vizioplasticity method (E. G. Thomsen). Metal flow were reconstructed from cross-sections of the specimen with fibres stopped in the die.

2. We refined this method by incorporating two natural conditions:
- metal volume remains constant;
- metal flow is limited by the surface of the die.

Advantage: method takes into account the actual rheology of metal and real friction conditions.
Main Findings

• As in HPT and ECAP, deformation in TE is performed through **simple shear**.

• There are **multiple shear planes**, unlike in HPT and ECAP. These planes are perpendicular and parallel to the specimen axis.

• There are **vortex flow with stretching and mixing** within the deformation centre.

• There are **four well defined deformation zones** with different properties of metal flow.
Deformation Zones 1 and 2

Located at the two ends of the twist part of the die.

Simple shear in the **Transversal plane (T)** as in HPT.

Shears in zones 1 and 2 have opposite direction.

Strain: from $e \sim 0.0$ on the axis to $e \sim 1.0 \div 1.5$ on the periphery.
Strain accumulation along the die in a characteristic point where zones 1 and 2 are responsible for most of the deformation.

Cu, 20°C
Deformation Zone 3

Located in the twist part of the die between zones 1 and 2

Simple shear in the rotating Longitudinal plane (L)

Strain: $e \sim 0.4 \div 0.5$
Strain accumulation
Zones 3

Strain accumulation along the die in central point where zone 3 is responsible for the deformation.
Deformation Zone 4
Located in the twist part of the die between zones 1 and 2
Simple shear in the **peripheral layer** (1÷2 mm thick)

Al-0.13%Mg

Strain: $e \sim 2$

We thank Dr. Berta (University of Manchester, UK) for macrostructures b), c)
Strain accumulation
Zone 4

Cu, 20°C

Strain accumulation along the die in a peripheral point
Accumulation Strain at TE (Cu, 20°C)
Controlling metal flow in TE

Strain distribution and deformation zones boundaries strongly depend on
- the geometry of die’s cross-section,
- inclination angle β
- rotation angle α

By varying these parameters, one can obtain given inhomogeneous strain. This is of interest for (1) investigating the effects of strain gradient on the evolution of material structure, as well as (2) obtaining gradient structures.
Accumulation strain for 1 pass TE (Cu, 20°C)

β=50°, α=80°

β=35°, α=80°

β=50°, α=80°

β=50°, α=80°
Smoothing of structure and properties during multipass TE

Despite the nonuniformity of deformation, subsequent TE typically leads to uniform structure and properties. This is due to (1) mixing of metal and (2) stabilization of structure and saturation of properties if strain becomes greater than saturation level e_s.

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>After 2 passes</td>
<td>419</td>
<td>385</td>
<td>462</td>
<td>77 (18%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>After 4 passes</td>
<td>426</td>
<td>403</td>
<td>450</td>
<td>47 (11%)</td>
</tr>
</tbody>
</table>

Joint work with Dr. Korshunov, Sarov, Russia
Stabilization of structure and saturation of properties during TE

Joint work with Prof. Horita, Kyushu University, Fukuoka, Japan

Joint work with Dr. Korshunov, Sarov, Russia

99.99% Cu

99.99% Al

1 TE pass

4 TE passes

99.99% Al
Zone where strain is above the saturation threshold $e_s=2$ (1 pass)
Zone where strain is above the saturation threshold $e_s = 2$ (2 pass)
Zone where strain is above the saturation threshold $e_s=2$ (3 pass)
Zone where strain is above the saturation threshold $e_s=2$ (4 pass)
Zone where strain is above the saturation threshold $e_s=2$ (5 pass)
Two main routes of TE

Two orientations of the die (CD, CCD) lead to two main routes of TE:

Route I: CD+CD

Route II: CD+CCD

CD-clockwise die
CCD- counterclockwise die
Two main routes of TE

Route I: CD+CD
- Plane T
- Plane L
- Number of passes: 0, 1, 2

Route II: CD+CCD
- Plane T
- Plane L
- Number of passes: 0, 1, 2

\[\gamma_T \]
\[\gamma_L \]
Route II overcomes saturation

Different loading paths can lead to different structures and properties. In particular, using route II allows one to increase the yield threshold of Ti after it saturates in route I.
Deformation Zones 3 and 4 form a vortex-like flow which stretches metal particles.

The stretching increases with subsequent TE passes as long as the dies have a constant direction (all clockwise or all counterclockwise).
Stretching (initial)
Stretching
(1 pass, counter-clockwise die)
Stretching
(2 passes, counter-clockwise die)
Stretching
(3 passes, counter-clockwise die)
Passes with alternating directions create folds

We thank Dr. Milman for sharing the microstructure.
At a finer scale, folds form due to instability of shear planes

Initial

After one pass TE

Aluminum

Joint work with Prof. Milman, Kiev, Ukraine
Alternating stretching and folding leads to mixing, as in Smale’s horseshoe.

Initial specimen

After several passes

Final specimen
So why should we care about Twist Extrusion?
• TE has already been successfully used to obtain UFG structure with good properties in Al, Cu, Ni and Ti alloys (more at http://hunch.net/~yan).

• Most importantly, TE opens new possibilities for investigating and forming new structures with new properties, mainly due to four factors.
Factor 1: Two new shear planes in the volume of the specimen
Factor 2: Vortex-like flow with stretching and mixing of metal particles

This is of interest for
(1) homogenization (2) mechanochemical reactions
Factor 3: Two main routes of TE

which can be combined with any SPD or metal forming processes (for example: ECAP, rolling, extrusion) to broaden the space of possible loading paths.
Factor 4: New technological possibilities

- ECAP
- TE

Obtaining profile or

Metal waste reducing

Twist die

hollow specimen
We hope that TE will find its place among other SPD techniques.
We hope that TE will find its place among other SPD techniques.

If anyone wants to talk about TE, tean@an.dn.ua