5:20PM humpty-112: vw --help ~/programs/vowpal_wabbit [jl/ttypts/5]
VW options:
-a [ --audit ] print weights of features
-b [ --bit_precision ] arg (=18) number of bits in the feature table
-c [ --cache ] Use a cache. The default is
.cache
--cache_file arg The location of a cache_file.
-d [ --data ] arg Example Set
--daemon read data from port 39523
--decay_learning_rate arg (=0.7071068) Set Decay factor for learning_rate
between passes
-f [ --final_regressor ] arg Final regressor
-h [ --help ] Output Arguments
-i [ --initial_regressor ] arg Initial regressor
--initial_t arg (=1) initial t value
--min_prediction arg (=0) Smallest prediction to output
--max_prediction arg (=1) Largest prediction to output
--multisource arg multiple sources for daemon input
--noop do no learning
--port arg port to listen on
--power_t arg (=0) t power value
-l [ --learning_rate ] arg (=0.1) Set Learning Rate
--passes arg (=1) Number of Training Passes
-p [ --predictions ] arg File to output predictions to
--predictto arg host to send predictions to
-q [ --quadratic ] arg Create and use quadratic features
--quiet Don't output diagnostics
-r [ --raw_predictions ] arg File to output unnormalized
predictions to
--sendto arg send example to <hosts>
-s [ --summer ] arg host to use as a summer
-t [ --testonly ] Ignore label information and just test
--thread_bits arg (=0) log_2 threads
--loss_function arg (=squared) Specify the loss function to be used,
uses squared loss by default. Currently
available ones are: squared,
hinge, logistic and quantile.
--quantiles_tau arg (=0) Parameter \tau associated with
Quantiles loss. Unless mentioned this
parameter would default to a value of
0.0
--unique_id arg (=0) unique id used for cluster parallel
Here's an explanation of the useful flags.
The semantics is: features with the same name are different features in different namespaces.
If you want to specify a value for a feature, you do this by adding :<float> to the namespace (for all features in the namespace) or the feature. For example "|txt:-1 foo bar baz" would say that the features "foo", "bar", and "baz" each have value -1 (rather then the default of 1). The <tag> is a string not containing a special character which is echoed on output of any predictions.
If you don't specify a label, the learning algorithm doesn't try to learn (but it does test).
If you don't specify a weight, it defaults to 1.