5:20PM humpty-112: vw --help                                                                                                                                                              ~/programs/vowpal_wabbit [jl/ttypts/5]
VW options:
  -a [ --audit ]                         print weights of features
  -b [ --bit_precision ] arg (=18)       number of bits in the feature table
  -c [ --cache ]                         Use a cache.  The default is
                                         .cache
  --cache_file arg                       The location of a cache_file.
  -d [ --data ] arg                      Example Set
  --daemon                               read data from port 39523
  --decay_learning_rate arg (=0.7071068) Set Decay factor for learning_rate
                                         between passes
  -f [ --final_regressor ] arg           Final regressor
  -h [ --help ]                          Output Arguments
  -i [ --initial_regressor ] arg         Initial regressor
  --initial_t arg (=1)                   initial t value
  --min_prediction arg (=0)              Smallest prediction to output
  --max_prediction arg (=1)              Largest prediction to output
  --multisource arg                      multiple sources for daemon input
  --noop                                 do no learning
  --port arg                             port to listen on
  --power_t arg (=0)                     t power value
  -l [ --learning_rate ] arg (=0.1)      Set Learning Rate
  --passes arg (=1)                      Number of Training Passes
  -p [ --predictions ] arg               File to output predictions to
  --predictto arg                        host to send predictions to
  -q [ --quadratic ] arg                 Create and use quadratic features
  --quiet                                Don't output diagnostics
  -r [ --raw_predictions ] arg           File to output unnormalized
                                         predictions to
  --sendto arg                           send example to <hosts>
  -s [ --summer ] arg                    host to use as a summer
  -t [ --testonly ]                      Ignore label information and just test
  --thread_bits arg (=0)                 log_2 threads
  --loss_function arg (=squared)         Specify the loss function to be used,
                                         uses squared loss by default. Currently
                                         available ones are: squared,
                                         hinge, logistic and quantile.
  --quantiles_tau arg (=0)               Parameter \tau associated with
                                         Quantiles loss. Unless mentioned this
                                         parameter would default to a value of
                                         0.0
  --unique_id arg (=0)                   unique id used for cluster parallel
Here's an explanation of the useful flags.
The semantics is: features with the same name are different features in different namespaces.
If you want to specify a value for a feature, you do this by adding :<float> to the namespace (for all features in the namespace) or the feature. For example "|txt:-1 foo bar baz" would say that the features "foo", "bar", and "baz" each have value -1 (rather then the default of 1). The <tag> is a string not containing a special character which is echoed on output of any predictions.
If you don't specify a label, the learning algorithm doesn't try to learn (but it does test).
If you don't specify a weight, it defaults to 1.