Torch7

Scientific computing for Lua(JIT)

www.torch.ch
1: Getting started

- Torch’s main site and resources: www.torch.ch
 On Github: https://github.com/torch

- Torch cheat sheet
 https://github.com/torch/torch7/wiki/Cheatsheet

- Tutorials for Torch: http://torch.madbits.com
 On Github: https://github.com/clementfarabet/torch-tutorials

- Lua: http://www.lua.org
 LuaJIT: http://lua.jit.org/luajit.html
Torch has been around since 2000

- Ronan Collobert has been the main dev for all
- 4 versions (odd numbers)
- Various languages (C, C++, now Lua+C)
- A liberal BSD license
- Includes lots of packages for neural networks, optimization, graphical models, image processing
- More than 50,000 downloads, universities and major industrial labs (Google, Facebook, Twitter)

Torch always aimed large-scale learning

- Speech, image and video applications
- Large-scale machine-learning applications
Why a mixed language approach?

- Complex applications => proper scripting language (LuaJIT)
- Fast and demanding applications => compiled and optimized backend (C,C++,CUDA,OpenMP)

LuaJIT is a great scripting environment

- Fastest scripting language, with a transparent JIT compiler
- Simple, readable (like Python), with clean/consistent constructs
- The cleanest interface to C (even cleaner/simpler with FFI)
- Embeddable into any environment (iPhone apps, Video games, web backends ...)

Torch7

Lua + C
Why build Torch around LuaJIT and not simply use Python?

- We are obsessed with speed: LuaJIT is very lightweight, and rarely gets in your way (manipulate raw C pointers straight from LuaJIT)

- We wanted to build applications: the complete Torch framework (Lua included) is self-contained, so you can transform your scripts into easily distributable programs

- We wanted to easily port our code to any platform: the complete Torch framework runs on iPhone, with no modification to our scripts

- We wanted easy extensibility: LuaJIT’s FFI interface is one of the simplest to learn, it’s easy to integrate any library into Torch
Lua provides a unique, universal data structure: the table

- The Lua table can be used as an array, dictionary (hash table), class, object, struct, list, ...

```lua
my_table = { 1, 2, 3 }
my_table = { my_var = 'hello', my_other_var = 'bye' }
my_table = { 1, 2, 99, my_var = 'hello' }
my_function = function() print('hello world') end
my_table[my_function] = 'this prints hello world'
my_function()
print(my_table[my_function])
```

Lua supports closures

- Closures allow very flexible programmatic constructs: on-the-fly object creation, flexible data structure creation, ...
Torch7 extends Lua’s table with a Tensor object:

- An N-Dimensional array type, which supports views
- A Tensor is a view of a chunk of memory
- A chunk of memory might have several views (Tensors) pointing to it, with different geometries
Torch7 provides a rich set of packages

- Based on Matlab’s common routines (zeros, ones, eye, ...)
- Linear algebra stuff
- Convolutions, Fourier transform, ...
- Plotting
- Statistics
- ...

<table>
<thead>
<tr>
<th>Torch7</th>
<th>Numeric library</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torch</td>
<td>Lua C API</td>
</tr>
<tr>
<td>nn</td>
<td>luaT</td>
</tr>
<tr>
<td>randomkit</td>
<td>BLAS</td>
</tr>
<tr>
<td>image</td>
<td>LAPACK</td>
</tr>
<tr>
<td>gfx</td>
<td>FFTW</td>
</tr>
<tr>
<td>imgraph</td>
<td>SSE</td>
</tr>
<tr>
<td>cephes</td>
<td>TH Tensor Library</td>
</tr>
<tr>
<td>ffmpeg</td>
<td></td>
</tr>
<tr>
<td>qt</td>
<td></td>
</tr>
<tr>
<td>cutorch</td>
<td></td>
</tr>
</tbody>
</table>
Package Manager

- Many more packages are available via Lua’s package manager: luarocks

- Check out what’s available here: github.com/torch/rocks
The nn package

- When training neural nets, autoencoders, linear regression, convolutional networks, and any of these models, we're interested in gradients, and loss functions.

- The nn package provides a large set of transfer functions, which all come with three methods:
 - `upgradeOutput()` -- compute the output given the input
 - `upgradeGradInput()` -- compute the derivative of the loss wrt input
 - `accGradParameters()` -- compute the derivative of the loss wrt weights

- The nn package provides a set of common loss functions, which all come with two methods:
 - `upgradeOutput()` -- compute the output given the input
 - `upgradeGradInput()` -- compute the derivative of the loss wrt input
Optimized backends

- CPU, using OpenMP + SSE
- GPU, using CUDA
 - cutorch : TH/torch for CUDA
 - cunn : nn for CUDA
- wrappers for cuda-convnet

For up-to-date benchmarking comparing caffe/theano/torch/cuda-convnet/…

https://github.com/soumith/convnet-benchmarks
Going Further:

▶ Torch7:
 http://www.torch.ch/
 https://github.com/torch

▶ Basic Demos: a bunch of demos/tutorials to get started
 https://github.com/clementfarabet/torch7-demos

▶ Deep-Learning Tutorials: supervised and unsupervised learning
 http://code.madbits.com

▶ luarocks: Lua’s package manager, to get new packages:
 $ luarocks search --all # list all packages
 $ luarocks install optim # install optim package

▶ Torch Group: get help!
 https://groups.google.com/forum/?fromgroups#!forum/torch7
2: Supervised Learning

- pre-process the (train and test) data, to facilitate learning
- describe a model to solve a classification task
- choose a loss function to minimize
- define a sampling procedure (stochastic, mini-batches), and apply one of several optimization techniques to train the model's parameters
- estimate the model's performance on unseen (test) data
- do all the exercises!
Example: convolutional network, for natural images

- define a model with pre-normalization, to work on raw RGB images:

```python
model = nn.Sequential()
model.add(nn.SpatialConvolution(3, 16, 5, 5))
model.add(nn.Tanh())
model.add(nn.SpatialMaxPooling(2, 2, 2))
model.add(nn.SpatialContrastiveNormalization(16, image.gaussian(3)))
model.add(nn.SpatialConvolution(16, 64, 5, 5))
model.add(nn.Tanh())
model.add(nn.SpatialMaxPooling(2, 2, 2))
model.add(nn.SpatialContrastiveNormalization(64, image.gaussian(3)))
model.add(nn.SpatialConvolution(64, 256, 5, 5))
model.add(nn.Tanh())
model.add(nn.Reshape(256))
model.add(nn.Linear(256, 10))
model.add(nn.LogSoftMax())
```
Example: logistic regression

- step 4/5: define a closure that estimates \(f(x) \) and \(df/dx \) stochastically

```lua
-- define a closure, that computes the loss, and dloss/dx
feval = function()
  -- select a new training sample
  _nidx_ = (_nidx_ or 0) + 1
  if _nidx_ > (#data)[1] then _nidx_ = 1 end

  local sample = data[_nidx_]
  local inputs = sample[1]
  local target = sample[2]

  -- reset gradients (gradients are always accumulated,
  -- to accomodate batch methods)
  dl_dx:zero()

  -- evaluate the loss function and its derivative wrt x,
  -- for that sample
  local loss_x = criterion:forward(model:forward(inputs), target)
  model:backward(inputs, criterion:backward(model.output, target))

  -- return loss(x) and dloss/dx
  return loss_x, dl_dx
end
```
Example: logistic regression

step 5/5: estimate parameters (train the model), stochastically

```lua
-- SGD parameters
sgd_params = {learningRate = 1e-3, learningRateDecay = 1e-4,
              weightDecay = 0, momentum = 0}

-- train for a number of epochs
epochs = 1e2
for i = 1,epochs do
  -- this variable is used to estimate the average loss
  current_loss = 0

  -- an epoch is a full loop over our training data
  for i = 1,(#data)[1] do
    -- one step of SGD optimization (steepest descent)
    _,fs = optim.sgd(feval,x,sgd_params)
    -- accumulate error
    current_loss = current_loss + fs[1]
  end

  -- report average error on epoch
  current_loss = current_loss / (#data)[1]
  print(' current loss = ' .. current_loss)
end
```
Example: optimize differently

➡ step 5/5: estimate parameters (train the model), using LBFGS

```
31  -- LBFGS parameters
32  lbfgs_params = {lineSearch = optim.lswolfe}
33
34  -- train for a number of epochs
35  epochs = 1e2
36  for i = 1,epochs do
37     -- this variable is used to estimate the average loss
38     current_loss = 0
39
40     -- an epoch is a full loop over our training data
41     for i = 1,(#data)[1] do
42
43         -- one step of SGD optimization (steepest descent)
44         _,fs = optim.lbfgs(feval,x,lbfgs_params)
45
46         -- accumulate error
47         current_loss = current_loss + fs[1]
48     end
49
50     -- report average error on epoch
51     current_loss = current_loss / (#data)[1]
52     print(' current loss = ' .. current_loss)
53  end
```
- Arbitrary models can be constructed using lego-like containers:

```python
nn.Sequential() -- sequential modules
nn.ParallelTable() -- parallel modules
nn.ConcatTable() -- shared modules
nn.SplitTable() -- (N)dim Tensor -> table of (N-1)dim Tensors
nn.JoinTable() -- table of (N-1)dim Tensors -> (N)dim Tensor
```
function nnd.Lstm(xTohMap, hTohMap)
 local x = nn.Identity()()
 local prevRnnState = nn.Identity()()
 local prevH, prevCell = prevRnnState:split(2)
 -- The input sum produces (Wx + Wh + b).
 -- Each input sum will use different weight matrices.
 local function newInputSum()
 return nn.CAddTable()({xTohMap:clone()(x), hTohMap:clone()(prevH)})
 end
 -- The following are equations (3) to (7) from
 -- "SPEECH RECOGNITION WITH DEEP RECURRENT NEURAL NETWORKS".
 -- The peep-hole connections are not used.
 local inGate = nn.Sigmoid()(newInputSum())
 local forgetGate = nn.Sigmoid()(newInputSum())
 local cellGate = nn.Tanh()(nn.CAddTable()({xTohMap(x), hTohMap(prevH)}))
 local cellOut = nn.CAddTable()({
 nn.CMulTable()({forgetGate, prevCell}),
 nn.CMulTable()({inGate, cellGate})
 })
 local outGate = nn.Sigmoid()(newInputSum())
 local hOut = nn.CMulTable()({outGate, nn.Tanh()(cellOut)})
 local nextRnnState = nn.Identity()({hOut, cellOut})
 -- The LSTM takes (x, prevRnnState) and computes the new (h, rnnState).
 return nn.gModule({x, prevRnnState}, {hOut, nextRnnState})
end

Torch7

Examples

Or using graph container directly
‑ Changing the backend: CUDA

➡ cunn: that package re-defines lots of nn modules with CUDA
➡ to use CUDA, Tensors simply need to be cast as CudaTensors

01 -- define model
02 model = nn.Sequential()
03 model:add(nn.Linear(100,1000))
04 model:add(nn.Tanh())
05 model:add(nn.Linear(1000,10))
06 model:add(nn.LogSoftMax())
07
08 -- re-cast model as a CUDA model
09 model:cuda()
10
11 -- define input as a CUDA Tensor
12 input = torch.CudaTensor(100)
13 -- compute model’s output (is a CudaTensor as well)
14 output = model:forward(input)
15
16 -- alternative: convert an existing DoubleTensor to a CudaTensor:
17 input = torch.randn(100):cuda()
18 output = model:forward(input)
Torch7 @ Google Deepmind

- Used exclusively for research and prototyping
- Unsupervised learning
- Supervised learning
- Reinforcement Learning
- Sequence Prediction
- Many internal and external open sourced packages
 - logging
 - functional programming
 - datasets
 - random number generators (randomkit)
 - statistical distributions
 - mathematical functions (cephes)
 - many patches to torch ecosystem
x: Torch at Facebook
We use Torch and LuaJIT at Facebook

- First open contributions released
- Improving parallelism for multi-GPUs (model, data, DAG model)
- Improving host-device communications (overlapping)
- Computation kernels speed (e.g. convolutions in time/freq. domains)

See https://github.com/facebook/fblualib
Torch packages released

- **fb.thrift**: fast serialization library
- **fb.debugger**: source-level Lua debugger
- **fb.python**: bridge between Lua and Python
- C++ LuaUtils: collection of C++ utilities for writing Lua extensions
- **fb.util**: collection of low-level Lua utilities
- **fb.editline**: command line editing library based on libedit
- **fb.trepl**: configurable Read-Eval-Print loop with line editing and autocompletion
- **fb.ffivector**: vector of POD types does not count toward the Lua heap limit
- **fb.mattorch**: library for r/w Matlab .mat files from Torch (without Matlab installed)
‣ fb.thrift
 ➡ Thrift serialization for arbitrary Lua objects
 ➡ Thrift is the multi-platform, multi-language serialization used in production at FB
 ➡ Built-in optional compression

‣ Serialization / Deserialization of Lua objects
 ➡ Supported types: scalars, tables, function with upvalues, torch.Tensor
 ➡ Arbitrary cyclic object graphs
 ➡ 3-8x faster speeds than default Torch serialization
fb.thrift

Example

01 local thrift = require('fb.thrift')
02 local obj = { foo = 2 } -- arbitrary Lua object
03
04 -- Serialization
05 -- to Lua string
06 local str = thrift.to_string(obj)
07
08 -- to open io.file object
09 local f = io.open('/tmp/foo', 'wb')
10 thrift.to_file(obj, f)
11
12 -- Deserialization
13 -- from Lua string
14 local obj = thrift.from_string(str)
15
16 -- from open io.file object
17 local f = io.open('/tmp/foo')
18 local obj = thrift.from_file(obj)
\[\textbf{fb.debugger} \]
- full-featured source-level Lua debugger
- does not require Torch

\[\textbf{2 modes of operation} \]
- directly within the code

```
local debugger = require('fb.debugger')
...
-- At the point of interest, enter the debugger
devgger.enter()
...
```

- on uncaught errors: with fb.trepl, set the environment variable
 `LUA_DEBUG_ON_ERROR=1`

\[\textbf{Debugger inspired by gdb, used similarly} \]
- traditional commands: `backtrace | continue | print ...`
- list all commands: `help`
\textbf{fb.python}

- bridge between Lua and Python
- enables seamless integration between languages
- use SciPy with Lua tensors almost as efficiently as with native numpy arrays
- on the fly data conversion, use numpy/scipy/matplotlib with Torch tensors
- \texttt{py.exec(code, locals)} executes a given Python code string (no return)
- \texttt{py.eval(code, locals)} evaluate a given Python code string (and returns a value)

\textbf{Data model}

- Lua and Python do not match exactly, need conversion
- data transferred between Lua and Python by \textbf{value}
- tables are copied \textbf{deeply}
- tensors \textbf{share} data but not metadata
- opaque references allow user to
fb.python

- Example
- `'[===['` multiline string syntax (python is sensitive to indentation)
- values converted automatically between Python and Lua
- `py.eval` creates a local Python environment
- with value `a` of type `Python float`
- return value of type `Python float` is converted to `Lua int`
- Python to Lua and Lua to Python have specific conversion rules
- When existing conversion rules are insufficient, opaque references can be used

```python
01  py.exec(['=
02     import numpy as np
03     def foo(x):
04         return x + 1
05   '])
06  print(py.eval('foo(a) + 10'), {a = 42})  -- prints 53
```
\textbf{fb.python}

- opaque references encapsulate any Python object
- used in place of Lua values to pass arguments to Python
- opaque references support function calls, lookup, arithmetic operations
- operations on opaque references always return opaque references
- so chaining is possible transparently
- need \texttt{py.eval} at the end of an operation chain to convert back to Lua

```lua
01  -- np is opaque reference to Python numpy module
02  local np = py.import('numpy')
03  
04  -- t1 is opaque reference to numpy.ndarray
05  local t1 = np.tri(10).transpose()
06  
07  -- t2 is t1 converted to torch Tensor
08  local t2 = py.eval(t1)
09  
10  local nltk = py.import('nltk')
11  local tokenized = py.eval(nltk.word_tokenize('Hello world, cats are cool'))
```