The Shogun Machine Learning Toolbox

Heiko Strathmann, Gatsby Unit, UCL London

Open Machine Learning Workshop, MSR, NY

August 22, 2014
A bit about Shogun

- Open-Source tools for ML problems
- Started 1999 by Sören Sonnenburg & Gunnar Rätsch, made public in 2004
- Currently 8 core-developers + 20 regular contributors
- Purely open-source community driven
- In Google Summer of Code since 2010 (29 projects!)
In a Nutshell, SHOGUN...

... has had 25,187 commits made by 126 contributors representing 588,445 lines of code

... is mostly written in C++
 with a very low number of source code comments

... has a well established, mature codebase
 maintained by a very large development team
 with stable Y-O-Y commits

... took an estimated 162 years of effort (COCOMO model)
 starting with its first commit in June, 2006
 ending with its most recent commit about 3 hours ago
Supervised Learning

- Given: \(\{(x_i, y_i)\}_{i=1}^n \), want: \(y^* | x^* \)
- Classification: \(y \) discrete
 - Support Vector Machine
 - Gaussian Processes
 - Logistic Regression
 - Decision Trees
 - Nearest Neighbours
 - Naive Bayes
- Regression: \(y \) continuous
 - Gaussian Processes
 - Support Vector Regression
 - (Kernel) Ridge Regression
 - (Group) LASSO
Unsupervised Learning

- Given: \(\{x_i\}_{i=1}^n \), want notion of \(p(x) \).
- Clustering:
 - K-Means
 - (Gaussian) Mixture Models
 - Hierarchical clustering
- Latent Models
 - (K) PCA
 - Latent Discriminant Analysis
 - Independent Component Analysis
- Dimension reduction
 - (K) Locally Linear Embeddings
 - Many more...
And many more

- Multiple Kernel Learning
- Structured Output
- Metric Learning
- Variational Inference
- Kernel hypothesis testing
- Deep Learning (whooo!)
- ...
- Bindings to: LibLinear, VowpalWabbit, etc..

http://www.shogun-toolbox.org/page/documentation/notebook
Some Large-Scale Applications

- Splice Site prediction: 50m examples of 200m dimensions
- Face recognition: 20k examples of 750k dimensions
ML in Practice

- Modular data representation
 - Dense, Sparse, Strings, Streams, ...
 - Multiple types: 8-128 bit word size
 - Preprocessing tools

- Evaluation
 - Cross-Validation
 - Accuracy, ROC, MSE, ...

- Model Selection
 - Grid-Search
 - Gradient based

- Various native file formats, generic multiclass, etc
Geeky details

▶ Written in (proper) C/C++
▶ Modular, fast, memory efficient
▶ Unified interface for Machine Learning
▶ Linear algebra & co: Eigen3, Lapack, Arpack, pthreads, OpenMP, recently GPUs

Class list:
Modular language interfaces

- SWIG - http://www.swig.org/
- We write:
 - C/C++ classes
 - Typemaps (i.e. 2D C++ matrix ⇔ 2D numpy array)
 - List of classes of expose
- SWIG generates:
 - Wrapper classes
 - Interface files
- Automagically happens at compile time
- **Identical** interface for all modular languages:
 - C++, Python, Octave, Java, R, Ruby, Lua, C#
- We are in Debian/Ubuntu, but also Mac, Win, Unix
C/C++

#include <shogun/base/init.h>
#include <shogun/kernel/GaussianKernel.h>
#include <shogun/labels/BinaryLabels.h>
#include <shogun/features/DenseFeatures.h>
#include <shogun/classifier/svm/LibSVM.h>

using namespace shogun;

int main()
{
 init_shogun_with_defaults();
 ...
 exit_shogun();
 return 0;
}
C/C++

DenseFeatures<float64_t>* train = new DenseFeatures<float64_t>(...);
DenseFeatures<float64_t>* = new DenseFeatures<float64_t>(...);
BinaryLabels* labels = new BinaryLabels(...);

GaussianKernel* kernel = new GaussianKernel(
 cache_size, width);
svm = new LibSVM(C, kernel, labels);
svm->train(train);

CBinaryLabels* predictions = CLabelsFactory::
 to_binary(svm->apply(test));
predictions->display_vector();

SG_UNREF(svm);
SG_UNREF(predictions);
```python
from modshogun import *

train=RealFeatures(numpy_2d_array_train)
test=RealFeatures(numpy_2d_array_test)
labels=BinaryLabels(numpy_1d_array_label)

kernel=GaussianKernel(cache_size, width)
svm=LibSVM(C, kernel, labels)
svm.train(train)

predictions=svm.apply(test)

# print first prediction
print predictions.get_labels()[0]
```
Octave

modshogun

train=RealFeatures(octave_matrix_train);
test=RealFeatures(octave_matrix_train);
labels=BinaryLabels(octave_labels_train);

kernel=GaussianKernel(cache_size, width);
svm=LibSVM(C, kernel, labels);
svm.train(train);

predictions=svm.apply(test);

% print first prediction
disp(predictions.get_labels()()[1])
import org.shogun.*;
import org.jblas.*;
import static org.shogun.LabelsFactory.to_binary;

public class classifier_libsvm_modular {
 static {
 System.loadLibrary("modshogun");
 }

 public static void main(String argv[]) {
 modshogun.init_shogun_with_defaults();

 RealFeatures train = new RealFeatures(new CSVFile(train_file));
 RealFeatures test = new RealFeatures(new CSVFile(test_file));
 BinaryLabels labels = new BinaryLabels(new CSVFile(label_fname));
 GaussianKernel = new GaussianKernel(cache_size, width);
 LibSVM svm = new LibSVM(C, kernel, labels);
 svm.train(train);

 // print predictions
 DoubleMatrix predictions = to_binary(svm.apply(test)).get_labels();
 System.out.println(predictions.toString());
 }
}
Shogun in the Cloud

- We love (I)Python notebooks for documentation
- IPython notebook server: try Shogun without installation
- Interactive web-demos (Django)

http://www.shogun-toolbox.org/page/documentation/notebook

http://www.shogun-toolbox.org/page/documentation/demo
Strong vibrations

- Active mailing list
- Populated IRC (come say hello)
- Cool team & backgrounds

http://www.shogun-toolbox.org/page/contact/contacts
Google Summer of Code

- Student works full time during the summer
- Receives $5000 stipend
- Work remains open-source
- Just ended
- 29 x 3 months (we have lots of impact)
Help!

- We don’t sleep.
- You could:
 - Use Shogun and give us feedback
 - Fix bugs (see github), help us with framework design
 - We desperately need hackers!
 - Write (Python) examples and notebooks
 - Write documentation and update our website (Django)
 - Implement Super-parametric Massively Parallel Manifold Tree Classification Samplers (tm)
 - Mentor GSoC projects, or join as a student
 - Donate (workshop, hack sprints, infrastructure)
- Collaborations with other projects!
Thanks!

Questions?

http://www.shogun-toolbox.org
Community

- We just founded a non-profit association
- Goal: Take donations and hire a full-time developer
- GPL → BSD (industry friendly)
- Shogun in education, fundamental ML
Long term technical goals

- Usability
 - Binary Packages
 - Examples
- Efficiency
 - Library modularity
 - Memory footprint
- Computing Backends
 - Parallel/distributed (OpenMP, MPI, PBS, Spark, ...)
 - Linear algebra (multicore/GPU)

Collaborations

- Probabilistic models (Stan?)
- Update bindings to VW, LibLinear, etc
- Matrix view problem, libgpuarray?
- We can embed Python code into C++
- Framework for comparing ML methods
 - Runtime
 - Accuracy
 - Reproducability