
Online Linear Learning

John Langford, Machine Learning the Future,
February 27

To follow along:
git clone
git://github.com/JohnLangford/vowpal_wabbit.git
wget http://hunch.net/~jl/rcv1.tar.gz

http://hunch.net/~jl/rcv1.tar.gz

Linear Learning

Features: a vector x ∈ Rn

Label: y ∈ R
Goal: Learn w ∈ Rn such that
ŷw(x) =

∑
i wixi is close to y .

Linear Learning

Features: a vector x ∈ Rn

Label: y ∈ {−1, 1}
Goal: Learn w ∈ Rn such that
ŷw(x) = sign(

∑
i wixi) = y .

Online Linear Learning

Start with ∀i : wi = 0
Repeatedly:

1 Get features x ∈ Rn.
2 Make linear prediction ŷw(x) =

∑
i wixi .

3 Observe label y ∈ [0, 1].
4 Update weights so ŷw(x) is closer to y .

Example: wi ← wi + η(y − ŷ)xi .

Online Linear Learning

Start with ∀i : wi = 0
Repeatedly:

1 Get features x ∈ Rn.
2 Make logistic prediction ŷw(x) = 1

1+e−
∑

i wi xi
.

3 Observe label y ∈ [0, 1].
4 Update weights so ŷw(x) is closer to y .

Example: wi ← wi + η(y − ŷ)xi .

Online Linear Learning

Start with ∀i : wi = 0
Repeatedly:

1 Get features x ∈ Rn.
2 Make linear prediction ŷw(x) =

∑
i wixi .

3 Observe label y ∈ [0, 1].
4 Update weights so ŷw(x) is closer to y .

Example: wi ← wi + η(y − ŷ)xi .

Online Linear Learning

Start with ∀i : wi = 0
Repeatedly:

1 Get features x ∈ Rn.
2 Make linear prediction ŷw(x) =

∑
i wixi .

3 Observe label y ∈ [0, 1].
4 Update weights so ŷw(x) is closer to y .

Example: wi ← wi + η(y − ŷ)xi .

An Example: The RCV1 dataset

Pick whether a document is in category CCAT or not.
Dataset size:
781K examples
60M nonzero features
1.1G bytes
Format: label | sparse features ...

1 | 13:3.9656971e-02 24:3.4781646e-02 ...
which corresponds to:
1 | tuesday year ...
command: time vw --sgd rcv1.train.txt -c
takes 1-3 seconds on my laptop.

An Example: The RCV1 dataset

Pick whether a document is in category CCAT or not.
Dataset size:
781K examples
60M nonzero features
1.1G bytes
Format: label | sparse features ...
1 | 13:3.9656971e-02 24:3.4781646e-02 ...

which corresponds to:
1 | tuesday year ...
command: time vw --sgd rcv1.train.txt -c
takes 1-3 seconds on my laptop.

An Example: The RCV1 dataset

Pick whether a document is in category CCAT or not.
Dataset size:
781K examples
60M nonzero features
1.1G bytes
Format: label | sparse features ...
1 | 13:3.9656971e-02 24:3.4781646e-02 ...
which corresponds to:
1 | tuesday year ...

command: time vw --sgd rcv1.train.txt -c
takes 1-3 seconds on my laptop.

An Example: The RCV1 dataset

Pick whether a document is in category CCAT or not.
Dataset size:
781K examples
60M nonzero features
1.1G bytes
Format: label | sparse features ...
1 | 13:3.9656971e-02 24:3.4781646e-02 ...
which corresponds to:
1 | tuesday year ...
command: time vw --sgd rcv1.train.txt -c
takes 1-3 seconds on my laptop.

Reasons for Online Learning

1 Fast convergence to a good predictor
2 It’s RAM efficient. You need store only one

example in RAM rather than all of them. ⇒
Entirely new scales of data are possible.

3 Online Learning algorithm = Online
Optimization Algorithm. Online Learning
Algorithms ⇒ the ability to solve entirely new
categories of applications.

4 Online Learning = ability to deal with drifting
distributions.

Defining updates

1 Define a loss function L(ŷw(x), y).
2 Update according to wi ← wi − η ∂L(ŷw (x),y)∂wi

.
Here η is the learning rate.

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

lo
s
s

prediction when y=1

common loss functions

0/1
squared

logistic
quantile

hinge

Defining updates

1 Define a loss function L(ŷw(x), y).

2 Update according to wi ← wi − η ∂L(ŷw (x),y)∂wi
.

Here η is the learning rate.

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

lo
s
s

prediction when y=1

common loss functions

0/1
squared

logistic
quantile

hinge

Defining updates

1 Define a loss function L(ŷw(x), y).
2 Update according to wi ← wi − η ∂L(ŷw (x),y)∂wi

.
Here η is the learning rate.

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

lo
s
s

prediction when y=1

common loss functions

0/1
squared

logistic
quantile

hinge

Defining updates

1 Define a loss function L(ŷw(x), y).
2 Update according to wi ← wi − η ∂L(ŷw (x),y)∂wi

.
Here η is the learning rate.

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

lo
s
s

prediction when y=1

common loss functions

0/1
squared

logistic
quantile

hinge

Know your loss function semantics

1 What is a typical price for a house?

quantile: minimizer = median

2 What is the expected return on a stock?

squared: minimizer = expectation

3 What is the probability of a click on an ad?

logistic: minimizer = probability

4 Is the digit a 1?

hinge: closest 0/1 approximation

5 What do you really care about?

often 0/1

Know your loss function semantics

1 What is a typical price for a house?
quantile: minimizer = median

2 What is the expected return on a stock?
squared: minimizer = expectation

3 What is the probability of a click on an ad?
logistic: minimizer = probability

4 Is the digit a 1?
hinge: closest 0/1 approximation

5 What do you really care about?
often 0/1

A proof for quantile regression
Consider conditional probability distribution D(y |x).

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1

p
ro

b
a

b
ili

ty

y|x

pdf

A proof for quantile regression
Consider equal mass tails. Where is loss minimized?

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1

p
ro

b
a

b
ili

ty

y|x

left/right cumulative

A proof for quantile regression
Minimizer is always between.

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1

p
ro

b
a

b
ili

ty

y|x

loss minimizer

A proof for quantile regression

Works for any tails ⇒ works for mass 0.5 tails.

How do you know when you succeed?

Progressive Validation
On timestep t let lt = L(ŷwt

(xt), yt).
Report loss L = Et lt .

PV analysis
Let D be a distribution over x , y . Let
l̄t = E(x ,y)∼DL(ŷwt

(x), y)
Theorem: For all probability distributions D(x , y), for
all online learning algorithms, with probability 1− δ:

∣∣L− Et l̄t
∣∣ ≤√ ln 2/δ

2T

How do you know when you succeed?

Progressive Validation
On timestep t let lt = L(ŷwt

(xt), yt).
Report loss L = Et lt .

PV analysis
Let D be a distribution over x , y . Let
l̄t = E(x ,y)∼DL(ŷwt

(x), y)
Theorem: For all probability distributions D(x , y), for
all online learning algorithms, with probability 1− δ:

∣∣L− Et l̄t
∣∣ ≤√ ln 2/δ

2T

How do you know when you succeed?

Progressive Validation
On timestep t let lt = L(ŷwt

(xt), yt).
Report loss L = Et lt .

PV analysis
Let D be a distribution over x , y . Let
l̄t = E(x ,y)∼DL(ŷwt

(x), y)
Theorem: For all probability distributions D(x , y), for
all online learning algorithms, with probability 1− δ:

∣∣L− Et l̄t
∣∣ ≤√ ln 2/δ

2T

rcv1 with different loss functions

All the common loss functions are sound for binary
classification, so which is best is an empirical choice.
vw --sgd rcv1.train.txt -c --loss_function
hinge --binary
vw --sgd rcv1.train.txt -c --loss_function
logistic --binary
vw --sgd rcv1.train.txt -c --loss_function
quantile --binary

Progressive validation often does not replace
train/test discipline, but it can greatly aid empirical
testing.

rcv1 with different loss functions

All the common loss functions are sound for binary
classification, so which is best is an empirical choice.
vw --sgd rcv1.train.txt -c --loss_function
hinge --binary
vw --sgd rcv1.train.txt -c --loss_function
logistic --binary
vw --sgd rcv1.train.txt -c --loss_function
quantile --binary
Progressive validation often does not replace
train/test discipline, but it can greatly aid empirical
testing.

Part II, advanced updates

1 Importance weight invariance
2 Adaptive updates
3 Normalized updates

Learning with importance weights

A common scenario: you need to do classification but
one choice is more expensive than the other.

An example: In spam detection, predicting nonspam
as spam is worse than spam as nonspam.

Let’s say an example is I times more important than
a typical example.
How do you modify the update to use I?

The baseline approach: wi ← wi − ηI ∂L(ŷw (x),y)∂wi
.

Learning with importance weights

A common scenario: you need to do classification but
one choice is more expensive than the other.

An example: In spam detection, predicting nonspam
as spam is worse than spam as nonspam.

Let’s say an example is I times more important than
a typical example.
How do you modify the update to use I?

The baseline approach: wi ← wi − ηI ∂L(ŷw (x),y)∂wi
.

Learning with importance weights

A common scenario: you need to do classification but
one choice is more expensive than the other.

An example: In spam detection, predicting nonspam
as spam is worse than spam as nonspam.

Let’s say an example is I times more important than
a typical example.
How do you modify the update to use I?

The baseline approach: wi ← wi − ηI ∂L(ŷw (x),y)∂wi
.

Dealing with the importance weights
wi ← wi − ηI ∂L(ŷw (x),y)∂wi

performs poorly.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

lo
s
s

prediction when y=1

Baseline Importance Update

Squared Loss
Baseline Update

Dealing with the importance weights
A better approach: wi ← wi − η ∂L(ŷw (x),y)∂wi

I times

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

lo
s
s

prediction when y=1

Baseline Importance Update

Squared Loss
Baseline Update

Repeated update

Dealing with the importance weights
An even better approach: wi ← wi − s(ηI)∂L(ŷw (x),y)∂wi

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

lo
s
s

prediction when y=1

Baseline Importance Update

Squared Loss
Baseline Update

Repeated Update
Invariant Update

Robust results for unweighted problems

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97

st
an

da
rd

importance aware

astro - logistic loss

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98

st
an

da
rd

importance aware

spam - quantile loss

 0.9

 0.905

 0.91

 0.915

 0.92

 0.925

 0.93

 0.935

 0.94

 0.945

 0.95

 0.9 0.905 0.91 0.915 0.92 0.925 0.93 0.935 0.94 0.945 0.95

st
an

da
rd

importance aware

rcv1 - squared loss

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

st
an

da
rd

importance aware

webspam - hinge loss

rcv1 with an invariant update

vw rcv1.train.txt -c --binary --invariant
Performs slightly worse with the default learning rate,
but much more robust to learning rate choice.

Adaptive Learning

Learning rates must decay to converge, but how?

Common answer: ηt = 1/t0.5 or ηt = 1/t.

Better answer: t, let git = ∂L(ŷw (xt),yt)
∂wi

.
New update rule: wi ← wit − η git√∑t

t′=1 g
2
it′

Common features stabilize quickly. Rare features can
have large updates.

Adaptive Learning

Learning rates must decay to converge, but how?
Common answer: ηt = 1/t0.5 or ηt = 1/t.

Better answer: t, let git = ∂L(ŷw (xt),yt)
∂wi

.
New update rule: wi ← wit − η git√∑t

t′=1 g
2
it′

Common features stabilize quickly. Rare features can
have large updates.

Adaptive Learning

Learning rates must decay to converge, but how?
Common answer: ηt = 1/t0.5 or ηt = 1/t.

Better answer: t, let git = ∂L(ŷw (xt),yt)
∂wi

.
New update rule: wi ← wit − η git√∑t

t′=1 g
2
it′

Common features stabilize quickly. Rare features can
have large updates.

Adaptive Learning

Learning rates must decay to converge, but how?
Common answer: ηt = 1/t0.5 or ηt = 1/t.

Better answer: t, let git = ∂L(ŷw (xt),yt)
∂wi

.
New update rule: wi ← wit − η git√∑t

t′=1 g
2
it′

Common features stabilize quickly. Rare features can
have large updates.

Adaptive Learning example

vw rcv1.train.txt -c --binary --adaptive
Slightly worse. Adding in --invariant -l 1 helps.

Dimensional Correction

git for squared loss = 2(ŷw(x)− y)xi so update is

wi ← wi − Cxi

The same form occurs for all linear updates.

Intrinsic problems! Doubling xi implies halving wi to
get the same prediction.
⇒ Update rule has mixed units!

Dimensional Correction

git for squared loss = 2(ŷw(x)− y)xi so update is

wi ← wi − Cxi

The same form occurs for all linear updates.
Intrinsic problems! Doubling xi implies halving wi to
get the same prediction.
⇒ Update rule has mixed units!

A standard solution: Gaussian sphering

For each feature xi compute:
empirical mean µi = Etxit
empirical standard deviation σi =

√
Et(xit − µi)2

Let x ′i ←
xi−µi

σi
.

Problems:
1 Lose online.
2 RCV1 becomes a factor of 500 larger.

A standard solution: Gaussian sphering

For each feature xi compute:
empirical mean µi = Etxit
empirical standard deviation σi =

√
Et(xit − µi)2

Let x ′i ←
xi−µi

σi
.

Problems:
1 Lose online.
2 RCV1 becomes a factor of 500 larger.

A scale-free update

NG(learning_rate η)
1 Initially wi = 0, si = 0, N = 0
2 For each timestep t observe example (x , y)

1 For each i , if |xi | > si

1 Renormalize wi for new scale
2 Adjust Scale

2 ŷ =
∑

i wixi
3 Adjust global scale
4 For each i ,

1 wi ← wi − η (scale adjustment)∂L(ŷ ,y)∂wi

A scale-free update

NG(learning_rate η)
1 Initially wi = 0, si = 0, N = 0
2 For each timestep t observe example (x , y)

1 For each i , if |xi | > si

1 wi ← wi s
2
i

|xi |2
2 Adjust Scale

2 ŷ =
∑

i wixi
3 Adjust global scale
4 For each i ,

1 wi ← wi − η (scale adjustment)∂L(ŷ ,y)∂wi

A scale-free update

NG(learning_rate η)
1 Initially wi = 0, si = 0, N = 0
2 For each timestep t observe example (x , y)

1 For each i , if |xi | > si

1 wi ← wi s
2
i

|xi |2
2 si ← |xi |

2 ŷ =
∑

i wixi
3 Adjust global scale
4 For each i ,

1 wi ← wi − η (scale adjustment)∂L(ŷ ,y)∂wi

A scale-free update

NG(learning_rate η)
1 Initially wi = 0, si = 0, N = 0
2 For each timestep t observe example (x , y)

1 For each i , if |xi | > si

1 wi ← wi s
2
i

|xi |2
2 si ← |xi |

2 ŷ =
∑

i wixi
3 N ← N +

∑
i
x2
i

s2i
4 For each i ,

1 wi ← wi − η (scale adjustment)∂L(ŷ ,y)∂wi

A scale-free update

NG(learning_rate η)
1 Initially wi = 0, si = 0, N = 0
2 For each timestep t observe example (x , y)

1 For each i , if |xi | > si

1 wi ← wi s
2
i

|xi |2
2 si ← |xi |

2 ŷ =
∑

i wixi
3 N ← N +

∑
i
x2
i

s2i
4 For each i ,

1 wi ← wi − η
√

t
N

1
s2i

∂L(ŷ ,y)
∂wi

In combination

An adaptive, scale-free, importance invariant update
rule.
vw rcv1.train.txt -c --binary

Not the End

... there are many more problems with gradient
descent. How do you fix them?

References

[RCV1 example] Leon Bottou, Stochastic Gradient
Descent, 2007.
[VW] Vowpal Wabbit project,
http://hunch.net/~vw, 2007-2012.
[Quantile Regression] Roger Koenker, Quantile
Regression, Econometric Society Monograph Series,
Cambridge University Press, 2005.
[Classification Consistency] Ambuj Tewari and Peter
L. Bartlett. On the consistency of multiclass
classification methods. COLT, 2005.

http://hunch.net/~vw

References

[Progressive Validation I] Avrim Blum, Adam Kalai,
and John Langford Beating the Holdout: Bounds for
KFold and Progressive Cross-Validation. COLT99.
[Progressive Validation II] N. Cesa-Bianchi, A.
Conconi, and C. Gentile On the generalization ability
of on-line learning algorithms IEEE Transactions on
Information Theory, 50(9):2050-2057, 2004.
[Importance Aware Updates] Nikos Karampatziakis
and John Langford, Importance Weight Aware
Gradient Updates UAI 2010.
[Online Convex Programming] Martin Zinkevich,
Online convex programming and generalized
infinitesimal gradient ascent, ICML 2003.

References

[Adaptive Updates I] John Duchi, Elad Hazan, and
Yoram Singer, Adaptive Subgradient Methods for
Online Learning and Stochastic Optimization, COLT
2010 & JMLR 2011.
[Adaptive Updates II] H. Brendan McMahan,
Matthew Streeter, Adaptive Bound Optimization for
Online Convex Optimization, COLT 2010.
[Scale invariant updates] Stephane Ross, Paul
Mineiro, John Langford, Normalized Online Learning,
UAI 2013.

