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Linear Learning

Features: a vector x ∈ Rn

Label: y ∈ R
Goal: Learn w ∈ Rn such that
ŷw(x) =

∑
i wixi is close to y .



Linear Learning

Features: a vector x ∈ Rn

Label: y ∈ {−1, 1}
Goal: Learn w ∈ Rn such that
ŷw(x) = sign(

∑
i wixi) = y .



Online Linear Learning

Start with ∀i : wi = 0
Repeatedly:

1 Get features x ∈ Rn.
2 Make linear prediction ŷw(x) =

∑
i wixi .

3 Observe label y ∈ [0, 1].
4 Update weights so ŷw(x) is closer to y .

Example: wi ← wi + η(y − ŷ)xi .
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An Example: The RCV1 dataset

Pick whether a document is in category CCAT or not.
Dataset size:
781K examples
60M nonzero features
1.1G bytes
Format: label | sparse features ...

1 | 13:3.9656971e-02 24:3.4781646e-02 ...
which corresponds to:
1 | tuesday year ...
command: time vw --sgd rcv1.train.txt -c
takes 1-3 seconds on my laptop.
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Reasons for Online Learning

1 Fast convergence to a good predictor
2 It’s RAM efficient. You need store only one

example in RAM rather than all of them. ⇒
Entirely new scales of data are possible.

3 Online Learning algorithm = Online
Optimization Algorithm. Online Learning
Algorithms ⇒ the ability to solve entirely new
categories of applications.

4 Online Learning = ability to deal with drifting
distributions.



Defining updates

1 Define a loss function L(ŷw(x), y).
2 Update according to wi ← wi − η ∂L(ŷw (x),y)∂wi

.
Here η is the learning rate.
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Know your loss function semantics

1 What is a typical price for a house?

quantile: minimizer = median

2 What is the expected return on a stock?

squared: minimizer = expectation

3 What is the probability of a click on an ad?

logistic: minimizer = probability

4 Is the digit a 1?

hinge: closest 0/1 approximation

5 What do you really care about?

often 0/1
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A proof for quantile regression
Consider conditional probability distribution D(y |x).
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A proof for quantile regression
Consider equal mass tails. Where is loss minimized?
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A proof for quantile regression
Minimizer is always between.
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A proof for quantile regression

Works for any tails ⇒ works for mass 0.5 tails.



How do you know when you succeed?

Progressive Validation
On timestep t let lt = L(ŷwt

(xt), yt).
Report loss L = Et lt .

PV analysis
Let D be a distribution over x , y . Let
l̄t = E(x ,y)∼DL(ŷwt

(x), y)
Theorem: For all probability distributions D(x , y), for
all online learning algorithms, with probability 1− δ:

∣∣L− Et l̄t
∣∣ ≤√ ln 2/δ

2T
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rcv1 with different loss functions

All the common loss functions are sound for binary
classification, so which is best is an empirical choice.
vw --sgd rcv1.train.txt -c --loss_function
hinge --binary
vw --sgd rcv1.train.txt -c --loss_function
logistic --binary
vw --sgd rcv1.train.txt -c --loss_function
quantile --binary

Progressive validation often does not replace
train/test discipline, but it can greatly aid empirical
testing.
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Part II, advanced updates

1 Importance weight invariance
2 Adaptive updates
3 Normalized updates



Learning with importance weights

A common scenario: you need to do classification but
one choice is more expensive than the other.

An example: In spam detection, predicting nonspam
as spam is worse than spam as nonspam.

Let’s say an example is I times more important than
a typical example.
How do you modify the update to use I?

The baseline approach: wi ← wi − ηI ∂L(ŷw (x),y)∂wi
.
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Dealing with the importance weights
wi ← wi − ηI ∂L(ŷw (x),y)∂wi

performs poorly.
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Dealing with the importance weights
A better approach: wi ← wi − η ∂L(ŷw (x),y)∂wi

I times
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Dealing with the importance weights
An even better approach: wi ← wi − s(ηI )∂L(ŷw (x),y)∂wi
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Robust results for unweighted problems
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rcv1 with an invariant update

vw rcv1.train.txt -c --binary --invariant
Performs slightly worse with the default learning rate,
but much more robust to learning rate choice.



Adaptive Learning

Learning rates must decay to converge, but how?

Common answer: ηt = 1/t0.5 or ηt = 1/t.

Better answer: t, let git = ∂L(ŷw (xt),yt)
∂wi

.
New update rule: wi ← wit − η git√∑t

t′=1 g
2
it′

Common features stabilize quickly. Rare features can
have large updates.
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Adaptive Learning example

vw rcv1.train.txt -c --binary --adaptive
Slightly worse. Adding in --invariant -l 1 helps.



Dimensional Correction

git for squared loss = 2(ŷw(x)− y)xi so update is

wi ← wi − Cxi

The same form occurs for all linear updates.

Intrinsic problems! Doubling xi implies halving wi to
get the same prediction.
⇒ Update rule has mixed units!
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A standard solution: Gaussian sphering

For each feature xi compute:
empirical mean µi = Etxit
empirical standard deviation σi =

√
Et(xit − µi)2

Let x ′i ←
xi−µi

σi
.

Problems:
1 Lose online.
2 RCV1 becomes a factor of 500 larger.
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A scale-free update

NG(learning_rate η)
1 Initially wi = 0, si = 0, N = 0
2 For each timestep t observe example (x , y)

1 For each i , if |xi | > si

1 Renormalize wi for new scale
2 Adjust Scale

2 ŷ =
∑

i wixi
3 Adjust global scale
4 For each i ,

1 wi ← wi − η (scale adjustment)∂L(ŷ ,y)∂wi
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A scale-free update
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∂L(ŷ ,y)
∂wi



In combination

An adaptive, scale-free, importance invariant update
rule.
vw rcv1.train.txt -c --binary



Not the End

... there are many more problems with gradient
descent. How do you fix them?
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