For $t = 1, \ldots, T$:

1. The world produces some context $x \in X$
2. The learner chooses an action $a \in A$
3. The world react with reward $r_a \in [0, 1]$

Goal: Learn a good policy for choosing actions given context.

What does learning mean?
Reminder: Contextual Bandit Setting

For $t = 1, \ldots, T$:

1. The world produces some context $x \in X$
2. The learner chooses an action $a \in A$
3. The world reacts with reward $r_a \in [0, 1]$

Goal: Learn a good policy for choosing actions given context.

What does learning mean? Efficiently competing with some large reference class of policies $\Pi = \{\pi : X \rightarrow A\}$:

$$\text{Regret} = \max_{\pi \in \Pi} \text{average}_t (r_{\pi(x)} - r_a)$$
A Rejection Sampling approach

Rejection Sampler (policy \(\pi \), events \((\vec{x}, a, r, p)^T\))

Let \(h = \emptyset \) a history, \(R = 0 \)

For each event \((\vec{x}, a, r, p)\)

1. If \(\pi(h, \vec{x}) = a \)
2. then with probability \(\frac{p_{\min}}{p} \)
 1. \(h \leftarrow h \cup (\vec{x}, a, r) \)
 2. \(R \leftarrow R + r \)

Return \(R/|h| \)
A Rejection Sampling approach

Rejection_Sampler(policy \(\pi \), events \((\vec{x}, a, r, p)\)^T)
Let \(h = \emptyset \) a history, \(R = 0 \)
For each event \((\vec{x}, a, r, p)\)

1. If \(\pi(h, \vec{x}) = a \)
2. then with probability \(\frac{p_{\min}}{p} \)
 1. \(h \leftarrow h \cup (\vec{x}, a, r) \)
 2. \(R \leftarrow R + r \)

Return \(R/|h| \)

Theorem: For all history lengths \(T \), For all nonstationary policy \(\pi \), and all IID worlds \(D \), the probability of a simulated history of length \(T \) = the probability of the same history of length \(T \) in the real world.
A Master Evaluator

Eval(policy π, events $(\vec{x}, a, r, p)^T$, quantile ρ, bound b)
Let $h = \emptyset$, $R = 0$, $C = 0$, $Q = \emptyset$, $c = b$
For each event (\vec{x}, a, r, p)

1. $R \leftarrow R + c \left(\frac{\pi(a|x,h)}{p}(r - \hat{r}(x, a)) + \sum_{a'} \pi(a'|x, h)\hat{r}(x, a') \right)$
2. $C \leftarrow C + c$
3. $Q \leftarrow Q \cup \left\{ \frac{p}{\pi(a|x,h)} \right\}$
4. With probability $\frac{c\pi(a|x,h)}{p}$:
 1. $h \leftarrow h + (x, a, r)$
 2. $c \leftarrow \min\{b, \rho\text{-th quantile of } Q\}$

Return R/C
A Master Evaluator

Eval(policy π, events $(\vec{x}, a, r, p)^T$, quantile ρ, bound b)

Let $h = \emptyset$, $R = 0$, $C = 0$, $Q = \emptyset$, $c = b$

For each event (\vec{x}, a, r, p)

1. $R \leftarrow R + c \left(\frac{\pi(a|x,h)}{p} (r - \hat{r}(x, a)) + \sum_{a'} \pi(a'|x, h) \hat{r}(x, a') \right)$
2. $C \leftarrow C + c$
3. $Q \leftarrow Q \cup \left\{ \frac{p}{\pi(a|x,h)} \right\}$
4. With probability $\frac{c\pi(a|x,h)}{p}$:
 - $h \leftarrow h + (x, a, r)$
 - $c \leftarrow \min\{b, \rho\text{-th quantile of } Q\}$

Return R/C

Incorporates Double Robust + Nonstationary evaluation.

Theorem: Introduces bounded bias + much more efficient.

Empirically, an order of magnitude better for nonstationary eval.
An improved(?) Master Evaluator

Eval(policy π, events $(\vec{x}, a, r, p)^T$)

Let $h = \emptyset$, $R = 0$

For each event (\vec{x}, a, r, p)

1. $R \leftarrow R + \frac{\pi(a|x, h)}{p} (r - \hat{r}(x, a)) + \sum_{a'} \pi(a'|x, h) \hat{r}(x, a')$

2. if $\frac{\pi(a|x, h)}{p} < 1$ With probability $\frac{\pi(a|x, h)}{p}$:
 - $h \leftarrow h + (x, a, r)$ with importance weight 1

3. else
 - $h \leftarrow h + (x, a, r)$ with importance weight $\frac{\pi(a|x, h)}{p}$

Return R / T
An improved (?) Master Evaluator

Eval(policy π, events $(\vec{x}, a, r, p)^T$)

Let $h = \emptyset$, $R = 0$

For each event (\vec{x}, a, r, p)

1. $R \leftarrow R + \frac{\pi(a|x, h)}{p}(r - \hat{r}(x, a)) + \sum_{a'} \pi(a'|x, h)\hat{r}(x, a')$

2. if $\frac{\pi(a|x, h)}{p} < 1$ With probability $\frac{\pi(a|x, h)}{p}$:
 1. $h \leftarrow h + (x, a, r)$ with importance weight 1

3. else
 1. $h \leftarrow h + (x, a, r)$ with importance weight $\frac{\pi(a|x, h)}{p}$

Return R/T

Does this work in theory? (...it seems to work well in practice)

vw –explore_eval –epsilon 0.05 〈cb_adf_dataset〉
vw –explore_eval –multiplier 0.2 –epsilon 0.05 〈cb_adf_dataset〉
Bibliography

