
Exploration for Evaluation and Optimization

John Langford @ Microsoft Research

Machine Learning the Future, March 6, 2017

git clone git://github.com/JohnLangford/vowpal_wabbit.git

Examples of Interactive Learning

Repeatedly:

1 A user comes to Microsoft (with history of previous visits, IP
address, data related to an account)

2 Microsoft chooses information to present (urls, ads, news stories)

3 The user reacts to the presented information (clicks on something,
clicks, comes back and clicks again,...)

Microsoft wants to interactively choose content and use the observed
feedback to improve future content choices.

Another Example: Clinical Decision Making

Repeatedly:

1 A patient comes to a doctor with
symptoms, medical history, test results

2 The doctor chooses a treatment

3 The patient responds to it

The doctor wants a policy for choosing
targeted treatments for individual patients.

Example 3: User Interfaces

The Contextual Bandit Setting

For t = 1, . . . ,T :

1 The world produces some context x ∈ X

2 The learner chooses an action a ∈ A

3 The world reacts with reward ra ∈ [0, 1]

Goal: Learn a good policy for choosing actions given context.

The Evaluation Problem

Let π : X → A be a policy mapping features to actions. How do we
evaluate it?

Method 1: Deploy algorithm in the world.

Very Expensive!

The Evaluation Problem

Let π : X → A be a policy mapping features to actions. How do we
evaluate it?

Method 1: Deploy algorithm in the world.

Very Expensive!

Method 2: The “Direct method”

Use past data to learn a reward predictor r̂(x , a), and act according
to argmaxa r̂(x , a).

Example: Deployed policy always takes a1 on x1 and a2 on x2.

Observed/Estimated/True

a1 a2

x1

.8/.8/.8 ?/1

x2

/.3 .2 /.2

Method 2: The “Direct method”

Use past data to learn a reward predictor r̂(x , a), and act according
to argmaxa r̂(x , a).

Example: Deployed policy always takes a1 on x1 and a2 on x2.

Observed/Estimated/True

a1 a2

x1

.8/.8/.8 ?/1

x2

/.3 .2 /.2

Method 2: The “Direct method”

Use past data to learn a reward predictor r̂(x , a), and act according
to argmaxa r̂(x , a).

Example: Deployed policy always takes a1 on x1 and a2 on x2.

Observed

/Estimated/True

a1 a2

x1 .8

/.8/.8

?

/1

x2 ?

/.3

.2

/.2

Method 2: The “Direct method”

Use past data to learn a reward predictor r̂(x , a), and act according
to argmaxa r̂(x , a).

Example: Deployed policy always takes a1 on x1 and a2 on x2.

Observed/Estimated

/True

a1 a2

x1 .8/.8

/.8

?/.5

/1

x2 ?/.5

/.3

.2 /.2

/.2

Method 2: The “Direct method”

Use past data to learn a reward predictor r̂(x , a), and act according
to argmaxa r̂(x , a).

Example: Deployed policy always takes a1 on x1 and a2 on x2.

Observed/Estimated

/True

a1 a2

x1 .8/.8

/.8

?/.5

/1

x2 .3/.5

/.3

.2 /.2

/.2

Method 2: The “Direct method”

Use past data to learn a reward predictor r̂(x , a), and act according
to argmaxa r̂(x , a).

Example: Deployed policy always takes a1 on x1 and a2 on x2.

Observed/Estimated

/True

a1 a2

x1 .8/.8

/.8

?/.514

/1

x2 .3/.3

/.3

.2 /.014

/.2

Method 2: The “Direct method”

Use past data to learn a reward predictor r̂(x , a), and act according
to argmaxa r̂(x , a).

Example: Deployed policy always takes a1 on x1 and a2 on x2.

Observed/Estimated/True
a1 a2

x1 .8/.8/.8 ?/.514/1
x2 .3/.3/.3 .2 /.014 /.2

Method 2: The “Direct method”

Use past data to learn a reward predictor r̂(x , a), and act according
to argmaxa r̂(x , a).

Example: Deployed policy always takes a1 on x1 and a2 on x2.

Observed/Estimated/True
a1 a2

x1 .8/.8/.8 ?/.514/1
x2 .3/.3/.3 .2 /.014 /.2

Basic observation 1: Generalization insufficient.

Method 2: The “Direct method”

Use past data to learn a reward predictor r̂(x , a), and act according
to argmaxa r̂(x , a).

Example: Deployed policy always takes a1 on x1 and a2 on x2.

Observed/Estimated/True
a1 a2

x1 .8/.8/.8 ?/.514/1
x2 .3/.3/.3 .2 /.014 /.2

Basic observation 2: Exploration required.

Method 2: The “Direct method”

Use past data to learn a reward predictor r̂(x , a), and act according
to argmaxa r̂(x , a).

Example: Deployed policy always takes a1 on x1 and a2 on x2.

Observed/Estimated/True
a1 a2

x1 .8/.8/.8 ?/.514/1
x2 .3/.3/.3 .2 /.014 /.2

Basic observation 3: Errors 6= exploration.

Method 3: The Importance Weighting Trick

Let π : X → A be a policy mapping features to actions. How do we
evaluate it?

One answer: Collect T exploration samples of the form

(x , a, ra, pa),

where
x = context
a = action
ra = reward for action
pa = probability of action a
then evaluate:

Value(π) = Average
(
ra 1(π(x) = a)

pa

)

Method 3: The Importance Weighting Trick

Let π : X → A be a policy mapping features to actions. How do we
evaluate it?

One answer: Collect T exploration samples of the form

(x , a, ra, pa),

where
x = context
a = action
ra = reward for action
pa = probability of action a
then evaluate:

Value(π) = Average
(
ra 1(π(x) = a)

pa

)

The Importance Weighting Trick

Theorem
For all policies π, for all IID data distributions D, Value(π) is an
unbiased estimate of the expected reward of π:

E(x ,~r)∼D
[
rπ(x)

]
= E[Value(π)]

with deviations bounded by

O

(
1√

T minx pπ(x)

)

Proof: Ea∼p

[
ra1(π(x)=a)

pa

]

=
∑

a pa
ra1(π(x)=a)

pa
= rπ(x)

Example:

Action 1 2
Reward 0.5 1

Probability 1
4

3
4

Estimate

2 | 0 0 | 4
3

The Importance Weighting Trick

Theorem
For all policies π, for all IID data distributions D, Value(π) is an
unbiased estimate of the expected reward of π:

E(x ,~r)∼D
[
rπ(x)

]
= E[Value(π)]

with deviations bounded by

O

(
1√

T minx pπ(x)

)

Proof: Ea∼p

[
ra1(π(x)=a)

pa

]
=
∑

a pa
ra1(π(x)=a)

pa

= rπ(x)

Example:

Action 1 2
Reward 0.5 1

Probability 1
4

3
4

Estimate

2 | 0 0 | 4
3

The Importance Weighting Trick

Theorem
For all policies π, for all IID data distributions D, Value(π) is an
unbiased estimate of the expected reward of π:

E(x ,~r)∼D
[
rπ(x)

]
= E[Value(π)]

with deviations bounded by

O

(
1√

T minx pπ(x)

)

Proof: Ea∼p

[
ra1(π(x)=a)

pa

]
=
∑

a pa
ra1(π(x)=a)

pa
= rπ(x)

Example:

Action 1 2
Reward 0.5 1

Probability 1
4

3
4

Estimate

2 | 0 0 | 4
3

The Importance Weighting Trick

Theorem
For all policies π, for all IID data distributions D, Value(π) is an
unbiased estimate of the expected reward of π:

E(x ,~r)∼D
[
rπ(x)

]
= E[Value(π)]

with deviations bounded by

O

(
1√

T minx pπ(x)

)

Proof: Ea∼p

[
ra1(π(x)=a)

pa

]
=
∑

a pa
ra1(π(x)=a)

pa
= rπ(x)

Example:

Action 1 2
Reward 0.5 1

Probability 1
4

3
4

Estimate

2 | 0 0 | 4
3

The Importance Weighting Trick

Theorem
For all policies π, for all IID data distributions D, Value(π) is an
unbiased estimate of the expected reward of π:

E(x ,~r)∼D
[
rπ(x)

]
= E[Value(π)]

with deviations bounded by

O

(
1√

T minx pπ(x)

)

Proof: Ea∼p

[
ra1(π(x)=a)

pa

]
=
∑

a pa
ra1(π(x)=a)

pa
= rπ(x)

Example:

Action 1 2
Reward 0.5 1

Probability 1
4

3
4

Estimate 2

| 0

0

| 4
3

The Importance Weighting Trick

Theorem
For all policies π, for all IID data distributions D, Value(π) is an
unbiased estimate of the expected reward of π:

E(x ,~r)∼D
[
rπ(x)

]
= E[Value(π)]

with deviations bounded by

O

(
1√

T minx pπ(x)

)

Proof: Ea∼p

[
ra1(π(x)=a)

pa

]
=
∑

a pa
ra1(π(x)=a)

pa
= rπ(x)

Example:

Action 1 2
Reward 0.5 1

Probability 1
4

3
4

Estimate 2 | 0 0 | 4
3

Can we do better?

Suppose we have a (possibly bad) reward estimator r̂(a, x). How
can we use it?

Value’(π) = Average
(

(ra − r̂(a, x))1(π(x) = a)

pa
+ r̂(π(x), x)

)

Let ∆(a, x) = r̂(a, x)− E~r |x ra = reward deviation
Let δ(a, x) = 1− pa

p̂a
= probability deviation

Theorem
For all policies π and all (x , ~r):

|Value’(π)− E~r |x [rπ(x)]| ≤ |∆(π(x), x)δ(π(x), x)|

The deviations multiply, so deviations < 1 means we win!

Can we do better?

Suppose we have a (possibly bad) reward estimator r̂(a, x). How
can we use it?

Value’(π) = Average
(

(ra − r̂(a, x))1(π(x) = a)

pa
+ r̂(π(x), x)

)

Let ∆(a, x) = r̂(a, x)− E~r |x ra = reward deviation
Let δ(a, x) = 1− pa

p̂a
= probability deviation

Theorem
For all policies π and all (x , ~r):

|Value’(π)− E~r |x [rπ(x)]| ≤ |∆(π(x), x)δ(π(x), x)|

The deviations multiply, so deviations < 1 means we win!

Can we do better?

Suppose we have a (possibly bad) reward estimator r̂(a, x). How
can we use it?

Value’(π) = Average
(

(ra − r̂(a, x))1(π(x) = a)

pa
+ r̂(π(x), x)

)

Let ∆(a, x) = r̂(a, x)− E~r |x ra = reward deviation
Let δ(a, x) = 1− pa

p̂a
= probability deviation

Theorem
For all policies π and all (x , ~r):

|Value’(π)− E~r |x [rπ(x)]| ≤ |∆(π(x), x)δ(π(x), x)|

The deviations multiply, so deviations < 1 means we win!

How do you test things?

Use format:
action:cost:probability | features
Example:
1:1:0.5 | tuesday year million short compan vehicl line stat financ
commit exchang plan corp subsid credit issu debt pay gold bureau
prelimin refin billion telephon time draw basic relat file spokesm reut
secur acquir form prospect period interview regist toront resourc
barrick ontario qualif bln prospectus convertibl vinc borg arequip
...

How do you train?

Reduce to cost-sensitive classification.

Cost-sensitive multi-class classification
Distribution D over X × [0, 1]k , where a vector in [0, 1]k specifies
the cost of each of the k choices.

Find a classifier h : X → {1, . . . , k} minimizing the expected cost

cost(h,D) = E(x ,c)∼D [ch(x)].

How do you train?

Reduce to cost-sensitive classification.

Cost-sensitive multi-class classification
Distribution D over X × [0, 1]k , where a vector in [0, 1]k specifies
the cost of each of the k choices.

Find a classifier h : X → {1, . . . , k} minimizing the expected cost

cost(h,D) = E(x ,c)∼D [ch(x)].

How do you train?

Reduce to cost-sensitive classification.

Cost-sensitive multi-class classification
Distribution D over X × [0, 1]k , where a vector in [0, 1]k specifies
the cost of each of the k choices.

Find a classifier h : X → {1, . . . , k} minimizing the expected cost

cost(h,D) = E(x ,c)∼D [ch(x)].

How do you train?

1 Learn r̂(a, x).
2 Compute for each x the double-robust estimate for each

a′ ∈ {1, ...,K}:

(r − r̂(a, x))I (a′ = a)

p(a|x)
+ r̂(a′, x)

3 Learn π using a cost-sensitive classifier.

vw –cb 2 –cb_type dr rcv1.train.txt.gz -c –ngram 2 –skips 4 -b 24
-l 0.25
Progressive 0/1 loss: 0.0460
vw –cb 2 –cb_type ips rcv1.train.txt.gz -c –ngram 2 –skips 4 -b 24
-l 0.125
Progressive 0/1 loss: 0.0511
vw –cb 2 –cb_type dm rcv1.train.txt.gz -c –ngram 2 –skips 4 -b 24
-l 0.125
Progressive 0/1 loss: 0.0468

How do you train?

1 Learn r̂(a, x).
2 Compute for each x the double-robust estimate for each

a′ ∈ {1, ...,K}:

(r − r̂(a, x))I (a′ = a)

p(a|x)
+ r̂(a′, x)

3 Learn π using a cost-sensitive classifier.

vw –cb 2 –cb_type dr rcv1.train.txt.gz -c –ngram 2 –skips 4 -b 24
-l 0.25
Progressive 0/1 loss: 0.0460
vw –cb 2 –cb_type ips rcv1.train.txt.gz -c –ngram 2 –skips 4 -b 24
-l 0.125
Progressive 0/1 loss: 0.0511
vw –cb 2 –cb_type dm rcv1.train.txt.gz -c –ngram 2 –skips 4 -b 24
-l 0.125
Progressive 0/1 loss: 0.0468

Experimental Results

IPS = r̂(a, x) = 0
DR = r̂(a, x) = wa · x
Filter Tree = Cost Sensitive Multiclass classifier
Offset Tree = Earlier method for CB learning with same
representation

 0.2

 0.4

 0.6

 0.8

ec
ol

i

gl
as

s

le
tte

r

op
td

ig
its

pa
ge

-b
lo

ck
s

pe
nd

ig
its

sa
tim

ag
e

ve
hi

cl
e

ye
as

t

C
la

ss
ifi

ca
tio

n
E

rr
or

IPS (Filter Tree)
DR (Filter Tree)

Offset Tree

Train method 2: Multitask Regression

Importance Weighted Multitask Regression
Distribution D over X × R× R× {1, ...,K}, where each task has a
value with an importance weight.

Find a regressor h : X × {1, ...,K} → R minimizing weighted
squared loss

cost(h,D) = E(x ,w ,c,i)∼D [w(h(x , i)− c)2].

Let
(x , a, r , p)→ (x , 1/p,−r , a)

vw –cb 2 –cb_type mtr rcv1.train.txt.gz -c –ngram 2 –skips 4 -b
24 -l 0.25
Progressive loss: 0.0460

Train method 2: Multitask Regression

Importance Weighted Multitask Regression
Distribution D over X × R× R× {1, ...,K}, where each task has a
value with an importance weight.

Find a regressor h : X × {1, ...,K} → R minimizing weighted
squared loss

cost(h,D) = E(x ,w ,c,i)∼D [w(h(x , i)− c)2].

Let
(x , a, r , p)→ (x , 1/p,−r , a)

vw –cb 2 –cb_type mtr rcv1.train.txt.gz -c –ngram 2 –skips 4 -b
24 -l 0.25
Progressive loss: 0.0460

Train method 2: Multitask Regression

Importance Weighted Multitask Regression
Distribution D over X × R× R× {1, ...,K}, where each task has a
value with an importance weight.

Find a regressor h : X × {1, ...,K} → R minimizing weighted
squared loss

cost(h,D) = E(x ,w ,c,i)∼D [w(h(x , i)− c)2].

Let
(x , a, r , p)→ (x , 1/p,−r , a)

vw –cb 2 –cb_type mtr rcv1.train.txt.gz -c –ngram 2 –skips 4 -b
24 -l 0.25
Progressive loss: 0.0460

Train method 3: Any RL algorithm

Dipendra prefer Policy Gradient

Summary of methods

1 Deployment. Aka A/B testing. Gold standard for
measurement and cost.

2 Direct Method. Often used by people who don’t know what
they are doing. Some value when used in conjunction with
careful exploration.

3 Inverse probability. Unbiased, but possibly high variance.
4 Double robust. Best analyzed offline method? Unbiased +

reduced variance.
5 Multitask Regression. Computationally cheapest. Maybe best?

Bibliography: Exploration

Inverse An old technique, not sure where it was first used.
Nonrand J. Langford, A. Strehl, and J. Wortman Exploration

Scavenging ICML 2008.
Offset A. Beygelzimer and J. Langford, The Offset Tree for Learning

with Partial Labels KDD 2009.
Implicit A. Strehl, J. Langford, S. Kakade, and L. Li Learning from

Logged Implicit Exploration Data NIPS 2010.
DRobust M. Dudik, J. Langford and L. Li, Doubly Robust Policy

Evaluation and Learning, ICML 2011.

