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Reminder: Contextual Bandit Setting

For t = 1, . . . ,T :

1 The world produces some context x ∈ X

2 The learner chooses an action a ∈ A

3 The world reacts with reward ra ∈ [0, 1]

Goal: Learn a good policy for choosing actions given context.

What does learning mean?

Efficiently competing with some large
reference class of policies Π = {π : X → A}:

Regret = max
π∈Π

averaget(rπ(x) − ra)
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What is exploration?

Exploration = Choosing not-obviously best actions to gather
information for better performance in the future.

There are two kinds:

1 Deterministic. Choose action A, then B, then C , then A, then
B, ...

2 Randomized. Choose random actions according to some
distribution over actions.

We discuss Randomized here.

1 There are no good deterministic exploration algorithms in this
setting.

2 Supports off-policy evaluation.

3 Randomize = robust to delayed updates, which are very
common in practice.
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Explore τ then Follow the Leader (Explore-τ)

Initially, h = ∅
For the first τ rounds

1 Observe x.

2 Choose a uniform randomly.

3 Observe r , and add (x , a, r , 1/|A|) to h.

For the next T − τ rounds, use empirical best.

Suppose all examples are drawn from a fixed distribution D(x , ~r).

Theorem: For all D,Π,Explore-τ has regret O

(
τ
T +

√
|A| ln |Π|

τ

)
with high probability.

Proof: After τ rounds, large deviation bound

⇒
∣∣V (π)− E(x ,~r)∼D [rπ(x)

∣∣ ≤√ |A| ln(|Π|/δ)

τ

so regret bounded by τ
T + T−τ

T

√
|A| ln(|Π|/δ)

τ
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Explore-τ summary

1 +Easiest approach: offline prerecorded exploration can feed
into any learning algorithm.

2 -Doesn’t adapt when world changes.

3 -Underexploration common. A clinical trial problem: no new
information after initial exploration.

4 -Overexploration common. Explores obviously suboptimal
choices.

Can we do better?
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ε-Greedy

1 Observe x.
2 With probability 1− ε

1 Choose learned a
2 Observe r , and learn with (x , a, r , 1− ε).

With probability ε
1 Choose Uniform random other a
2 Observe r , and learn with (x , a, r , ε/(|A| − 1)).

Theorem: ε-Greedy has regret O

(
ε+

√
|A| ln |Π|

T ε

)
For optimal epsilon? O
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T

)1/3
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ε-Greedy summary

1 -Harder Approach: Need online learning algorithm to use.

2 +Adapts when world changes.

3 -Overexploration common. Bad possibilities keep being
explored.

4 +Can be adaptive. Epoch Greedy = Epsilon Greedy with
adaptive ε.

Can we do better?
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Better 1: Bagging Thompson Sampling

Maintain Bayesian posterior over policies.
On each round sample policy from posterior, act with policy.

Problem: Posteriors are intractable.
Solution: Treat bootstrap as posterior.
Problem: Too much variance
Solution: Using bagging to compute probability of action

Bagging Thompson Sampling

For each t = 1, 2, . . .

1 Observe x

2 Let p(a|x) = Prπ(π(x) = a)

3 Choose a ∼ p(a|x)

4 Observe reward r .

5 For each π update Poisson(1) times with (x , a, r , p(a|x)).
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What does it mean?

1 +Avoids unnecessary exploration

2 +Known to work well empirically sometimes.

3 -Heuristic relatively weak theoretical guarantees.

4 -Underexplores sometimes.



Better 2: A Cover Algorithm

Let Q1 = uniform distribution

For t = 1, . . . ,T :

1 The world produces some context x ∈ X

2 Draw π ∼ Qt

3 The learner chooses an action a ∈ A

using π(x).

4 The world reacts with reward ra ∈ [0, 1]

5 Update Qt+1
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What is good Qt?

Exploration: Qt allows discovery of good policies

Exploitation: Qt small on bad policies

At time t define

Empirical regret R̂egrett(π) = maxπ′ V (π′)− V (π)

Minimum probability µ =
√

ln Π
t|A|

Regret certainty bπ = R̂egrett(π)/(100µ)

Find a distribution Q over policies π satisfying
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Estimated regret ≤ (small)

Estimated variance ≤ (small for good π)



What is good Qt?

Exploration: Qt allows discovery of good policies

Exploitation: Qt small on bad policies

At time t define

Empirical regret R̂egrett(π) = maxπ′ V (π′)− V (π)

Minimum probability µ =
√

ln Π
t|A|

Regret certainty bπ = R̂egrett(π)/(100µ)

Find a distribution Q over policies π satisfying∑
π∈Π

Q(π)bπ ≤ 2|A|

∀π ∈ Π :
1

t

t∑
τ=1

[
1

Qµ(π(xτ )|xτ )

]
≤ 2|A|+ bπ



How do you find Qt?

by Reduction to ArgMax Oracle (AMO).

Definition

Given a set of policies Π and data (x1, v1), . . . , (xt , vt), AMO
returns

arg max
π∈Π

t∑
τ=1

vτ (π(xτ ))

Use:

vt(a) = Valuet(a) +
100µ

Qµ(a|xt)
to get worst constraint violater.

Mixture of successive constraint violaters = Qt . Very fun to prove!
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Theorem: Optimal in all ways

Regret: Õ

(√
|A| ln |Π|

T

)

Calls to Cost sensitive classification oracle: Õ
(
T 0.5

)
(< T !)

Lower bound: Ω
(
T 0.5

)
calls to oracle

Running time: Õ
(
T 1.5

)



Trying it out

Change rcv1 CCAT-or-not to be classes 1 and 2

vw --cbify 2 rcv1.train.multiclass.vw -c --epsilon 0.1
Progressive 0/1 loss: 0.156

vw --cbify 2 rcv1.train.multiclass.vw -c --first 20000
Progressive 0/1 loss: 0.082

vw --cbify 2 rcv1.train.multiclass.vw -c --bag 16 -b 22
Progressive 0/1 loss: 0.059

vw --cbify 2 rcv1.train.multiclass.vw -c --cover 1
Progressive 0/1 loss: 0.053

ε-greedy Initial Bagging LinUCB Online Cover Supervised
Loss 0.148 0.081 0.059 0.128 0.053 0.051
time 17s 2.6s 275s 60h 12s 5.3s
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