Active Learning

John Langford @ Microsoft Research

Machine Learning the Future Class, May 1
An instrument of mass machine learning

How can we formalize it’s use?
A lot of unlabeled data is plentiful and cheap, eg.

documents off the web

speech samples

images and video

But labeling can be expensive.
Exploiting unlabeled data

A lot of unlabeled data is plentiful and cheap, eg.
- documents off the web
- speech samples
- images and video

But labeling can be expensive.

Unlabeled points
Exploiting unlabeled data

A lot of unlabeled data is plentiful and cheap, eg.
- documents off the web
- speech samples
- images and video

But labeling can be expensive.
Exploiting unlabeled data

A lot of unlabeled data is plentiful and cheap, eg.
- documents off the web
- speech samples
- images and video

But labeling can be expensive.
Can interaction help us learn effectively?

The Active Learning Setting

Repeatedly:

1. Observe unlabeled example x.
2. Asking for label? Yes/no
3. If yes, observe label y.

Goal: Simultaneously optimize quality of learned classifier and minimize the number of labels requested.
Typical heuristics for active learning

Start with a pool of unlabeled data
Pick a few points at random and get their labels
Repeat
 Fit a classifier to the labels seen so far
 Query the unlabeled point that is closest to the boundary
 (or most uncertain, or most likely to decrease overall uncertainty,...)
Typical heuristics for active learning

Start with a pool of unlabeled data
Pick a few points at random and get their labels
Repeat
 Fit a classifier to the labels seen so far
 Query the unlabeled point that is closest to the boundary
 (or most uncertain, or most likely to decrease overall uncertainty,...)

Biased sampling: the labeled points are not representative of the underlying distribution!
Sampling bias

Start with a pool of unlabeled data
Pick a few points at random and get their labels
Repeat

Fit a classifier to the labels seen so far
Query the unlabeled point that is closest to the boundary
(or most uncertain, or most likely to decrease overall uncertainty,...)

Example:

```
| 45% | 5% | 5% | 45% |
```

Even with infinitely many labels, converges to a classifier with 5% error instead of the best achievable, 2.5%.

Not consistent!
This problem occurs in practice.
Sampling bias

Start with a pool of unlabeled data

Pick a few points at random and get their labels

Repeat

- Fit a classifier to the labels seen so far
- Query the unlabeled point that is closest to the boundary (or most uncertain, or most likely to decrease overall uncertainty,...)

Example:

Even with infinitely many labels, converges to a classifier with 5% error instead of the best achievable, 2.5%. Not consistent!

This problem occurs in practice.
Outline

1. Importance weighting
2. Rare Classes
3. Cost Sensitive
While (unlabeled examples remain)

1. Receive unlabeled example x.
2. Choose a probability of labeling p.
3. With probability p get label y, and add $(x, y, \frac{1}{p})$ to S.
4. Let $h = \text{Learn}(S)$.

Consistency Theorem: For all methods choosing $p > 0$, the algorithm is consistent.
How should p be chosen?

On the tth unlabeled point

let: $\hat{e}(h, S) = \frac{1}{t} \sum_{(x, y, i) \in S} \mathbb{1}(h(x) \neq y) = \text{importance weighted error rate.}$
How should \(p \) be chosen?

On the \(t \)th unlabeled point

let: \(\hat{e}(h, S) = \frac{1}{t} \sum_{(x,y,i) \in S} \mathbb{1}(h(x) \neq y) \) = importance weighted error rate.
Let \(h' = \) minimum error rate hypothesis choosing other label.
How should p be chosen?

On the tth unlabeled point

let: $\hat{e}(h, S) = \frac{1}{t} \sum_{(x,y,i) \in S} i(1)(h(x) \neq y)$ = importance weighted error rate.

Let $h' = \text{minimum error rate hypothesis choosing other label}.$

Let $\Delta = \hat{e}(h', S) - \hat{e}(h, S)$ = error rate difference.
How should p be chosen?

On the tth unlabeled point

Let: $\hat{e}(h, S) = \frac{1}{t} \sum_{(x,y,i) \in S} i \mathbb{1}(h(x) \neq y) = \text{importance weighted error rate.}$

Let $h' = \text{minimum error rate hypothesis choosing other label.}$

Let $\Delta = \hat{e}(h', S) - \hat{e}(h, S) = \text{error rate difference.}$

Choose $p = 1$ if $\Delta \leq O\left(\sqrt{\frac{\log t}{t}}\right)$

Otherwise, let $p = O\left(\frac{\log t}{\Delta^2 t}\right)$
How should \(p \) be chosen?

On the \(t \)th unlabeled point

let: \(\hat{e}(h, S) = \frac{1}{t} \sum_{(x,y,i) \in S} i \mathbb{1}(h(x) \neq y) = \) importance weighted error rate.

Let \(h' = \) minimum error rate hypothesis choosing other label.

Let \(\Delta = \hat{e}(h', S) - \hat{e}(h, S) = \) error rate difference.

Choose \(p = 1 \) if \(\Delta \leq O \left(\sqrt{\frac{\log t}{t}} \right) \)

Otherwise, let \(p = O \left(\frac{\log t}{\Delta^2 t} \right) \)

Accuracy Theorem: With high probability, the IWAL reduction has a similar error rate to supervised learning on \(t \) points.
How should p be chosen?

On the tth unlabeled point

let: $\hat{e}(h, S) = \frac{1}{t} \sum_{(x,y,i) \in S} i \mathbb{1}(h(x) \neq y) = \text{importance weighted error rate.}$

Let $h' = \text{minimum error rate hypothesis choosing other label.}$

Let $\Delta = \hat{e}(h', S) - \hat{e}(h, S) = \text{error rate difference.}$

Choose $p = 1$ if $\Delta \leq O\left(\sqrt{\frac{\log t}{t}}\right)$

Otherwise, let $p = O\left(\frac{\log t}{\Delta^2 t}\right)$

Accuracy Theorem: With high probability, the IWAL reduction has a similar error rate to supervised learning on t points.

Efficiency Theorem: If there is a small disagreement coefficient θ, the algorithm requires only $O\left(\theta \sqrt{t \log t}\right) + \text{a minimum due to noise.}$
Characterizes known examples where active learning can help. Defined for any set of classifiers H and distribution D.
Disagreement Coefficient

Characterizes known examples where active learning can help. Defined for any set of classifiers H and distribution D.

For any ϵ features x are of interest if there exists a hypothesis h:

1. With error rate less than ϵ larger than the best h^*.
2. That disagrees with the best hypothesis, $h^*(x) \neq h(x)$.
Disagreement Coefficient

Characterizes known examples where active learning can help. Defined for any set of classifiers H and distribution D.

For any ϵ features x are of interest if there exists a hypothesis h:

1. With error rate less than ϵ larger than the best h^*.
2. That disagree with the best hypothesis, $h^*(x) \neq h(x)$.

Disagreement coefficient is $\theta = \max_\epsilon \Pr(\text{interesting}_\epsilon x)$
Disagreement coefficient: examples

Thresholds in \mathbb{R}, any data distribution.

$\theta = 2$.

Linear separators through the origin in \mathbb{R}^d, uniform data distribution.

$\theta \leq \sqrt{d}$.

Linear separators in \mathbb{R}^d, smooth data density bounded away from zero.

$\theta \leq c(\hstar)d$ where $c(\hstar)$ is a constant depending on the target \hstar.

Disagreement coefficient: examples

- Thresholds in \mathbb{R}, any data distribution.

 $\theta = 2$.
Disagreement coefficient: examples

- Thresholds in \mathbb{R}, any data distribution.
 \[\theta = 2. \]

- Linear separators through the origin in \mathbb{R}^d, uniform data distribution.
 \[\theta \leq \sqrt{d}. \]
Disagreement coefficient: examples

- Thresholds in \mathbb{R}, any data distribution.
 \[\theta = 2. \]

- Linear separators through the origin in \mathbb{R}^d, uniform data distribution.
 \[\theta \leq \sqrt{d}. \]

- Linear separators in \mathbb{R}^d, smooth data density bounded away from zero.
 \[\theta \leq c(h^*)d \]
 where $c(h^*)$ is a constant depending on the target h^*.
Decision Tree Experiments

- **MNIST 3s vs 5s**
 - Test error decreases as the number of labels queried increases.
 - Active querying outperforms passive querying.

- **KDDCUP99**
 - Test error decreases as the number of labels queried increases.
 - Active querying outperforms passive querying.

- **KDDCUP99 (close-up)**
 - Detailed view of the test error drop for KDDCUP99.

- **MNIST multi-class (close-up)**
 - Detailed view of the test error drop for MNIST multi-class.
An Approximate IWAL

Let $h(x) = \text{Learn}(S)$.
Let $h'(x) = \text{Learn}_{h(x) \neq y}(S)$.

Claim: If Learn minimizes error rates, for all $\epsilon > 0$

$$\text{Learn}(S \cup (x, -h(x), t\Delta + \epsilon)) = h'(x)$$

In other words $t\Delta =$ importance weight required to change label for current x.

Using Vowpal Wabbit as base learner, estimate $t \cdot \Delta$ as the number of gradient updates with x required for prediction to switch (from 0 to 1, or from 1 to 0).

e.g. for importance weight-aware square-loss update:

$$\Delta_t = \frac{1}{t \cdot \eta_t \cdot \log \max\{h(x), 1 - h(x)\}}.$$
An Approximate IWAL

Let $h(x) = \text{Learn}(S)$.
Let $h'(x) = \text{Learn}_{h(x) \neq y}(S)$.

Claim: If Learn minimizes error rates, for all $\epsilon > 0$

$$\text{Learn}(S \cup (x, -h(x), t\Delta + \epsilon)) = h'(x)$$

In other words $t\Delta = \text{importance weight required to change label for current } x$.

Using Vowpal Wabbit as base learner, estimate $t \cdot \Delta$ as the number of gradient updates with x required for prediction to switch (from 0 to 1, or from 1 to 0).

* e.g., for importance weight-aware square-loss update:

$$\Delta_t := \frac{1}{t \cdot \eta_t} \cdot \log \frac{\max\{h(x), 1 - h(x)\}}{0.5}$$
active_interactor.cc (in git repository) demonstrates how to implement this protocol.
Fringe Benefits

This approach has **many** nice properties.
This approach has many nice properties.

1. Always consistent.
This approach has many nice properties.

1. Always consistent.
2. Efficient.
 1. Label Efficient.
 2. Unlabeled data efficient.
 3. Computationally efficient.
This approach has many nice properties.

1. Always consistent.
2. Efficient.
 1. Label Efficient.
 2. Unlabeled data efficient.
 3. Computationally efficient.
3. Compatible.
 1. With Online Algorithms
 2. With any optimization-style classification algorithm.
 3. With any Loss function
 4. With supervised learning
 5. With switching learning algorithms (!)
This approach has many nice properties.

1. Always consistent.
2. Efficient.
 1. Label Efficient.
 2. Unlabeled data efficient.
 3. Computationally efficient.
3. Compatible.
 1. With Online Algorithms
 2. With any optimization-style classification algorithm.
 3. With any Loss function
 4. With supervised learning
 5. With switching learning algorithms (!)
4. It works, empirically.
1 Importance weighting
2 Rare Classes
3 Cost Sensitive
How many labels for a rare class?
How many labels for a rare class?

Attenberg & Provost 2010: Search and insertion of labeled rare class examples helps.
Why does search help?

Potentially: exponential improvement in label complexity!
Why does search help?

Potentially: exponential improvement in label complexity!
Why does search help?

Potentially: exponential improvement in label complexity!
Why does search help?

Potentially: exponential improvement in label complexity!
Why does search help?

Potentially: exponential improvement in label complexity!
Why does search help?

Potentially: exponential improvement in label complexity!
Why does search help?

Potentially: exponential improvement in label complexity!
When does Search help?

Does searching for counterexamples help?
When does Search help?

Does searching for counterexamples help?
When does Search help?

Does searching for counterexamples help?

No!
When does Search help?

Does searching for counterexamples help?

No!
When does Search help?

Does searching for counterexamples help?

No!
When does Search help?

Does searching for counterexamples help?

No!
Counterexample to version space instead!
Theorem: Search for version space counterexample can reduce Label calls exponentially by starting with simple set of classifiers and moving to more complex as they are proved inadequate.
Theorem: Search for version space counterexample can reduce Label calls exponentially by starting with simple set of classifiers and moving to more complex as they are proved inadequate.
Theorem: Search for version space counterexample can reduce Label calls exponentially by starting with simple set of classifiers and moving to more complex as they are proved inadequate.
1. Importance weighting
2. Rare Classes
3. Cost Sensitive
Cost-sensitive multi-class classification

Distribution D over $X \times [0, 1]^k$, where a vector in $[0, 1]^k$ specifies the cost of each of the k choices.

Find a classifier $h : X \rightarrow \{1, \ldots, k\}$ minimizing the expected cost

$$\text{cost}(h, D) = \mathbf{E}_{(x, c) \sim D}[c_h(x)].$$
How to do Active Cost Sensitive Classification?

Cost-sensitive multi-class classification

Distribution D over $X \times [0, 1]^k$, where a vector in $[0, 1]^k$ specifies the cost of each of the k choices.

Find a classifier $h : X \rightarrow \{1, \ldots, k\}$ minimizing the expected cost

$$\text{cost}(h, D) = \mathbb{E}_{(x, c) \sim D}[c_{h(x)}].$$

Should queries be per-example or per-cost?
Which class costs should be queried?

- Minimum cost
- Cost difference matters
Which class costs should be queried?

Minimum cost < smallest maximum cost
Which class costs should be queried?

1. Minimum cost < smallest maximum cost
2. Cost difference matters
Cost Overlapped Active Learning Results

Theorem: Works efficiently if (1) cost predictors factorize (2) squared loss optimizer is efficient (3) world is IID.
Cost Overlapped Active Learning Results

Theorem: Works efficiently if (1) cost predictors factorize (2) squared loss optimizer is efficient (3) world is IID.

![Graph showing RCV1-v2 test cost vs number of queries](image)

- Passive
- COAL (1e-1)
- COAL (1e-2)
- COAL (1e-3)
Bibliography: Agnostic Active Learning history

Possibility N Balcan, A Beygelzimer, J Langford, Agnostic Active Learning. ICML 2006.

Noise M Kaariainen, Active Learning in the Non-realizable Case, ALT 2006.

Online S Dasgupta, D Hsu, and C Monteleoni. A general agnostic active learning algorithm. NIPS 2007.

IWAL I A Beygelzimer, S Dasgupta, and J Langford, Importance Weighted Active Learning, ICML 2009.

IWAL II A Beygelzimer, D Hsu, J Langford, T Zhang, Agnostic Active Learning Without Constraints, NIPS 2010.

Search II A Beygelzimer, D Hsu, J Langford, C Zhang, Search Improves Label for Active Learning, NIPS 2016.