Scaling Up
Graphical Model Inference

as!



Graphical Models

View observed data and unobserved properties as random variables

Graphical Models: compact graph-based encoding of probability
distributions (high dimensional, with complex dependencies)
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Generative/discriminative/hybrid, un-,semi- and supervised learning

— Bayesian Networks (directed), Markov Random Fields (undirected), hybrids,
extensions, etc. HMM, CRF, RBM, M3N, HMREF, etc.

Enormous research area with a number of excellent tutorials
— [J98], [M01], [M04], [WO08], [KF10], [S11]




Graphical Model Inference

Key issues:

— Representation: syntax and semantics (directed/undirected,variables/factors,..)
— Inference: computing probabilities and most likely assignments/explanations
— Learning: of model parameters based on observed data. Relies on inference!

Inference is NP-hard (numerous results, incl. approximation hardness)

Exact inference: works for very limited subset of models/structures
— E.g., chains or low-treewidth trees

Approximate inference: highly computationally intensive
— Deterministic: variational, loopy belief propagation, expectation propagation
— Numerical sampling (Monte Carlo): Gibbs sampling



Inference in Undirected Graphical Models

* Factor graph representation
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* Potentials capture compatibility of related observations
— e.g, I/J(xi,xj) = exp(—b|xi — xj|)
* Loopy belief propagation = message passing

— iterate (read, , send)
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Synchronous Loopy BP

* Natural parallelization: associate a processor to every node

— Simultaneous receive, update, send

* |nefficient —e.g., for a linear chain:
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Optimal Parallel Scheduling

e Partition, local forward-backward for center, then cross-boundary

Processor 1 Processor 2 Processor 3

Synchronous
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Splash: Generalizing Optimal Chains

1) Select root, grow fixed-size BFS Spanning tree
2) Forward Pass computing all messages at each vertex

3) Backward Pass computing all messages at each vertex

* Parallelization:
— Partition graph

* Maximize computation, minimize
communication

e Over-partition and randomly assign ‘ ‘
— Schedule multiple Splashes -

* Priority queue for selecting root

* Belief residual: cumulative change
from inbound messages
* Dynamic tree pruning




DBRSplash: MLN Inference Experiments

Experiments: MLN Inference
8K variables, 406K factors
Single-CPU runtime: 1 hour
Cache efficiency critical

1K variables, 27K factors
Single-CPU runtime: 1.5 minutes
Network costs limit speedups
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Topic Models

* Goal: unsupervised detection of topics in corpora
— Desired result: topic mixtures, per-word and per-document topic assignments

“Arts” “Budgets” “Children” “Education”
NEW MILLION CHILDREN SCHOOL

FILM TAX WOMEN STUDENTS
SHOW PROGRAM PEOPLE SCHOOLS
MUSIC BUDGET CHILD EDUCATION
MOVIE BILLION YEARS TEACHERS
PLAY FEDERAL FAMILIES HIGH

The William Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropoli-
tan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a
real opportunity to make a mark on the future of the performing arts with these grants an act
every bit as important as our traditional areas of support in health, medical rescarch, education
and the social services”” Hearst Foundation President Randolph A. Hearst said Monday in
announcing the grants. Lincoln Center’s share will be 200,000 for its new building, which
will house young artists and provide new public facilities. The Metropolitan Opera Co. and
New York Philharmonic will receive $400,000 each. The Juilliard School, where music and
the performing arts are taught, will get $250,000. The Hearst Foundation, a leading supporter
of the Lincoln Center Consolidated Corporate Fund, will make its usual annual S100.000
donation, too.

[B+03]



Directed Graphical Models:
Latent Dirichlet Allocation [B+03, SUML-Ch11]

e Generative model for document collections
Prior on topic

— K topics, topic k: Multinomial(¢;) over words distributions

— D documents, document j: b "
ocuments

* Topic distribution 6; ~ Dirichlet(a) topic distribution

* N; words, word x;;:

— Sample topic z;; ~ Multinomial(ej) Word'’s topic

— Sample word x;; ~ Multinomial (cpzij) Word

 Goal: infer posterior distributions

— Topic word mixtures {¢; }

Topic’s word
— Document mixtures {9]-} distribution
— Word-topic assignments {z;;} Prior on word

distributions




Gibbs Sampling

Full joint probability
p@.zpx1ap) = | [ e [ [ v@io | | pCile)peie.,)
k=1.K j=1.D j=1.N;
Gibbs sampling: sample ¢, 8, z independently
Problem: slow convergence (a.k.a. mixing)

Collapsed Gibbs sampling

— Integrate out ¢ and 6 analytically
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— Until convergence:

« resample p(z;;|x;j, @, B),
e update counts: N,, N,;, N,



Parallel Collapsed Gibbs Sampling [SUML-Ch11]

e Synchronous version (MPIl-based):
— Distribute documents among p machines
— Global topic and word-topic counts N,, N,,,,
— Local document-topic counts N,
— After each local iteration, AllReduce N,, N, ,

* Asynchronous version: gossip (P2P)
— Random pairs of processors exchange statistics upon pass completion
— Approximate global posterior distribution (experimentally not a problem)
— Additional estimation to properly account for previous counts from neighbor



Parallel Collapsed Gibbs Sampling [SN10,511]

* Multithreading to maximize concurrency
— Parallelize both local and global updates of N,., counts

— Key trick: N, and N,., are effectively constant for a given document

* No need to update continuously: update once per-document in a separate thread
* Enables multithreading the samplers

— Global updates are asynchronous -> no blocking

Google Mallet Irvine’08 Irvine’09 Yahoo LDA
LDA
Multicore no yes yes yes yes
Cluster MPI no MPI point 2 point| memcached

dicti t joint
State table |/ TEPArEE separate | separate o

split sparse sparse

synchronous | synchronous | synchronous asynchronous
Schedule

exact exact exact

asynchronous

approximate
PP exact

messages

[S11]



Scaling Up Graphical Models: Conclusions

Extremely high parallelism is achievable, but variance is high
— Strongly data dependent

Network and synchronization costs can be explicitly accounted for in
algorithms

Approximations are essential to removing barriers
Multi-level parallelism allows maximizing utilization
Multiple caches allow super-linear speedups
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