
Scaling Up  
Graphical Model Inference 



• View observed data and unobserved properties as random variables 

• Graphical Models:   compact graph-based encoding of probability 
distributions (high dimensional, with complex dependencies) 

 

 

 

 

• Generative/discriminative/hybrid, un-,semi- and supervised learning 
– Bayesian Networks (directed), Markov Random Fields (undirected), hybrids, 

extensions, etc.   HMM, CRF, RBM, M3N, HMRF, etc. 

• Enormous research area with a number of excellent tutorials 
– [J98], [M01], [M04], [W08], [KF10], [S11] 
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Graphical Model Inference 

• Key issues:   
– Representation:  syntax and semantics (directed/undirected,variables/factors,..) 

– Inference:   computing probabilities and most likely assignments/explanations 

– Learning:   of model parameters based on observed data.  Relies on inference!  

• Inference is NP-hard (numerous results, incl. approximation hardness) 

• Exact inference:   works for very limited subset of models/structures 
– E.g., chains or low-treewidth trees 

• Approximate inference:   highly computationally intensive 
– Deterministic:   variational, loopy belief propagation, expectation propagation 

– Numerical sampling (Monte Carlo):    Gibbs sampling 

 



• Factor graph representation 

 

𝑝 𝑥1, . . , 𝑥𝑛 =
1

𝑍
 𝜓𝑖𝑗 𝑥1, 𝑥2
𝑥𝑗∈𝑁(𝑥𝑖)

 

 

• Potentials capture compatibility of related observations 

– e.g.,   𝜓 𝑥𝑖 , 𝑥𝑗 = exp(−𝑏 𝑥𝑖 − 𝑥𝑗 ) 

• Loopy belief propagation = message passing 
– iterate (read, update, send) 

 

 

 

 

 

 

 

 

Inference in Undirected Graphical Models 



Synchronous Loopy BP   
 

• Natural parallelization:  associate a processor to every node 
– Simultaneous receive, update, send 

• Inefficient – e.g., for a linear chain:   

[SUML-Ch10] 

2𝑛/𝑝 time per iteration 
𝑛 iterations to converge 



Synchronous Schedule Optimal Schedule 

Optimal Parallel Scheduling 

• Partition,  local forward-backward for center, then cross-boundary 
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Splash:   Generalizing Optimal Chains  

1) Select root, grow fixed-size BFS Spanning tree 

2) Forward Pass computing all messages at each vertex 

3) Backward Pass computing all messages at each vertex 

 
• Parallelization:    

– Partition graph 

• Maximize computation, minimize 
communication 

• Over-partition  and randomly assign 

– Schedule multiple Splashes 

• Priority queue for selecting root 

• Belief residual:   cumulative change 
from inbound messages 

• Dynamic tree pruning 



DBRSplash:  MLN Inference Experiments  

• Experiments:  MLN Inference 

• 8K variables, 406K factors 

• Single-CPU runtime:   1 hour 

• Cache efficiency critical  

 

 

 

• 1K variables, 27K factors 

• Single-CPU runtime:  1.5 minutes 

• Network costs limit speedups 
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Topic Models 

• Goal:   unsupervised detection of topics in corpora 
– Desired result:   topic mixtures, per-word and per-document topic assignments 

[B+03] 



Directed Graphical Models:   
Latent Dirichlet Allocation [B+03, SUML-Ch11] 

• Generative model for document collections 
– 𝐾 topics, topic 𝑘:  Multinomial(𝜙𝑘) over words 

– 𝐷 documents, document 𝑗: 

• Topic distribution 𝜃𝑗 ∼ Dirichlet 𝛼  

• 𝑁𝑗 words, word 𝑥𝑖𝑗: 

– Sample topic 𝑧𝑖𝑗 ∼ Multinomial 𝜃𝑗  

– Sample word 𝑥𝑖𝑗 ∼ Multinomial 𝜙𝑧𝑖𝑗  

• Goal:    infer posterior distributions 
– Topic word mixtures {𝜙𝑘} 

– Document mixtures 𝜃𝑗  

– Word-topic assignments {𝑧𝑖𝑗} 
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Gibbs Sampling 

• Full joint probability 

𝑝 𝜃, 𝑧, 𝜙, 𝑥 𝛼, 𝛽 =  𝑝(𝜙𝑘|𝛽)

𝑘=1..𝐾

 𝑝(𝜃𝑗|𝛼)

𝑗=1..𝐷

 𝑝 𝑧𝑖𝑗 𝜃𝑗 𝑝(𝑥𝑖𝑗|𝜙𝑧𝑖𝑗)

𝑗=1..𝑁𝑗

 

• Gibbs sampling:   sample 𝜙, 𝜃, 𝑧 independently 

• Problem:    slow convergence (a.k.a. mixing) 

• Collapsed Gibbs sampling 
– Integrate out 𝜙 and 𝜃 analytically 

𝑝 𝑧 𝑥, 𝑑, 𝛼, 𝛽 ∝
𝑁𝑥𝑧
′ + 𝛽

 (𝑁𝑥𝑧
′ +𝛽)𝑥

𝑁𝑑𝑧
′ + 𝛼

 (𝑁𝑑𝑧
′ +𝛼)𝑧

 

– Until convergence:     

• resample 𝑝 𝑧𝑖𝑗 𝑥𝑖𝑗 , 𝛼, 𝛽),  

• update counts:    𝑁𝑧, 𝑁𝑧𝑑, 𝑁𝑥𝑧 

 

 



Parallel Collapsed Gibbs Sampling [SUML-Ch11] 

• Synchronous version (MPI-based): 
– Distribute documents among 𝑝 machines 

– Global topic and word-topic counts 𝑁𝑧 , 𝑁𝑤𝑧 

– Local document-topic counts 𝑁𝑑𝑧 

– After each local iteration, AllReduce 𝑁𝑧 , 𝑁𝑤𝑧 

 

• Asynchronous version:   gossip (P2P) 
– Random pairs of processors exchange statistics upon pass completion 

– Approximate global posterior distribution (experimentally not a problem) 

– Additional estimation to properly account for previous counts from neighbor 



• Multithreading to maximize concurrency 
– Parallelize both local and global updates of 𝑁𝑥𝑧 counts 

– Key trick:   𝑁𝑧 and 𝑁𝑥𝑧 are effectively constant for a given document 

• No need to update continuously:  update once per-document in a separate thread 

• Enables multithreading the samplers 

– Global updates are asynchronous ->  no blocking 

 

Parallel Collapsed Gibbs Sampling [SN10,S11] 

[S11] 



Scaling Up Graphical Models:  Conclusions 

• Extremely high parallelism is achievable, but variance is high 
– Strongly data dependent 

• Network and synchronization costs can be explicitly accounted for in 
algorithms 

• Approximations are essential to removing barriers 

• Multi-level parallelism allows maximizing utilization 

• Multiple caches allow super-linear speedups 
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