Joint prediction via imitation learning

Part of Speech Tagging

NLP algorithms use a kitchen sink of features

Dependency Parsing

ROOT

NLP algorithms use a kitchen sink of features
Joint prediction via imitation learning

Joint Prediction Haiku

A joint prediction
Across a single input
Loss measured jointly

ROOT

features

use

a

of
An analogy from playing Mario

From Mario AI competition 2009

Input:

Output:
Jump in \{0,1\}
Right in \{0,1\}
Left in \{0,1\}
Speed in \{0,1\}

High level goal:
Watch an expert play and learn to mimic her behavior
Vanilla supervised learning

1. Collect trajectories from expert π^*
 • Trajectory = sequence of state/action pairs over time
 • States are represented as feature vectors
 – Incorporates current “observations” …
 – … and any past decisions

2. Store as dataset $D = \{ (s, \pi^*(s)) | s \sim \pi^* \}$

3. Train classifier π on D
 • Let π play the game!
Training (expert)

Sample Expert Trajectories

Video credit: Stéphane Ross, Geoff Gordon and Drew Bagnell
Test-time execution (classifier)

Video credit: Stéphane Ross, Geoff Gordon and Drew Bagnell
What's the (biggest) failure mode?

- The expert never gets stuck next to pipes
- => Classifier doesn't learn to recover!
Imitation learning: DAgger

1. Collect trajectories from expert π^*
2. Dataset $D_0 = \{ (s, \pi^*(s)) \mid s \sim \pi^* \}$
3. Train π_1 on D_0
4. Collect new trajectories from π_1
 - But let the expert steer!
5. Dataset $D_1 = \{ (s, \pi^*(s)) \mid s \sim \pi_1 \}$
6. Train π_2 on $D_0 \cup D_1$

● In general:
 ● $D_n = \{ (s, \pi^*(s)) \mid s \sim \pi_n \}$
 ● Train π_n on $\bigcup_{i<n} D_i$

If $N = T \log T$, $L(\pi_n) < T \varepsilon_N + O(1)$ for some n
Test-time execution (DAgger)

Video credit: Stéphane Ross, Geoff Gordon and Drew Bagnell
What's the biggest failure mode?

- Classifier only sees “right” versus “not-right”
 - No notion of “better” or “worse”
 - No “partial credit”
 - Must have a single “target” answer
Joint prediction via learning to search

Part of Speech Tagging

NLP algorithms use a kitchen sink of features

Dependency Parsing

ROOT

NLP algorithms use a kitchen sink of features
Learning to search

1. Generate an initial trajectory using a rollin policy

2. Foreach state R on that trajectory:
 a) Foreach possible action a (one-step deviations)
 i. Take that action
 ii. Complete this trajectory using a rollout policy
 iii. Obtain a final loss
 b) Generate a cost-sensitive classification example:
 $\left(\Phi(R), \langle c_a \rangle_{a \in A} \right)$
Choosing the rollin/rollout policies

- Three basic options:
 - The currently learned policy ("learn")
 - The reference/expert policy ("ref")
 - A stochastic mixture of these ("mix")

<table>
<thead>
<tr>
<th></th>
<th>Out</th>
<th>Ref</th>
<th>Mix</th>
<th>Learn</th>
</tr>
</thead>
<tbody>
<tr>
<td>In</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ref</td>
<td>Inconsistent One-step fail</td>
<td>Inconsistent</td>
<td>Inconsistent</td>
<td></td>
</tr>
<tr>
<td>Learn</td>
<td>One-step fail</td>
<td>Good</td>
<td>Really hard</td>
<td></td>
</tr>
</tbody>
</table>

Note: if the reference policy is *optimal* then: In=Learn & Out=Ref is also a good choice.

Sanity check: which of these is closest to DAgger?
The oracle (reference) policy gives the true label for the corresponding word.

Sanity check: why/when is this optimal?

```python
def _run(self, sentence):
    out = []
    for n in range(len(sentence)):
        pos, word = sentence[n]
        ex = example({'w': word})
        pred = predict(ex, pos)
        out.append(pred)
    loss( # of pred != pos )
    return out
```
Optimal policies

- Given:
 - Training input x
 - State R
 - Loss function

- Return the action a that:
 - (If all future actions are taken optimally)
 - Minimizes the corresponding loss
Optimal policies for harder problems

- Consider word-based machine translation
- You want to write
- But what does the optimal policy do?

F: Marie programme l'ordinateur
E: Mary programs the computer

State R: Mary ______
State R': The computer ______
State R'': Aardvarks ______

\[
\begin{align*}
F, \text{ref} &= \text{input} \\
E &= [<s>] \\
i &= 1 \\
cov &= {} \\
\text{while } |cov| \neq |F|:\n a &= \text{predict}(cov, ???) \\
 e &= \text{predict}(F_a, ???) \\
 cov[a] &= \text{true} \\
 E\text{.push}(e) \\
i &= i + 1 \\
\text{loss}(1 - \text{BLEU}(E, \text{ref})) \\
\text{return } E
\end{align*}
\]
How can you do this for Mario?

Input:

Output:

Jump in \{0,1\}
Right in \{0,1\}
Left in \{0,1\}
Speed in \{0,1\}

Reference policy is constructed on-the-fly:
At each state, execute a depth-4 BFS
At each of the 64k leaves, evaluate
Choose initial action that leads to local optimum
Key concepts and commentary

- Rollin / rollout / one-step deviations
- Reference policy / optimal policy
- Joint loss

Tips:
- Defining a good reference can be tricky:
 - If optimal, do: in=learn, out=ref|none
 - If suboptimal, do: in=learn, out=mix
- Can only learn to avoid compounding errors given the right features
Coming up next....

- Instantiating these ideas in vw
- During the break, please:

git clone git@github.com:JohnLangford/vowpal_wabbit.git
make
make python
cd python
python test.py
python test_search.py

- And ask us any questions you might have!
- When we return, we'll build some predictors!
A short reading list

- **DAgger (imitation learning from oracle):**
 A reduction of imitation learning and structured prediction to no-regret online learning
 Ross, Gordon & Bagnell, *AIStats 2011*

- **AggreVaTe (roughly “DAgger with rollouts”)**
 Reinforcement and imitation learning via interactive no-regret learning
 Ross & Bagnell, *arXiv:1406.5979*

- **LOLS (analysis of rollin/rollout, lower bounds, suboptimal reference)**
 Learning to search better than your teacher
 Chang, Krishnamurthy, Agarwal, Daumé III & Langford, *ICML 2015*

- **Imperative learning to search (programming framework, sequence labeling results)**
 Efficient programmable learning to search
 Chang, Daumé III, Langford & Ross, *arXiv:1406.1837*

- **State of the art dependency parsing in ~300 lines of code**
 Learning to search for dependencies
 Chang, He, Daumé III & Langford, *arXiv:1503.05615*

- **Efficiently computing an optimal policy for shift-reduce dependency parsing**
 A tabular method for dynamic oracles in transition-based parsing
 Goldberg, Sartorio & Satta, *TAACL 2014*