Machine Learning Techniques—Reductions
Between Prediction Quality Metrics

Alina Beygelzimer and John Langford and Bianca Zadrozny

Abstract Machine learning involves optimizing a loss function on unlabeled data
points given examples of labeled data points, where the loss function measures the
performance of a learning algorithm. We give an overview of techniques, called
reductions, for converting a problem of minimizing one loss function into a problem
of minimizing another, simpler loss function. This tutorial discusses how to create
robust reductions that perform well in practice. The reductions discussed here can be
used to solve any supervised learning problem with a standard binary classification
or regression algorithm available in any machine learning toolkit. We also discuss
common design flaws in folklore reductions.

1 Introduction

Machine learning is about learning to make predictions from examples of desired
behavior or past observations. Learning methods have found numerous applications
in performance modeling and evaluation (see, for example, [33, 22, 37,41, 43, 39]).
One natural example of a machine learning application is fault diagnosis: based on
various observations about a system, we may want to predict whether the system
is in its normal state or in one of several fault states. Machine learning techniques
are preferred in situations where engineering approaches like hand-crafted models
simply can not cope with the complexity of the problem. In the fault diagnosis prob-

Alina Beygelzimer
IBM Thomas J. Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532 e-mail:
beygel @us.ibm.com

John Langford
Yahoo! Research, New York, NY e-mail: jl@yahoo-inc.com

Bianca Zadrozny
Fluminense Federal University, Brazil e-mail: bianca@ic.uff.br

2 Alina Beygelzimer and John Langford and Bianca Zadrozny

lem, it is reasonably easy to collect examples of resolved faults, but writing robust
diagnosis rules is very difficult.

A basic difficulty in applying machine learning in practice is that we often need
to solve problems that don’t quite match the problems solved by standard machine
learning algorithms. In fault diagnosis, for example, the cost of misclassifying a
faulty state as a normal state is sometimes much higher than the cost of misclassi-
fying a normal state as a faulty state. Thus binary classification algorithms, which
don’t take misclassification costs into account, do not perform well on this problem.

Reductions are techniques that transform practical problems into well-studied
machine learning problems. These can then be solved using any existing base learn-
ing algorithm whose solution can, in turn, be used to solve the original problem.
Reductions have several desirable properties.

e They yield highly automated learning algorithms. Reductions convert any learner
for the base problem into a learning algorithm for the new problem. Any future
progress on the base problem immediately translates to the new problem.

e Reductions are modular and composable. A single reduction applied to N base
learners gives N new learning algorithms for the new problem. Simple reductions
can be composed to solve more complicated problems.

e The theory of learning has focused mostly on binary classification and regression.
Reductions transfer existing learning theory to the new problem.

e Reductions help us organize and understand the relationship between different
learning problems.

An alternative to reductions is designing new learning algorithms or modifying ex-
isting ones for each new problem. While this approach is quite attractive to learn-
ing algorithm designers, it is undesirable in some situations. For example, some
algorithms cannot be easily modified to handle different learning problems, as ev-
idenced, for example, by inconsistent proposals for extending Support Vector Ma-
chines to multiclass classification (see [30]). More generally, we can expect that
people encountering new learning problems may not have the expertise or time for
such adaption (or simply don’t have access to the source code of the algorithm),
implying that a reduction approach may be more desirable.

A critical question when comparing the two approaches is performance. Our ex-
perience is that both approaches can be made to work well. There is fairly strong
empirical evidence that reductions analysis produces learning algorithms that per-
form well in practice (see, for example, [18, 10, 47, 13, 38]). This tutorial shows
how reductions can be easily used by nonexperts.

2 Basic Definitions

Data points, called examples, are typically described by their values on some set of
features. In fault diagnosis, for example, each event can be represented as a binary
vector describing which observations have been made (ping latency from one node

Machine Learning Techniques—Reductions Between Prediction Quality Metrics 3

to another, for example). The space that examples live in is called the feature space,
and is typically denoted by X.

The label of an example is what we are trying to predict. The space of possible
labels is denoted by Y. In fault diagnosis, Y corresponds to the set of system states.

A learning problem is some unknown data distribution D over X x Y, coupled
with a loss function £(y’,y) measuring the loss of predicting y’ when the true label is
y. (In some problems below, the loss function also depends on additional informa-
tion about the example.)

A learning algorithm takes a set of labeled training examples of the form (x,y) €
X x Y and produces a predictor f : X — Y. The goal of the algorithm is to find f
minimizing the expected loss E(, ,).p £(f(x),y).

There are two base learning problems, defined for any feature space X. In binary
classification, we want to classify examples into two categories.

Definition 1. A binary classification problem is defined by a distribution D over
X xY, where Y = {0,1}. The goal is to find a classifier h : X — Y minimizing the
error rate on D,

e(h7D) = Pr(x,y)ND [h(x) 7é y] :

By fixing an unlabeled example x € X, we get a conditional distribution D|x over Y .

Regression is another basic learning problem, where the goal is to predict a real-
valued label Y. The loss function typically used in regression is the squared error
loss between the predicted and actual labels.

Definition 2. A regression problem is defined by a distribution D over X x R. The
goal is to find a function f : X — R minimizing the squared loss

E(va) = E(x,y)ND(f(x) _y)2'

Organization: Section 3 shows how to solve binary classification problems where
some examples are more important to classify correctly than others. It covers prob-
lems where false positives and false negatives have different costs as a special case.
Section 4 demonstrates how regression algorithms can be used to choose among
more than two alternatives. Section 5 covers a very board set of learning problems,
where a decision is not only over multiple choices, but each prediction has a differ-
ent associated cost. In Section 6, we discuss how to compute quantiles with binary
classifier learners. Section 7 closes with the problem of reducing ranking, as mea-
sured by the Area Under the Receiver Operating Characteristic Curve (AUC), to
binary classification.

3 Importance-Weighted Classification

Standard classification algorithms are designed to minimize the probability of mak-
ing an incorrect prediction, treating all errors as equally costly. In practice, however,

4 Alina Beygelzimer and John Langford and Bianca Zadrozny

some errors are typically much more costly than others. For example, in credit card
fraud detection the cost of an undetected fraud is much higher than the cost of an
extra security check. The problem is complicated by the fact fraud is very rare. Ig-
noring the misclassification costs may produce a classifier that misses all the fraud
by classifying every example as belonging to the more frequent non-fraud case.
This classifier would be doing very well in terms of not making many mistakes, but
it would have a very high cost. Thus a good metric is essential when training and
evaluating a cost-sensitive learner.

Current techniques for cost-sensitive decision making fall into three categories:
The first approach is to make particular classification algorithms cost-sensitive (see,
for example, [15]). Doing this well is often nontrivial and requires considerable
knowledge of the algorithm. The second approach uses Bayes risk theory to assign
each example to its lowest risk class [14, 46, 32]. This requires estimating condi-
tional class probabilities and, if costs are stochastic, estimating expected costs [46].
The third category concerns black-box reductions for converting arbitrary classi-
fication learning algorithms into importance-weighted algorithms [14, 47]. Meta-
Cost [14] (implemented in Weka [45]), estimates conditional probability distribu-
tions, and thus also belongs to the Bayes risk minimization category above.

Before describing concrete methods for importance-weighted decision making,
it is instructive to look at a simple theorem described below.

Motivating Theory

An importance-weighted classification problem is defined by a distribution D over
X xY x C, where X is some feature space, ¥ = {0, 1} is the label space, and C C
[0,0) is the importance (or cost) associated with mislabeling the corresponding
example. The goal is to learn a classifier 4 : X — Y minimizing the expected cost

E(x,y.c)ND [C ’ l(h(x) 7é y)]7

given training examples of the form (x,y,¢) € X x Y x C. Here 1(-) is the indica-
tor function which evaluates to 1 if its argument is true, and to O otherwise. Since
cost information is typically not available at prediction time, this is reflected in the
model. If the cost is available, it can be included in the set of features.

When the output space is binary, this formulation of cost-sensitive learning in
terms of one number per example is more general than the commonly used cost
matrix formulation [16, 14]. A cost matrix specifies the cost ¢;; of predicting label i
when the true label is j. If the label is binary, the costs are associated with false neg-
atives (co1), false positives (c19), true negatives (cop), and true positives (cq1). Given
a cost matrix and an example (x,y), only two cost entries (c; y» Coy) are relevant for
that example. These two numbers can be further reduced to one, |c| y — Coy|, because
it is the difference in costs which controls the importance of correct classification.
This difference is the importance ¢ we use here. The formulation we use is more
general because it allows the costs to be example dependent. For example, the cost

Machine Learning Techniques—Reductions Between Prediction Quality Metrics 5

of a fraudulent charge can depend on the transaction amount. The multilabel case is
covered by the more general cost-sensitive classification in Section 5. This section
covers the binary case.

The following simple theorem is quite instructive.

Theorem 1. (Translation Theorem [47]) For any importance-weighted distribution
D, there exists a constant (c) = E(, ,).p[c] such that for any classifier h,

By 1((2) #5)] = <%_>E<x,y,c>w e 1(h(x) #)],

where D' is defined by D' (x,y,c) = T;D(xy, c).

Proof. Assuming for simplicity that X is finite,

E(x7y,c)~D[c' l(h(x) 7é y)] = Z D(x,y7 C) Cl(h(x) 7é y)

XH0e

= {c)) D'(x,y.c) - 1(h(x) #)

e

= (¢) Exyopnpy [1(A(x) 7 ¥)]- i

Despite its simplicity, this theorem is very useful because the right-hand side ex-
presses the expected cost we want to control via the choice of 4, and the left-hand
side is the error rate of / under a related distribution D’. Thus choosing / to min-
imize the error rate under D’ is equivalent to choosing & to minimize the expected
cost under D.

The prescription for coping with cost-sensitive problems is now straightforward:
re-weight the distribution in your training set according to the importances, so that
the training set is effectively drawn from D’. Doing this in a correct and general
manner is more challenging than it may seem.

There are two basic methods: (1) Transparent Box: supply the costs of the train-
ing data as example weights to the classifier learning algorithm; (2) Black Box:
resample the training data according to these same weights.

The transparent box approach cannot be applied to arbitrary classifier learners,
but it can be applied to those which use the data only to estimate expectations of
the form E, ,.p[f(x,y)] for some query function f : X xY — {0,1}. Whenever a
learning algorithm can be rewritten to fit this statistical query model [24], there is
a simple recipe for using the weights directly. To get an unbiased estimate of the
expectation with respect to D', one can use

Ly efey),

Z(x,y,c)eS ¢ (xy,c)€S

6 Alina Beygelzimer and John Langford and Bianca Zadrozny

instead of using the sample mean of f(x,y), where S is a set of training examples
drawn independently from D. Such mechanisms for realizing the transparent box
approach have been used for a number of weak learners used in boosting [18].

Neural networks, decision trees and Naive Bayes can all be expressed in this
model, although it may require some understanding of the algorithms to see that.
Support vector machines do not fit the model, because the produced classifier is
explicitly dependent upon individual examples rather than on statistics derived from
the entire sample. But there are still ways to incorporate importance weights directly
(see, for example, [47]).

The black box approach has the advantage that it can be applied to any classifier
learner, without requiring any knowledge of the learning algorithm.

Black Box: Sampling methods

Suppose that we do not have transparent box access to the learner. In this case,
sampling is the obvious method to alter the distribution of examples, in order to use
Theorem 1.

Simple sampling strategies: Sampling with replacement is a sampling scheme
where each example (x,y,c) is drawn according to the distribution p(x,y,c) =
c/ Y (xy.c)es ¢- A number of examples are drawn to create a new dataset S'. It may
seem at first that this method is useful because every example is effectively drawn
from the distribution D’. In fact, it can result in severe overfitting due to the fact that
examples in ' are not drawn independently from D’. Also, as shown in Elkan [16],
creating duplicate examples has little effect on classifiers produced by standard
Bayesian and decision tree algorithms.

Sampling without replacement is also not a solution to this problem. In this
scheme, an example (x,y,c) is drawn from the distribution p(x,y,¢) = ¢/¥(xy,c)es >
and the drawn example is removed from S. This process is repeated, drawing from
an increasingly smaller set according to the weights of the examples remaining in
the set. To see how this method fails, simply note that sampling m examples from
a set of size m results in the original set, which by assumption is drawn from the
distribution D, instead of D’ as desired.

Cost-proportionate rejection sampling: We will present another sampling scheme
based on rejection sampling [34], which allows one to draw examples independently
from the distribution D’ given examples drawn independently from D. In rejec-
tion sampling, examples from D’ are obtained by first drawing examples from D,
and then keeping the example with probability proportional to D’/D. In our case,
D' /D « c, so we accept each c-important example with probability ¢/Z, where Z is
a normalizing constant satisfying max ;. .)es¢ < Z. ! Rejection sampling results in

! In practice, we choose Z = maXx(yy,)es € SO as to maximize the size of S’. A data-dependent
choice of Z is not formally allowed for rejection sampling, but the introduced bias appears small
when [S] > 1.

Machine Learning Techniques—Reductions Between Prediction Quality Metrics 7

a set 8’ which is generally smaller than S. Notice that if examples in S are drawn
independently from D, then examples in S’ are going to be distributed independently
according to D'.

A simple corollary of Theorem 1 says that any classifier achieving approxi-
mate error rate minimization on D' is guaranteed to produce approximate cost-
minimization on D.

Corollary 1. For all importance-weighted distributions D and all binary classifiers
h, if
E(x,y,c)ND’ [l(h(x) 7£ y)] < £,
then
E(x,y,c)ND [C : l(h(x) # y)} < <C>8,

where (c) = E(yy)plc]-

Proof. Follows immediately from Theorem 1. |

Cost-proportionate rejection sampling with aggregation (Costing): Given the
same original training sample, different runs of cost-proportionate rejection sam-
pling will produce different training subsamples. Since rejection sampling produces
small subsamples allowing us to learn quickly, we can take advantage of the runtime
savings to run the base learner on multiple draws of subsamples and average over
the resulting classifiers. This method is called Costing [47].

Algorithm 1: Costing (learning algorithm A, training set S, count)

fori=11t1do
S’ rejection sample from S with acceptance probability ¢/Z.
Let h; = A(S)

return /(x) =sign (Y}, hi(x))

The goal in averaging is to improve performance. There is significant empirical ev-
idence that averaging can considerably reduce overfitting suffered by the learning
algorithm, despite throwing away a fraction of the samples. There are also sev-
eral theoretical explanations of the empirical success of averaging methods (see, for
example, [17]). In fact, Bagging [10] and Boosting [18] can both be viewed as re-
ductions. Boosting algorithms [18, 23] reduce from classification with a small error
rate to importance weighted classification with a loss rate of nearly % Bagging [10]
is a self-reduction of classification to classification, which turns learning algorithms
with high variance (i.e., dependence on the exact examples seen) into a classifier
with lower variance.

Since most learning algorithms have running times that are superlinear in the
number of examples, the overall computational time of costing is generally much

8 Alina Beygelzimer and John Langford and Bianca Zadrozny

smaller than that of a learning algorithm using the original sample set S. Costing
was shown to have excellent predictive performance and dramatic savings of com-
putational resources (see [47]), which is especially important in applications that
involve massive amount of data such as fraud and intrusion detection, and targeted
marketing.

4 Multiclass Classification

Multiclass classification is just like binary classification, except that there are more
than two choices available. Naturally, there are many applied problems where a
decision over more than two possibilities is necessary, with such examples as optical
character recognition, textual topic classification, and phoneme recognition.

Formally, a k-class classification problem is defined by a distribution D over
X x Y, where X is some feature space and ¥ = {1,...,k} is the set of possible
labels. The goal is to find a classifier h : X — Y minimizing the error rate on D,
e(h,D) = Pr.yp [h(x) #y].

There are several methods for solving multiclass classification problems di-
rectly [42, 44, 9, 11, 30, 31, 19]. These approaches can be made to work well,
but the corresponding optimization problems are often fairly involved.

Given that we have many good binary learning algorithms and many multiclass
problems, it is tempting to create meta-algorithms which use binary classifiers to
make multiclass predictions.

4.1 One-Against-All

Perhaps the simplest such scheme is one-against-all (OAA). The OAA reduction
creates a binary classification problem for each of the k classes. The classifier for
class i is trained to predict whether the label is i or not, distinguishing class i from
all other classes (Algorithm 2).

Algorithm 2: OAA-TRAIN (set of k-class training examples S, binary classifier
learning algorithm A)

SetS' =0

for all (x,y) € S do

L forallic{l1,...,k} do

| add a binary example ((x,i),1(y =1i)) to S’
return 1 = A(S').

Machine Learning Techniques—Reductions Between Prediction Quality Metrics 9

Predictions are done by evaluating each binary classifier and randomizing over those
which predict “yes,” or over all k labels if all answers are “no” (Algorithm 3).

Algorithm 3: OAA-TEST (binary classifier A, test example x)
output argmax; h((x,7)) fori € {1,...,k}, breaking ties randomly

Notice that we do not actually have to learn k separate classifiers in Algorithm 2. We
can simply augment the feature space with the index of the classifier and then learn
a single combined classifier on the union of all training data. The implication of
this observation is that we can view the reduction as a machine that maps multiclass
examples to binary examples, transforming the original multiclass distribution D
into an induced binary distribution D'. To draw a sample from D', we simply draw
a multiclass example (x,y) from D and a random index i € {1,...,n}, and output
(i), 1(y = 1)).

The lemma below bounds the error rate of Algorithm 3 on D in terms of the error
rate of h on D’. Such a statement is called an error transformation of a reduction.

Lemma 1. (One-against-all error efficiency [2, 20, 8]) For all k-class distributions
D and binary classifiers h, e(OAA,,D) < (k—1)e(h,D’), where OAA,, is the mul-
ticlass classifier produced by OA A using h.

Proof. We analyze how false negatives and false positives produced by the binary
classifier lead to errors in the multiclass classifier. A false negative produces an error
in the multiclass classifier a % fraction of the time (assuming that all the other
classifiers are correctly outputting 0), because we are choosing randomly between k
labels and only one is correct. The other error modes to consider involve (possibly
multiple) false positives. If there are m false positives, the error probability is either
1 or 1 if there is also a false negative. The efficiency of these three modes in
creating errors (i.e., the maximum ratio of the probability of a multiclass error to the
fraction of binary errors) is k — 1, #, and miﬂ, respectively. Taking the maximum,

k— 1, we get the result. [|

The proof actually shows that the multiclass error can be as high as (k— 1)e(h,D’).
By noticing that a false negative is more disastrous than a false positive, we can put
more importance on positive examples, first reducing the multiclass problem to an
importance-weighted binary problem, and then composing this reduction with the
Costing reduction from Section 3 to remove the importances. As shown in [8], doing
this halves the worst-case error theoretically, and improves over OAA empirically.
This gives an example of a practical improvement directly influenced by analysis.

Inconsistency and Regret Transforms

There is an essential problem with OAA.

10 Alina Beygelzimer and John Langford and Bianca Zadrozny

Definition 3. A reduction is said to be inconsistent if for some distribution D,
the reduction does not produce argminye(f,D) given an optimal base predictor
argminy e(h,D’) for the induced distribution D'

Consistency is a very natural and desirable property of any reduction. If the aux-
iliary problems are solved optimally, the reduction should in turn yield an optimal
predictor for the original problem. Unfortunately, OAA is inconsistent.

Theorem 2. The One-Against-All reduction is inconsistent.

The proof is simple and illustrative. A similar theorem statement and proof applies
to ECOC reductions [13].

Proof. Consider a distribution D which puts all the probability mass on some exam-
ple x. Let k = 3 and define the conditional probability as D(y = 1| x) = 0.5 — yand
D(y=2|x)=D(y=3|x)=0.25+1, for some 0 < y < 1/4. Thus there is no ma-
jority class occurring at least half the time. OAA creates a binary problem for each
class y € {1,2,3}, distinguishing y (binary label 1) from the two remaining classes
(binary label 0). The probability of label 1 for the three binary problems is 0.5 — 7,
0.25+ %’ ,and 0.25 + %/ respectively, which implies that the optimal prediction is 0
for each binary problem. When every binary predictor predicts 0, the induced mul-
ticlass predictor can’t do better than randomize among the three possible classes,
resulting in an error rate of %(0.5 -7+ %(0.25 +1) = % However, the optimal
multiclass predictor always chooses class 1 achieving the error rate of 0.55 < 2/3.

Practical implications of the inconsistency theorem 2 are known and understood by
practitioners. It is one of the reasons why practical implementations of one-against-
all reductions use internal prediction quantities such as the margin of a predictor
rather than the actual binary classification. A basic question is whether such soft
versions of OAA work. Some do and some don’t. Ideal soft quantities are good
class probability estimates, but for many classifiers, these estimates are very poor.
For example, the efficacy of Platt scaling [35] (i.e., fitting a sigmoid to a margin
to get a probabilistic prediction) can be thought of as strong empirical evidence of
the deficiency of margins as probability estimates. Rifkin and Klautau [38] argue
that the soft version OAA can be made to work as well as other techniques, if some
effort is put into optimizing the binary classifiers.

Regret reductions The fundamental noise in the distribution D may make optimal
performance not be equivalent to zero error rate, motivating the notion of regret.

Definition 4. The regret of a classifier / on distribution D is defined as

r(h,D) = e(h,D) — n;ine(h*,D),

where the minimum is taken over all classifiers #* (of the same type as h).

Machine Learning Techniques—Reductions Between Prediction Quality Metrics 11

Thus regret is the difference between the incurred loss and the lowest achievable

loss on the same problem. Regret can be defined with respect to any loss function.
A statement showing how the regret of the base classifier on the induced problem
controls the regret of the resulting predictor on the original problem is called a
regret transformation of the reduction. Regret statements are more desirable than
statements relating error rates, because regret analysis separates excess loss from
the unavoidable noise in the problem, making the statement nontrivial even for noisy
problems. For example, if the binary error rate is 10% due to noise and 5% due to
the errors made by the classifier, then the multiclass error rate depends only on the
5%. Any reduction with a multiplicative regret transform is consistent.

4.2 Error-Correcting Coding (ECOC) Approaches

Another obvious problem with the OAA reduction is the lack of robustness. If just
one out of k binary classifiers errs, the multiclass classifier errs. This section presents
approaches based on error correcting codes, where we can even have a constant
fraction of classifiers err (independent of k) without mispredicting the multiclass
label.

The ECOC approach, popularized by Dietterich and Bakiri [13], learns binary
classifiers for deciding membership in different subsets of the labels. The reduction
can be specified by a binary-valued matrix C with n rows and k columns, where n
is the number of binary problems created by the reduction. Each row i in the matrix
defines a binary classification problem: predict C(i,y), where y is the correct label
given input x. Given C, each label corresponds to a binary string defined by the
inclusion of this label in the sequence of subsets.

For two n-bit binary vectors, the Hamming distance between them is the number
of bit positions on which they differ. A multiclass prediction is made by finding the
codeword closest in Hamming distance to the sequence of binary predictions on the
test example.

For the ECOC reduction, a basic statement can be made [20]: with a good code,
the error rate of the multiclass classifier is at most 4 times the average error rate
of the individual binary classifiers. The proof of this statement is essentially the
observation that there exist codes in which the distance between any two codewords
is at least % Consequently, at least 411 of the classifiers must err to induce a multiclass
classification error, implying the theorem. In general, if d is the smallest distance
between any pair of columns in C, the loss rate for this reduction is at most 2ne/d,
where € is the average loss rate of the n binary classifiers.

We mention several coding matrices of particular interest. The first is when the
columns form a subset of the columns of a Hadamard matrix, an n X n binary matrix
with any two columns differing in exactly n/2 places. Such matrices are easy to
construct recursively when n = 2" is a power of 2:

12 Alina Beygelzimer and John Langford and Bianca Zadrozny

00 Cn C
C1:(01>7 Cm+1:(CmCm)>
m m

where C,, is C,, with Os and 1s exchanged. It is clear from the construction that all
columns are at the same distance 2". Notice that the distance property is preserved
when any column or row is complemented. We will use this code in our construc-
tions. Thus, for Hadamard codes, the number of classifiers needed is less than 2k
(since a power of 2 exists between k and 2k), and the loss rate is at most 4€.

If the codewords form the k x k identity matrix, the ECOC reduction corresponds
to the one-against-all reduction.

As OAA, ECOC was modified [2] to consider margins of the binary classifiers,
numbers internal to some classification algorithms that provide a measure of confi-
dence in a binary prediction. Decoding proceeds in the same way as for ECOC ex-
cept a loss-based distance is used instead of the Hamming distance, where the loss
is defined by the optimization function used internally by the binary learning algo-
rithm. Instead of working with margins, we define binary classification problems for
which the optimal solution computes the relative expected cost (rather than the mar-
gin) of choices. This approach can be applied to arbitrary classifier learners rather
than margin-based learners. Finally, we can generalize the approach to tackle all
cost-sensitive problems rather than just multiclass problems (see Section 5). While
we talk about predefined, data-independent output codes here, there are methods
that learn coding matrices based on training data [12].

Probabilistic ECOC

Unfortunately, the ECOC reduction is inconsistent [26]. We describe a probabilistic
variant of ECOC [26], which deals with the inconsistency problem by reducing to
squared loss regression rather than binary classification. (The same approach can be
applied to OAA, but the resulting solution would still not be robust.) If a reduction
to binary classification is desired, this approach can be composed with the Probing
reduction [28] from squared loss regression to binary classification.

As ECOC, the PECOC reduction is defined by a binary coding matrix C with &k
columns corresponding to multiclass labels and n rows corresponding to prediction
problems. For each row, we form a squared-loss regression problem to predict the
probability that the label is in one subset or the other. We write E; to denote an
expectation over i drawn uniformly from the rows of C.

There are two ways to use the reduction: either for estimating the probability of a
class label as in Algorithm 5 or for hard prediction of a class label as in Algorithm 6.

PECOC Theorem

As in earlier reductions, Algorithm 4 transforms the original multiclass distribution
D into an induced distribution D’ over real-valued examples. As in OAA, we can

Machine Learning Techniques—Reductions Between Prediction Quality Metrics 13

Algorithm 4: PECOC-Train (set of k-class multiclass examples S, squared loss
regressor B)

for each subset i defined by the rows of C do

L LetS; = {(x,C(i,y)) : (x7y) € S}
Let b; :B(S,').

return {b;}

Algorithm 5: PECOC-Predict (classifiers {b;}, example x € X, label y whose
probability we want to predict)

return ppecoc, (x,y) = 2E; [C(i,y)bi(x) + (1 —C(i,y))(1 = b;(x))] — 1

Algorithm 6: PECOC-Hard-Predict (classifiers {b;}, example x € X)
xy PECOC-Predict({b;},x,y)

return pecocy,(x) = argmaxye(y

assume that we have a single combined regressor b(x,i) = b;(x) by augmenting the
feature space with the index of the classifier. The theorem below is quantified for all
regressors, including b learned in Algorithm 4.

Theorem 3. (PECOC Regret Transform [26]) For any k-class distribution D, any
regressors b, and any label y € {1,... k}

E.p (ppecoc, (x,y) —D(y[x))* < 4r(D',b),
where ppecoc, is as defined in Algorithm 5.

This theorem relates the average regret of the created regressors to the relative esti-
mation error.

Proof. We first analyze what happens when no regret is suffered, and then analyze
the case with regret. For any i, let D(i) be the distribution on X x {0, 1} induced by
drawing (x,y) from D and outputting (x,C(i,y)). For any choice of i, the optimal
squared loss regressor is given by

bz* = argrngnE(x,y’)AaD(i) [(b(x) _y/)Z]
= al”gmlan(x,y')~D(i) [b(x)Z] _ZE(x«,y’)~D(,‘) [y/b(.X)]
= argmin (b(x)> = 2Ey_p(iy [Yb()]) -
For each x, the optimal value of 5(x) can be found by taking the derivative and set-

ting it equal to zero, because squared loss is convex. This yields b(x) = Ey_p(ix) ']
which can also be written as

14 Alina Beygelzimer and John Langford and Bianca Zadrozny
bi(x) = Pry._p[C(i,y) = 1].

Since decoding is symmetric with respect to all labels, we need analyze only one
label y. Furthermore, since complementing all subsets not containing y does not
change the decoding properties of the code, we can assume that y is in every subset.
Consequently,

Ei b (9] = EiPrypp[C(i') = 1] = 5 (D) + 1),

where the third equality follows from the fact that every label y’ other than y appears
in i half the time, in expectation over i. Consequently, ppecoc,(x,y) = D(y|x) for
each x and y, when the classifiers are optimal.

Now we analyze the regret transformation properties. The remainder of this proof
characterizes the most efficient way that any adversary can induce estimation regret
with a fixed budget of squared loss regret.

First, notice that PECOC-predict (Algorithm 5) is linear in the base predic-
tions b;(x), but the squared loss regret of bad predictions is quadratic, according
to (bi(x) — b¥(x))?. Consequently, it is cheapest for the adversary to have a small
equal disturbance for each i rather than a large disturbance for a single i. (The cost
any adversary pays for disturbing the overall expectation can be monotonically de-
creased by spreading errors uniformly over subsets i.) Thus the optimal strategy for
an adversary wanting to disturb the output of PECOC-Predict by A is to disturb the
expectation for each i by A /2. The regret of the base regressors is given by A2 /4,
implying the theorem.

Hard Prediction

We can use Algorithm 6 to make hard multiclass predictions. For this special case,
a simple corollary of the soft prediction analysis holds.

Corollary 2. (Multiclass Classification Regret Transform) For any k-class distribu-
tion D and any regressor b,

r(D,pecoc,(x)) < 4+/r(D',b),
where pecoc,, is defined as in Algorithm 6.

Proof. The regret of a multiclass prediction is proportional to the difference in prob-
ability of the best prediction and the prediction made. Weakening Theorem 3 gives,

for all y,
E(x,y)va |ppecocb(x,y) 7D(y|x)| <2 V r(D’,b),

since for all Z, \/E(Z) > E+/Z. When doing a hard prediction according to these
outputs, our regret at most doubles because the probability estimate of the correct

Machine Learning Techniques—Reductions Between Prediction Quality Metrics 15

class can be reduced by the same amount that the probability estimate of the wrong
class increases. [|

As shown in [26], PECOC consistently performs better (or as well) as ECOC and
OAA, across different datasets and base learners.

4.3 Approaches Based on Pairwise Comparisons

Another class of multiclass to binary reductions are based on comparing only pairs
of classes [21, 36, 5, 6, 7].

The All-Pairs reduction [21] starts by constructing (g) binary classifiers, one for
every pair of classes. Given a training dataset S = {(x,y)}, the binary classifier for
the (i, j)-class pair is trained with dataset { (x,1(y =1)) : (x,y) €S and y=iory = j}
to discriminate between classes i and j. Given a test example, each of the binary
classifiers predicts a winner amongst its two classes, and the class with the highest
number of wins is chosen as the multiclass prediction, with ties broken randomly.

The All-Pairs reduction is consistent (as an application of a theorem in [2]).
It is frail theoretically, but it works fairly well in practice. Platt, Cristianini, and
Shawe-Taylor [36] proposed a DAG method which is identical to All-pairs at train-
ing time. At test time, the labels play a sequential single-elimination tournament, re-
quiring only k — 1 classifier evaluations instead of k(k — 1) /2, making the approach
substantially faster. Error-correcting tournament approaches [7] perform multiple-
elimination tournaments over the labels, yielding robust regret transforms, indepen-
dent of k. A computational advantage of pairwise reductions, which is especially
important in applications that involve massive amounts of data, is that individual
classifiers are run on datasets that are smaller than the original dataset (unlike OAA
and ECOC approaches).

5 Cost-Sensitive Classification

This section presents a reduction from cost-sensitive classification to binary classi-
fication. Cost-sensitive k-class classification is just like k-class classification, only
each prediction now has an associated cost.

Definition 5. A cost-sensitive k-class classification problem is defined by a distribu-
tion D over X x [0,0). The goal is to find a classifier 7 : X — {1,...,k} minimizing
the expected cost e(h,D) = E(, ¢)p [ci(v)]- Here ¢ € [0,00)F gives the cost of each
of the & choices for x.

Since cost-sensitive classification can express any bounded-loss finite-choice super-
vised learning task, the reduction shows that any such task can be solved using a
binary classification oracle.

16 Alina Beygelzimer and John Langford and Bianca Zadrozny

We present a reduction, Weighted All-Pairs (WAP) [5], which reduces k-class
cost-sensitive classification to importance weighted binary classification. It can be
composed with the Costing reduction from Section 3 to yield a reduction to binary
classification.

Weighted All Pairs: The Algorithm

WAP is a weighted version of the All-Pairs reduction [21] discussed above. The
algorithms specifying the reduction are given below.

Algorithm 7: WAP-Train (set of k-class cost sensitive examples S, importance
weighed binary classifier learning algorithm B)
SetS' =0
for all examples (x,cy,...,cx) € S do
for all pairs (i,j) with 1 <i< j<kdo
Add an importance weighted example ((x,i, j),I(c; < ¢;),|vj —vil) to
S
return 1 = B(S)

The values v; used by the reduction are defined as follows: For a given cost-
sensitive example (x,cy,...,cg), let L(r) be the function L(t) = |{j | ¢; <t}|, fort €
[0,00). By shifting, we may assume that the minimum cost is 0, so that 7 > 0 implies
L(t) > 1. Optimizing the loss of the shifted problem is equivalent to optimizing the
loss of the original problem. The values v; are defined as v; = [; 1/L(r)dt. Note that
the values are order-preserving: ¢; < ¢; iff v; <v; for all 7 and j.

We say that label i beats label j for input x if either i < j and h({x,i,j)) =1, or
i > jand h({x,j,i)) =0.

Algorithm 8: WAP-Test (classifier 4, example x)

for all pairs (i,j) with1 <i< j<kdo
| Evaluate h((x,1,j))

output wap,, (x) = argmax;|{j | i beats j}|

Note that if # makes no errors and ¢; # c;, then label i beats label j exactly when
¢; < c¢j. WAP-Test outputs the label which beats the maximum number of other
labels, with ties broken arbitrarily.

Before stating the error transform, we define the importance-weighted binary
distribution D’ induced by the reduction. To draw a sample from this distribution,
we first draw a cost sensitive sample (x, ¢y, ..., ;) from the input distribution D and

Machine Learning Techniques—Reductions Between Prediction Quality Metrics 17

then apply WAP-Train to the singleton set {(x,c1,...,cx)} to get a sequence of (5)
examples for the binary classifier. Now we just sample uniformly from this set.

Theorem 4. (WAP error efficiency [5]) For any cost-sensitive distribution D and
any importance-weighted classifier h,

e(wap,,D) < 2e(h,D'),

where wapy, is defined in Algorithm 8.

This theorem states that the cost sensitive loss is bounded by twice the importance
weighted loss on the induced importance weighted learning problem.

For notational simplicity, assume that ¢; < --- < ¢;. Note that no generality is lost
since the algorithm does not distinguish between the labels. The following lemma
(from [5]) is the key to the proof.

Lemma 2. Suppose label i is the winner. Then, for every j € {1,...,i— 1}, there
must be at least [j/2) pairs (a,b), where a < j < b, and b beats a.

Proof. Consider the restricted tournament on {1, ..., j}.

Case 1: Suppose that some w beats at least [j/2] of the others. If no label b > j
beats any label a < j, then w would beat at least [j/2] + 1 more labels than any
b > j; in particular, w would beat at least [j/2] 4+ 1 more labels than i. Thus, in
order to have label i beat as many labels as w, at least [j/2] edges of the form
(w,b),b > jor (a,i),a < j must be reversed.

Case 2: There is no label w € {1,..., j} beating [j/2] of the rest of {1,..., j}. This
can only happen if j is odd and there is a j-way tie with (j —1)/2 losses per label
in {1,...,j}. In this case, although every label beats (j+ 1)/2 more labels than any
b > j,in particular i, it is still necessary to reverse at least (j+1)/2 > [j/2] edges,
in order to ensure that i > j beats as many labels as each of {1,..., j}.

Proof. (Theorem 4) Suppose that our algorithm chooses the wrong label i for a
particular example (x,cy,...,c). We show that this requires the adversary to incur
a comparable loss.

Lemma 2 and the definition of v; imply that the penalty incurred to make label i

win is at least L0/ .
Cj l Ci .
/ [LO21 g 5 [y 26
o L(t) 0 2 2
On the other hand, the total importance assigned to queries for this instance equals

B 1 . [%L(t)R(1)
Zvj—vi—z mdt—[) L(l‘) dr

i<y i<jci
Ck k Ci k
:/ R(t)dt:Z/ dr =Y ¢,
0 i=170 i=1

where R(t) = k — L(t) is the number of labels whose value is greater than ¢ and the
second equality follows from switching the order of summation and counting the

18 Alina Beygelzimer and John Langford and Bianca Zadrozny

number of times a pair (i, j) satisfies i < ¢ < j. The second to last equality follows
by writing R(7) as a sum of the k indicator functions for the events {c; > ¢}, and
then switching the order of summation.

Consequently, for every example (x,cy,...,cx), the total importance assigned to
queries for x equals Y ;c;, and the cost incurred by our algorithm on instance x is
at most twice the importance of errors made by the binary classifier on instance x.
Averaging over the choice of x shows that the cost is at most 2. [|

This method of assigning importances is provably near-optimal, as shown in [5].

Theorem 5. (Lower bound) For any other assignments of importances w; ; to the
points (x,i, j) in the above algorithm, there exists a distribution with expected cost
€/2.

Proof. Consider examples (x,O, ﬁ, ceey k%]) Suppose that we run our algorithm

using some w; ; as the importance for the query (x,i, j). Any classifier which errs on
(x,1,i) and (x,1, j), where i # j, causes our algorithm to choose label 2 as the win-
ner, thereby giving a cost of 1/(r — 1), out of the total cost of 1. The importance of
these two errors is wy ; +wy j, out of the total importance of }; Wi j Choosing i and
j so that wy ;+wy_; is minimal, the adversary’s penalty is at most 2Y'% , wy;/(k—1),
and hence less than 2/(k — 1) times the total importance for x. This shows that the
cost of the reduction cannot be reduced below 1/2 merely by improving the choice
of weights. |

The PECOC reduction from Section 4.2 can be extended to cost-sensitive classifi-
cation [26]. Tournaments reductions [6, 7] give the tightest known analysis, with
dependence on the expected sum of cost differences instead of the sum of costs as
in the cost-sensitive variant of PECOC and WAP.

6 Predicting Conditional Quantiles

Recall the definition of a regression problem.

Definition 6. A (least squares) regression problem is defined by a distribution D
over X x Y, where Y = R. The goal is to find a predictor f : X — Y minimizing the
expected squared error loss

e(f.D) =Egy)op [f(x))*].

One standard justification for this choice is that the minimizer f* = argminye(f,D)
is the conditional mean (conditioned on x): f*(x) = E,_pc[y]. However, there are
many important applications for which mean estimates are either irrelevant or insuf-
ficient, and quantiles (also known as general order statistics) are the main quantities
of interest. For instance, consider trying to assess the risk of a business proposal.

Machine Learning Techniques—Reductions Between Prediction Quality Metrics 19

Estimates of the lower quantiles of the conditional return distribution would give a
better indication of how worthwhile the proposal is than a simple estimate of the
mean return (which could be too high because of very unlikely high profits).

The process of estimating the quantiles of a conditional distribution is known as
quantile regression. More specifically, the goal of quantile regression is to obtain es-
timates of the g-quantiles of the conditional distribution D|x. Intuitively, g-quantiles
for different ¢ describe different segments of the conditional distribution D|x and
thus offer more refined information about the data at hand.

Definition 7. (Conditional g-quantile, 0 < g < 1). The conditional q-quantile (or
conditional g-order statistic) for a distribution D is a function f = f(x) such that
for every x € X, D(y < f(x) | x) > g and D(y > f(x) | x) > 1 —q. The 1/2-quantile
is also known as the median.

Note that the g-quantile may not be unique when the conditional distribution has
regions with zero mass.

It is well-known that the optimal estimator for the absolute-error loss is the me-
dian [25]. In other words, for every distribution D over X X R,

arg mfin E(,y)~ply — f(x)] is the (conditional) median.

— =05
-- g=0.75
q=0.25

quantile loss
2
I

error = prediction - actual

Fig. 1 Loss functions which induce quantile regression.

The generalization of absolute-error loss for arbitrary order statistics is the quan-
tile loss function, also known as the pinball loss [40]. Pictorially, this is a tilted
absolute loss as in figure 1. Mathematically, this is E(, y).pf(y, f(x)), where

Ly f(x) = q(y—f)1(y = f(x)) + (1= q)(f(x) =)Ly < f(x)),

where 1(-) = 1 if its argument is true and O otherwise.

20 Alina Beygelzimer and John Langford and Bianca Zadrozny

Definition 8. A guantile regression problem is defined by a distribution D over X X
Y,where Y =R, and 0 < g < 1. The goal is to find a predictor f : X — Y minimizing

E(x,y)Nng (ya f(x))

The Quanting Reduction

We show that the quantile regression problem can be reduced to standard binary
classification via an algorithm called Quanting [27]. For any ¢ € [0, 1], the Quanting
algorithm estimates the g-th quantile of the conditional distribution D|x using any
importance weighted classification algorithm A. Using the costing reduction from
Section 3, we can also do Quanting via any binary classification algorithm.

The Quanting algorithm has two parts. Given a set of training examples S of the
form (x,y) withy € [0, 1] (we can always renormalize S so that all labels are in [0, 1]),
Algorithm 9 uses any given importance-weighted binary classification algorithm A
to learn a family of classifiers, parameterized by a threshold 7 € [0, 1]. Each classifier
h; attempts to answer the question “Is the g-quantile above or below #?” To train each
h;, Algorithm 9 creates an importance-weighted training set by adding a weight w
to each example in S. Positive examples with y > ¢ receive weight ¢, while negative
examples with y < 7 receive weight (1 —g).

Algorithm 9: Quanting-train (importance-weighted classifier learning algo-
rithm A, training set S, quantile g)
forz < [0,1] do
S;=0
for each (x,y) € S do
L Si=S8U{(x1(y=1),q-1(y = 1)+ (1 —¢g)1(y <1))}
h =A(S))
return the set of classifiers {/,}

In reality, of course, one cannot find a different classifier for each 7 € [0, 1]. Con-
structing classifiers A, for ¢ in a discrete mesh {0,1/n,2/n,...,(n—1)/n,1} will
add a 1/n term to the error bound.

Using the learned classifiers, Algorithm 10 produces a prediction of the g-
quantile for each x in a given test set .

Algorithm 10: Quanting-test (set of classifiers {h, }, test set)

for each x € S’ do
| 0(x) =E;yo,1)[hi(x)]

Machine Learning Techniques—Reductions Between Prediction Quality Metrics 21

In the (idealized) scenario where A is perfect, one would have 4, (x) = 1 if and
only if # < g(x) for a g-quantile g(x), hence Algorithm 10 would output [© gr =
q(x) exactly. The analysis below shows that if the error of A is small on average over
t, the quantile estimate is accurate.

Quanting Reduction Analysis

The lemma we prove next relates the average regret of the classifiers A, (how well
the classifiers do in comparison to how well they could do) to the regret of the
quantile loss incurred by the Quanting algorithm. For each x, the output produced
by the quanting algorithm is denoted by Q(x), whereas g(x) is a correct g-quantile.
In this analysis, we use the standard one-classifier trick [28]: instead of learning
different classifiers, we learn one classifier A = {&,} with an extra feature 7 used to
index classifier A;.

The quanting reduction induces an importance weighted binary classification
problem, which we denote as D'.

Lemma 3. (Quanting Regret Transform [27]) For all distribution D over X xR, and
all classifiers h,

E(x,y)ND[Zfl(va(x))] *E(x.y)ND[Eq(yaQ(x))] < e(Dlvh) I%lne(D h/)

where e(D'h) is the expected importance weighted binary loss of h on the induced
distribution D',

Proof. For any function f = f(x), E(,)~p [l4(y, f(x))] is given by eqn. (6):
4E (cy)~p [= f()1y = f(x) > 0)] +(1 = q)E (1)) [(f(x) = ¥)1(f(x) =y > 0)].

It is known that E[X - 1(X > 0)] = [;""Pr(X > t)dt = [,"" Pr(X > 1)dt for any
random variable X, so we rewrite

E(uy-p [ty /()] = ¢Ex [Dly—£(x) 2 nlx)d + (1~ g E. / Df(x) ~y > t)de
—qE/ D(y > ulx)du+(1—¢q E/ D(y < u|x)du

Applying this formula to f(x) = O(x) and f(x) = g(x) and taking the difference
yields

22 Alina Beygelzimer and John Langford and Bianca Zadrozny

E(y)~n[ly(y,Q(x)) = £y(y,q(x))]

— e [" fgD(s 2 09— (1) <) s
o -

)

—E. [lq—aD(y < ulx)— (1 -)D(y < ulx)] du
0o(x)

)

q
=E, [g—D(y < ulx)]du. (1)
o)

We will show that e(D’,h) — miny e(D’, /') is at least this last expression. The ex-
pected importance-weighted error incurred by the classifiers {5, } is

(D 1) = Epeyyop J! { qL(y = 1)(1 — hy(x)) }

+(1—=g)1(y <t)h(x)
>t|x
"f(’{ HOaT T, }di
= qgE\]y]"‘EXIO[(y<t|x)] hi(x)d 2)
> gE]+E J2VID (y<t|x)—q]dt~ €)

Here only the last line is non-trivial, and it follows from the fact that D(y < |x) —
is increasing in 7. Thus the smallest possible value for the integral in (2) is achieved
by placing as much “weight” &, (x) as possible on the smallest ¢ while respecting
the constraints [,/ (x)dr = Q(x) and 0 < h,(x) < 1. This corresponds precisely to
setting /1, (x) = 1(r < Q(x)), from which (3) follows.

Inequality (3) is in fact an equality when instead of {/;} we use the (optimal)
classifiers

{h (x) =1(D(y <1]x) < q)}
and substitute g(x) for Q(x). Therefore,

oD h)—e(D'\ 1) > By [2V[D(y <1]x) - gldr
= E(uy)nlla(,0(x) — £y (3q(x))],

using (1). This finishes the proof. |

We now show how to reduce g-quantile estimation to unweighted binary classifi-
cation using the results in Section 3. To apply rejection sampling, we feed a bi-
nary classifier learner samples of the form ((x,7),1(y > t)), each of the samples
being independently discarded with probability 1 — w(1(y > 7)), where w(b) =
gb+ (1 —¢q)(1—b) is the example’s weight.

Corollary 3. (Quanting to Binary Regret [27]) For any D as above and any binary
classifier g = {g:},

E(Xv)’)ND [fq()@ Q(x))] - E(Xa}')ND [Zq()’a‘I(x))] < e(Dvg) - n?gi/ne(f),g’),

Machine Learning Techniques—Reductions Between Prediction Quality Metrics 23

where D is the distribution produced by rejection sampling.

Proof. Let h = {h} be the importance-weighted classifier induced by the rejection
sampling reduction. Theorem 1 implies that

e(D,h) —miny e(D,h') = e(D,h) —ming (D, g")

and the result follows from Lemma 3. [|

Experimental results: The Quanting reduction compares favorably with two exist-
ing direct methods for quantile regression: linear quantile regression [25] and kernel
quantile regression [40]. See [27] for details on the performed experiments.

7 Ranking

Finally, we consider the problem of ranking a set of instances. In the most basic
version, we are given a set of unlabeled instances belonging to two classes, 0 and
1, and the goal is to rank all instances from class O before any instance from class
1. A common measure of success for a ranking algorithm is the area under the
ROC curve (AUC). The associated loss, 1 — AUC, measures how many pairs of
neighboring instances would have to be swapped to repair the ranking, normalized
by the number of Os times the number of Is. The loss is zero precisely when all
Os precede all 1s; one when all 1s precede all Os. It is greater for mistakes at the
beginning and the end of an ordering, which satisfies the intuition that an unwanted
item placed at the top of a recommendation list should have a higher associated loss
than when placed in the middle.

At first, this problem appears very different from binary classification. A mis-
classified instance in classification incurs the same loss independently of how other
instances are classified, while the AUC loss depends on the whole (ranked) sequence
of instances. However, it turns out that we don’t need different algorithms to opti-
mize these two loss functions: there is a robust mechanism for translating any binary
classifier learning algorithm into a ranking algorithm.

Balcan et al. [4] present a simple deterministic reduction with a guarantee that
any binary classifier with regret r on the induced problem implies AUC regret at
most 2r, for arbitrary distributions over instances. This is the best possible with any
deterministic algorithm. This is also a large improvement over naive approaches
such as ordering according to regressed scores.

In a subsequent paper, Ailon and Mohri [1] describe a randomized quick-sort
reduction, which guarantees that AUC loss is bounded by binary loss, in expectation
over the randomness of the algorithm. When there are more than two labels, the
expected generalized AUC loss is bounded by twice the binary loss. The quick-sort
algorithm is quick efficient, requiring only O(nlogn) classifier evaluations at test
time, which makes it practical in larger settings.

24 Alina Beygelzimer and John Langford and Bianca Zadrozny

8 Conclusion

There are certain key concepts that we want to emphasize for readers interested in
studying or building further reductions.

1. Regret vs. Error Reductions. An error reduction simply states that the error rate
on an induced problem bounds the error rate on the original problem. While an
error reduction might be a good first-pass approach, it has certain undesirable
properties which are removed by a regret reduction. For example, all regret re-
ductions are necessarily consistent.

2. Prediction Minimality. Embedded in the logic of reductions is a preference for
systems which don’t make unnecessary ancillary predictions. If there is a core set
of n predictions to make, adding an unnecessary extra prediction always makes
the regret bound worse by a factor of (n+1)/n.

3. Importance weighting. Many reductions use importance weighting of some sort
to carefully control how much they care about one prediction versus another.
Mastering the use of importance weighting is essential.

4. Thresholding. When a continuous parameter needs to be predicted as with the
Quanting reduction, setting up a continuous family of classification problems
appears necessary.

5. Orthogonal Prediction. The PECOC analysis relies deeply on the ability to setup
orthogonal prediction problems which happen to cancel out in just the right way
to achieve good performance.

This tutorial has covered a number of different methods for reducing general learn-
ing problems to core problems, including essentially all supervised learning prob-
lems. There are at least three directions of future progress:

1. Extending the scope of learning reductions to new learning problems.

2. Improving existing reductions.

3. Shifting the foundations. Existing reductions theory finds a happy medium be-
tween the provable, practical, and useful, but there is no proof that it is canonical.
A reexamination of the foundations may yield new directions of research.

Learning reductions are an effective tool for designing automated solutions to learn-
ing problems. They also tell us something about the organization of learning prob-
lems and have a remarkably clean analysis. Reductions are a basic tool which make
a handy component in a tool-chest of solutions.

References

1. N. Ailon and M. Mohri (2007) An Efficient Reduction of Ranking to Classification, New York
University Technical Report, TR-2007-903.

2. E. Allwein, R. Schapire, and Y. Singer (2000) Reducing multiclass to binary: A unifying
approach for margin classifiers, Journal of Machine Learning Research, 1:113-141.

Machine Learning Techniques—Reductions Between Prediction Quality Metrics 25

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

. A, Asuncion, D. Newman (2007) UCI Machine Learning Repository,

http://mlearn.ics.uci.edu/MLRepository.html, University of California, Irvine.

. N. Balcan, N. Bansal, A. Beygelzimer, D. Coppersmith, J. Langford, and G. Sorkin (2007)

Robust reductions from ranking to classification, Proceedings of the 20th Annual Conference
on Learning Theory (COLT), Lecture Notes in Computer Science 4539: 604—619.

. A. Beygelzimer, V. Dani, T. Hayes, J. Langford, and B. Zadrozny (2005) Error limiting re-

ductions between classification tasks, Proceedings of the 22nd International Conference on
Machine Learning (ICML), 49-56.

. A.Beygelzimer, J. Langford, and P. Ravikumar (2008) Filter trees for cost sensitive multiclass

classification.

. A. Beygelzimer, J. Langford, and P. Ravikumar (2008) Error Correcting Tournaments.
. A. Beygelzimer, J. Langford, B. Zadrozny (2005) Weighted One-Against-All, Proceedings of

the 20th National Conference on Artificial Intelligence (AAAI), 720-725.

. E. Bredensteiner and K. Bennett (1999) Multicategory classification by Support Vector Ma-

chines, Computational Optimization and Applications, 12(1-3): 53-79.

L. Breiman (1996) Bagging predictors, Machine Learning, 26(2):123-140.

K. Crammer and Y. Singer (2001) On the algorithmic implementation of multiclass mernel-
based vector machines, Journal of Machine Learning Research 2: 265-292.

K. Crammer and Y. Singer (2002) On the learnability and design of output codes for multi-
class problems, Machine Learning, 47, 2-3: 201-233.

T. Dietterich and G. Bakiri (1995) Solving multiclass learning problems via error-correcting
output codes, Journal of Artificial Intelligence Research, 2: 263-286.

P. Domingos (1999) MetaCost: A general method for making classifiers cost-sensitive, Pro-
ceedings of the 5th International Conference on Knowledge Discovery and Data Mining
(KDD), 155-164.

C. Drummond and R. Holte (2000) Exploiting the cost (in)sensitivity of decision tree splitting
criteria, Proceedings of the 17th International Conference on Machine Learning (ICML),
239-246.

C. Elkan (2001) The foundations of cost-sensitive learning, Proceedings of the 17th Interna-
tional Joint Conference on Artificial Intelligence (1JCAI), 973-978.

Y. Freund, Y. Mansour and R. Schapire (2004) Generalization bounds for averaged classifiers,
The Annals of Statistics, 32(4): 1698-1722.

Y. Freund and R. Schapire (1997) A decision-theoretic generalization of on-line learning and
an application to boosting, Journal of Computer and System Sciences, 55(1): 119-139.

Y. Guermeur, A. Elisseeff, and H. Paugam-Moisy (2000) A new multi-class SVM based on
a uniform convergence result, Proceedings of the IEEE International Joint Conference on
Neural Networks 4, 183—188.

V. Guruswami and A. Sahai (1999) Multiclass learning, boosting, and error-correcting codes,
Proceedings of the 12th Annual Conference on Computational Learning Theory (COLT),
145-155.

T. Hastie and R. Tibshirani (1998) Classification by pairwise coupling, Advances in Neural
Information Processing Systems (NIPS), 507-513.

L. Huang, X. Nguyen, M. Garofalakis, J. Hellerstein, M. Jordan, A. Joseph, and N. Taft
(2007) Communication-efficient online detection of network-wide anomalies, Proceedings of
the 26th Annual IEEE Conference on Computer Communications INFOCOM), 134-142.
A. Kalai and R. Servedio (2003) Boosting in the presence of noise, Proceedings of the 35th
Annual ACM Symposium on the Theory of Computing (STOC), 195-205.

M. Kearns (1998) Efficient noise-tolerant learning from statistical queries, Journal of the
ACM, 45:6, 983-1006.

R. Koenker and K. Hallock (2001) Quantile regression, Journal of Economic Perspectives,
15, 143-156.

J. Langford and A. Beygelzimer (2005) Sensitive Error Correcting Output Codes, Proceed-
ings of the 18th Annual Conference on Learning Theory (COLT), 158-172.

26

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.
43.

44,

45.

46.

47.

Alina Beygelzimer and John Langford and Bianca Zadrozny

J. Langford, R. Oliveira and B. Zadrozny (2006) Predicting conditional quantiles via reduc-
tion to classification, Proceedings of the 22nd Conference in Uncertainty in Artificial Intelli-
gence (UAI).

J. Langford and B. Zadrozny (2005) Estimating class membership probabilities using clas-
sifier learners, Proceedings of the 10th International Workshop on Artificial Intelligence and
Statistics.

J. Langford and B. Zadrozny (2005) Relating reinforcement learning performance to classifi-
cation performance, Proceedings of the 22nd International Conference on Machine Learning
(ICML), 473-480.

Y. Lee, Y. Lin, and G. Wahba (2004) Multicategory support vector machines, theory, and
application to the classification of microarray data and satellite radiance data, Journal of
American Statistical Association, 99: 67-81.

C. Hsu and C. Lin (2002) A comparison of methods for multi-class support vector machines,
IEEE Transactions on Neural Networks, 13, 415-425.

D. Margineantu (2002) Class probability estimation and cost-sensitive classification deci-
sions, Proceedings of the 13th European Conference on Machine Learning, 270-281.

M. Mesnier, M. Wachs, R. Sambasivan, A. Zheng, and G. Ganger (2007) Modeling the rela-
tive fitness of storage, International Conference on Measuremen and Modeling of Computer
Systems (SIGMETRICS), 37-48.

J. von Neumann (1951) Various techniques used in connection with random digits, National
Bureau of Standards, Applied Mathematics Series, 12: 36-38.

J. Platt (1999) Probabilistic outputs for support vector machines and comparisons to regular-
ized likelihood methods. In A. Smola, P. Bartlett, B. Scholkopf, and D. Schuurmans, editors,
Advances in Large Margin Classifiers, 61-74.

J. Platt, N. Cristiani and J. Shawe-Taylor (2000) Large margin DAGs for multiclass classifi-
cation, Advances of Neural Information Processing Systems, 12: 547-553.

J. Platt, E. Kiciman and D. Maltz (2008) Fast variational inference for large-scale internet
diagnosis, Advances in Neural Information Processing Systems 20.

R. Rifkin and A. Klautau (2004) In defense of one-vs-all classification, Journal of Machine
Learning Research, 5: 101-141.

I. Rish, M. Brodie and S. Ma (2002) Accuracy versus efficiency in probabilistic diagnosis,
Proceedings of National Conference on Artificial Intelligence (AAAI), 560-566.

I. Takeuchi, Q. Le, T. Sears, and A. Smola (2006) Nonparametric quantile estimation, The
Journal of Machine Learning Research, 7, 1231-1264.

G. Tesauro, R. Das, H. Chan, J. Kephart, D. Levine, F. Rawson, and C. Lefurgy (2008) Manag-
ing power consumption and performance of computing systems using reinforcement learning,
Advances in Neural Information Processing Systems 20.

V. Vapnik (1998) Statistical Learning Theory, John Wiley and Sons.

H. Wang, J. Platt, Y. Chen, R. Zhang, and Y. Wang (2004) Automatic Misconfiguration Trou-
bleshooting with PeerPressure, Proceedings of the 6th Symposium on Operating Systems De-
sign and Implementation, (2004). Also in Proceedings of the International Conference on
Measurements and Modeling of Computer Systems, SIGMETRICS 2004, 398-399.

J. Weston and C. Watkins (1998) Multiclass support vector machines, Proceedings of the 11th
European Symposium on Artificial Neural Networks, 219-224.

I. Witten and E. Frank (2000) Data Mining: Practical machine learning tools with Java im-
plementations, Morgan Kaufmann, http://www.cs.waikato.ac.nz/ml/weka/.
B. Zadrozny and C. Elkan (2001) Learning and making decisions when costs and probabilities
are both unknown, Proceedings of the 7th International Conference on Knowledge Discovery
and Data Mining (KDD), 203-213.

B. Zadrozny, J. Langford and N. Abe (2003) Cost-sensitive learning by cost-proportionate
example weighting, Proceedings of the 3rd IEEE International Conference on Data Mining
(ICDM), 435-442.

Index

AUC, 23

binary classification, 3
classifier, 3

conditional quantiles, 18
cost-sensitive classification, 15

costing reduction, 7

error correcting output coding (ECOC), 11
error rate, 3

importance-weighted classification, 4

learning algorithm, 3
learning problem, 3

multiclass classification, 8

one-against-all reduction, 8

probabilistic error correcting output codes, 12
quanting reduction, 20

ranking, 23
regret, 11

squared error regression, 3

weighted all pairs reduction, 16

27

