
Robust Reductions from Ranking to Classification

Maria-Florina Balcan1, Nikhil Bansal2, Alina Beygelzimer2,
Don Coppersmith3, John Langford4, and Gregory B. Sorkin2

1 Carnegie Melon University, Pittsburgh, PA
ninamf@cs.cmu.edu

2 IBM Thomas J. Watson Research Center, Yorktown Heights + Hawthorne, NY
{bansal,beygel,sorkin}@us.ibm.com

3 IDA Center for Communications Research, Princeton, NJ
dcopper@idaccr.org

4 Yahoo Research, New York, NY
jl@yahoo-inc.com

Abstract. We reduce ranking, as measured by the Area Under the Re-
ceiver Operating Characteristic Curve (AUC), to binary classification. The
core theorem shows that a binary classification regret of r on the induced
binary problem implies an AUC regret of at most 2r. This is a large im-
provement over approaches such as ordering according to regressed scores,
which have a regret transform of r 7→ nr where n is the number of elements.

1 Introduction

We consider the problem of ranking a set of instances. In the most basic version, we
are given a set of unlabeled instances belonging to two classes, 0 and 1, and the goal
is to rank all instances from class 0 before any instance from class 1. A common
measure of success for a ranking algorithm is the area under the ROC curve (AUC).
The associated loss, 1 − AUC, measures how many pairs of neighboring instances
would have to be swapped to repair the ranking, normalized by the number of 0s
times the number of 1s. The loss is zero precisely when all 0s precede all 1s; one
when all 1s precede all 0s. It is greater for mistakes at the beginning and the end of
an ordering, which satisfies the intuition that an unwanted item placed at the top
of a recommendation list should have a higher associated loss than when placed in
the middle.

The classification problem is simply predicting whether a label is 0 or 1 with success
measured according to the error rate, i.e., the probability of a misprediction.

These two problems appear quite different. For the classification loss function, a
misclassified instance incurs the same loss independently of how other instances
are classified. The AUC loss, on the other hand, depends on the whole (ranked)
sequence of instances. It is natural to ask whether we need fundamentally different
algorithms to optimize these two loss functions. This paper shows that, in some
precise sense, the answer is no. We prove that the problem of optimizing the AUC
can be reduced to classification in such a way that good performance on the clas-
sification problem implies good performance on the AUC problem. We call a pair
of instances mixed if they have different labels. The classification problem is to
predict, given a random mixed pair of instances in the test set, whether the first

2

instance should be ordered before the second. In other words, we show that there
is a robust mechanism for translating any binary classifier learning algorithm into
a ranking algorithm.

Several observations should help understand the setting and the result better.

Relation to Regression and Classification: A common way to generate a
ranking is to order examples according to a regressed score or estimated condi-
tional class probability. The problem with this approach is that it is not robust
(see, however, a discussion in Section 6). The fundamental difficulty is exhibited
by highly unbalanced test sets. If we have one 1 and many 0s, a pointwise (i.e.,
regression or classification) loss on the 1 with a perfect prediction for the 0s can
greatly harm the AUC while only slightly affecting the pointwise loss with respect
to the induced distribution. This observation implies that such schemes transform
pointwise loss l to AUC loss nl, where n is the number of elements in the test set.

A similar observation holds for regrets in place of losses: pointwise regret r trans-
lates into AUC regret nr. Regret is the difference between the incurred loss and
the lowest achievable loss on the problem. The motivation for regret analysis is to
separate avoidable loss from noise intrinsic to the problem, to give bounds that
apply nontrivially even for problems with large intrinsic, stochastic noise.

Our core theorem (Theorem 1) shows that a pairwise classifier with regret r implies
an AUC regret of at most 2r, for arbitrary distributions over instances. Thus, for
example, if the binary error rate is 20% due to inherent noise and 5% due to errors
made by the classifier, then AUC regret is at most 10%, i.e., only the 5% would be
at most doubled.

Section 5 shows that this is the best possible. The theorem is a large improvement
over the approaches discussed above, which have a dependence on n. For compar-
ison, the relationship of ranking to classification is functionally tighter than has
been proven for regression to binary classification (r 7→

√
r) [LZ05].

Relation to the Feedback Arc Set Problem: Let U be the set of unlabeled
examples we want to rank. There is a hidden bipartition of U into a set of 0s (called
“winners”) and a set of 1s (called “losers”), drawn from the underlying conditional
distribution of label sequences given U .

Consider running a tournament on U . Every element (or “player” or “instance”)
of U plays all other elements, and the outcome of each play is determined by a
classifier c trained to predict which of the two given elements should be ordered
first. What is the best way to rank the players in U so that all winners are ordered
before all losers?

The tournament induced by c on U does not have to be consistent with any linear
ordering, while a ranking algorithm must predict an ordering. A natural objec-
tive is to find an ordering which agrees with the tournament on as many player
pairs as possible, i.e., minimizes the number of inconsistent pairs where a higher-
ranked player (one ordered closer to the beginning of the list) lost to a lower-ranked
player. This is the NP-hard “minimum feedback arc set problem in tournaments”.
(Although the hardness was conjectured for a long time, it was proved only recently;
see [A06].)

3

A mistake is defined as a winner–loser pair where the loser beats (i.e., is preferred
to) the winner. A basic guarantee holds for a solution to the feedback arc set
problem: If the classifier c makes at most k mistakes on U , then the algorithm
minimizing the number of inconsistent pairs produces an ordering, or equivalently
a transitive tournament, with at most 2k mistakes on U (see Section 4 for a proof);
Section 5 exhibits a tournament matching this bound.

Instead of solving feedback arc set, another natural way to break cycles is to rank
instances according to their number of wins in the tournament produced by c.
The way ties are broken is inessential; for definiteness, let us say they are broken
against us. Coppersmith, Fleischer, and Rudra [CFR06] proved that this algorithm
provides a 5-approximation for the feedback arc set problem. An approximation,
however, does not generally imply any finite regret transform for the AUC problem.
For example, c may make no mistakes (i.e., make correct predictions on all winner–
loser pairs) while inducing a non-transitive tournament on the winners or the losers,
so an approximation that does not know the labeling can incur a non-zero number
of mistakes.

We prove, however, that the algorithm that simply orders the elements by their
number of wins, transforms classification regret k into AUC regret at most 2k.
That is, ordering by the number of wins has the same regret and loss transform as
an optimal solution to the (NP-hard) feedback arc set problem. (Again, Section 5
shows that solving feedback arc set does no better.)

Relation to Generalization Bounds: A number of papers analyze generaliza-
tion properties of ranking algorithms (see, e.g., [FIS+03,AHR05,AN05,RCM+05]).
These results analyze ranking directly by estimating the rate of convergence of
empirical estimates of the ranking loss to its expectation. The bounds typically
involve some complexity parameter of the class of functions searched by the algo-
rithms (which serves as a regularizer), and some additional quantities considered
relevant for the analysis. The examples are assumed to be drawn independently
from some fixed distribution.

The type of results in this paper is different. We bound the realized AUC per-
formance in terms of the realized classification performance. Since the analysis is
relative, it does not have to rely on any assumptions about the way the world pro-
duces data. In particular, the bounds apply when there are arbitrary high-order
dependencies between examples. This seems important in a number of real-world
applications where ranking is of interest.

By itself, our analysis does not say anything about the number of samples needed to
achieve a certain level of performance. Instead it says that achieved performance can
be robustly transferred from classification to ranking; and thus any generalization
result for the induced classification problem immediately implies a generalization
result for the AUC problem. For example, one can apply the bounds of Clémençon,
Lugosi, and Vayatis [CLV05] on the performance of empirical risk minimization for
the classification problem of ranking pairs of instances (under the assumption that
training instances are independent and identically distributed).

The results of Clémençon, Lugosi, and Vayatis [CLV05] extend to the problem of
ranking n independent instances (instead of just two), but the resulting bounds have

4

a dependence on n. The reduction presented here allows one to go from pairwise
to total order robustly, i.e., achieve bounds that are independent of the number of
instances.

2 Preliminaries

Classification: A binary classification problem is defined by a distribution P over
X ×{0, 1}, where X is some observable feature space and {0, 1} is the binary label
space. The goal is to find a classifier c : X → {0, 1} minimizing the classification
loss on P given by

e(c, P) = Pr(x,y)∼P [c(x) 6= y].

The classification regret of c on P is defined as

r(c, P) = e(c, P)−min
c∗

e(c∗, P).

Ranking: Where X(2) denotes the set of ordered pairs of distinct elements of X,
let π : X(2) → {0, 1} be a preference function (called a ranking rule in [CLV05]):
π(x, x′) = 1 if π “prefers” x to x′, and 0 otherwise (so π(x, x′) = 1−π(x′, x)). If π is
consistent with some linear ordering of a set of examples, we call π itself an ordering
on this set. The AUC loss of an ordering π on a set S = (x1, y1), . . . , (xn, yn) is
defined as

l(π, S) =

∑
i 6=j 1(yi > yj)π(xi, xj)∑

i<j 1(yi 6= yj)
.

(Indices i and j in the summations range from 1 to n, and 1(·) is the indicator
function which is 1 if its argument is true, and 0 otherwise.)

A pair of examples (x1, y1), (x2, y2) is called mixed if y1 6= y2.

An AUC problem is defined by a distribution D over (X×{0, 1})∗. The goal is to find
an ordering π : X(2) → {0, 1} minimizing the expected AUC loss on D, given by

l(π,D) = ES∼Dl(π, S).

Note that D may encode arbitrary dependencies between examples. As an example,
consider the internet search problem, where there is some underlying distribution
of queries, each yielding a set of search results. This process generates a distribution
over subsets; whether or not the subsets have the same size is inessential for the
analysis.

The AUC regret of π on D is given by rauc(π,D) = l(π,D)−minπ∗ l(π∗, D). We
are interested in ranking algorithms that use a preference function π as an oracle
and are robust in the sense that a small classification regret of the oracle cannot
induce a large AUC regret.

Tournaments: A tournament is a complete graph with no self-loops, in which
each edge is directed one way or the other, so that for every pair of vertices i 6= j,
either i → j is an edge or j → i is an edge, but not both. The edge i → j says
that i beats j (“i is preferred to j”); edges point from winners to losers. We adopt

5

Algorithm 1 Auc-Train (labeled set S, binary learning algorithm A)
1. Let S′ = {〈(x1, x2),1(y1 < y2)〉 : (x1, y1), (x2, y2) ∈ S and y1 6= y2}
2. return c = A(S′).

Algorithm 2 Degree (unlabeled set U , pairwise classifier c)
1. For x ∈ U , let deg(x) = |{x′ : c(x, x′) = 1, x′ ∈ U}|.
2. Sort U in descending order of deg(x), breaking ties arbitrarily.

the convention that 0s should be ordered ahead of 1s, so 0s should ideally beat
1s. We write deg(i) for the outdegree of vertex i, so deg(i) =

∑
j 1(i → j), where

the indicator function 1(i → j) is 1 if i → j is an edge and 0 otherwise. Thus we
generally expect 0s to have large outdegree and 1s small outdegree; however, we
allow and analyze arbitrary tournaments.

3 Ordering by the Number of Wins

In this section, we describe the reduction and prove the main result.

The reduction consists of two components. The training part, Auc-Train (Algo-
rithm 1), takes a set S of labeled examples of type X × {0, 1} and transforms all
mixed pairs in S into binary examples for the oracle learning algorithm. The bi-
nary classification problem induced by the reduction is to predict, given a random
mixed pair of examples in S, whether the first example should be ordered before
the second. For any process D generating datasets S, we can define the induced
distribution over (X ×X)× {0, 1} by first drawing S from D, and then drawing a
random mixed pair from S. We denote this induced distribution by Auc-Train(D)
(admittedly overloading the notation).

The test part, Degree (Algorithm 2), uses the pairwise classifier c learned in
Algorithm 1 to run a tournament on a test set U , and then ranks the elements
of U in decreasing order of their number of wins in the tournament, breaking ties
arbitrarily. (Again, we expect 0s to beat 1s, and thus have larger outdegree.)

It is best to think of the classifier c as an adversary trying to induce a large AUC
regret without paying much in classification regret: The adversary c specifies a
tournament on U . There is some realized bipartition of U into a set of 0s and a
set of 1s, drawn from the underlying conditional distribution of label sequences
given U . The bipartition is known to the adversary but unknown to the ranking
algorithm. The adversary starts with a tournament of its choice where every 0 beats
every 1. She can invert the outcome of any game between a 0 and a 1, and she is
charged for each such “mistake”. Again, she can choose any subtournaments on the
0s and on the 1s for free. Unless we are extremely lucky, the resulting tournament
is not consistent with any linear ordering of U .

Without seeing the labels, we wish to approximate c’s tournament with a transitive
tournament (or equivalently, a linear order) minimizing the number of mistakes

6

(i.e., pairs where a 1 precedes a 0 in the order). If c were itself consistent with
a linear order, we could simply output that, at a cost in mistakes identical to
the adversary’s. In general it is not, and we would expect the cost of the more-
constrained linear order to be higher. Our goal is to show that the reduction is
robust in the sense that c cannot cause Degree to make many mistakes without
making many mistakes itself: Degree makes at most twice as many mistakes as c.

The remainder of this section proves the following theorem.

Theorem 1. For all distributions D and all pairwise classifiers c,

rauc(Degree(·, c), D) ≤ 2r(c,Auc-Train(D)). (1)

Note the quantification in the above theorem: it applies to all settings where Al-
gorithms 1 and 2 are used; in particular, D may encode arbitrary dependences
between examples.

Proof. Given an unlabeled test set U ∈ Xn, the joint distribution D induces a
conditional distribution D(Y1, . . . , Yn | U) over the set of label sequences {0, 1}n. In
the remainder of the paper, let Q denote this conditional distribution. We identify
U with {1, . . . , n}. We prove the theorem by fixing U , taking the expectation over
the draw of U at the end.

Our goal is to rewrite both sides of (1) as sums of pairwise regrets. A pairwise loss
is defined by

lQ(i, j) = Eyn∼Q
1(yi > yj)∑

u<v 1(yu 6= yv)
.

It is the loss of ordering i before j. If lQ(i, j) < lQ(j, i), the regret rQ(i, j) of ordering
i before j is 0; otherwise, rQ(i, j) = lQ(i, j)− lQ(j, i).

We can assume without loss of generality that the ordering minimizing the AUC loss
(thus having zero AUC regret) is 〈1, 2, . . . , n〉. All regret-zero pairwise predictions
must be consistent with the ordering; i.e., for all i < j, we have rQ(i, j) = 0. (See
Lemma 2 in Section A for a proof.)

Lemma 1 in Appendix A establishes a basic property of pairwise regrets: For any
pair i < j, the regret rQ(j, i) can be decomposed as

rQ(j, i) =
j−1∑
k=i

rQ(k + 1, k).

This allows us to decompose the AUC regret of π on Q as a sum of pairwise regrets:

rauc(π,Q) = l(π,Q)−min
π∗

l(π∗, Q) = Eyn∼Q[l(π,U)]−min
π∗

Eyn∼Q[l(π∗, U)] =

7

= Eyn∼Q

∑
i,j 1(yi > yj)π(i, j)∑

u<v 1(yu 6= yv)
−min

π∗
Eyn∼Q

∑
i,j 1(yi > yj)π∗(i, j)∑

u<v 1(yu 6= yv)

= max
π∗

Eyn∼Q

∑
i,j [1(yi > yj)π(i, j)− 1(yi > yj)π∗(i, j)]∑

u<v 1(yu 6= yv)

=
∑

i<j:π(j,i)=1

rQ(j, i) =
n−1∑
k=1

|{i ≤ k < j : π(j, i) = 1}| · rQ(k + 1, k).

The last equality follows from repeated application of Lemma 1.

The classification regret can also be written in terms of pairwise regrets:

r(c,Auc-Train(Q)) = e(c,Auc-Train(Q))−min
c∗

e(c∗,Auc-Train(Q))

= max
c∗

Eyn∼Q

[∑
i,j [1(yi > yj)c(i, j)− 1(yi > yj)c∗(i, j)]∑

u<v 1(yu 6= yv)

]
=

∑
i<j:c(j,i)=1

rQ(j, i) =
n−1∑
k=1

|{i ≤ k < j : c(j, i) = 1}| · rQ(k + 1, k).

Let gk and fk denote the coefficients with which the term rQ(k + 1, k) appears in
the above decompositions of rauc(π,Q) and r(c,Auc-Train(Q)) respectively. To
complete the proof it suffices to show that gk ≤ 2fk for each k.

Fix k and consider a bipartition of U into a set {1, . . . , k} of “winners” and a set
{k + 1, . . . , n} of “losers”. In this terminology, gk is the number of winner–loser
pairs where the loser has at least as many wins as the winner, and fk is the number
of winner–loser pairs where the loser beats the winner (in the tournament induced
by c on U). Theorem 2 below shows that gk ≤ 2fk, completing this proof.

Let T be a tournament and let the vertices of T be arbitrarily partitioned into a
set W of “winners” and a set L of “losers”. Call the triple (T,W,L) a winner–loser
partitioned tournament, and denote it by T. We will show that for any T, the
number of winner–loser pairs where the loser’s degree is larger than or equal to the
winner’s, is at most twice the number of winner–loser pairs where the loser beats
the winner. Formally, define two measures:

g(T) =
∑
`∈L

∑
w∈W

1(deg(`) ≥ deg(w)),

f(T) =
∑
`∈L

∑
w∈W

1(` → w).

Theorem 2. For any winner–loser partitioned tournament T, g(T) ≤ 2f(T).

Since the number of edges from L to W is equal to the total number of edges out
of L minus the number of edges from L to L, we can rewrite

f(T) =
∑
`∈L

∑
w∈W

1(` → w) =
∑
`∈L

deg(`)−
(
|L|
2

)
.

8

Both f(T) and g(T) depend only on the degrees of the vertices of T , so rather
than working with a (labeled) tournament, a relatively complex object, we can
work with a (labeled) degree sequence.

Landau’s theorem [Lan53] says that there exists a tournament with outdegree se-
quence d1 ≤ d2 ≤ · · · ≤ dn if and only if, for all 1 ≤ i ≤ n,

∑i
j=1 dj ≥

∑i
j=1(j−1),

with equality for i = n.

Recall that a sequence 〈a1, . . . , an〉 is majorized by 〈b1, . . . , bn〉 if the two sums are
equal and if, when each sequence is sorted in non-increasing order, the prefix sums
of the b sequence are at least as large as (dominate) those of the a sequence. (For a
comprehensive treatment of majorization, see [MO79].) Landau’s condition is pre-
cisely that 〈d1, . . . , dn〉 is majorized by 〈0, . . . , n− 1〉. (With the sequences sorted
in increasing order, Landau’s condition is that prefix sums of the degree sequence
dominate those of the progression, which is the same as saying that the suffix sums
of the degree sequence are dominated by the suffix sums of the progression.) This
allows us to take advantage of well-known properties of majorization, notably that
if A′ is obtained by averaging together any elements of A, then A majorizes A′.

This allows us to restate Theorem 2 in terms of a sequence and majorization, rather
than a tournament, but first we relax the constraints. First, where the original
statement requires elements of the degree sequence to be non-negative integers, we
allow them to be non-negative reals. Second, the original statement requires that
we attach a winner/loser label to each element of the degree sequence. Instead,
we aggregate equal elements of the degree sequence, and for a degree di of (inte-
gral) multiplicity mi, assign arbitrary non-negative (but not necessarily integral)
portions to winners and losers: wi + `i = mi.

Let D = (D,W,L) be such a generalized “winner–loser labeled compressed se-
quence”. Note that the majorization condition applies only to the values {di,mi},
not the labeling. The definitions of f and g above are easily extended to this broader
domain:

g(D) =
∑

i

∑
j≤i

liwj , f(D) =
∑

i

lidi −
(∑

i li
2

)
,

where we define
(
x
2

)
= x(x − 1)/2 for all x (not just integers). If we prove g ≤ 2f

over this larger domain, the inequality holds in particular for plain winner–loser
labeled degree sequences (the case where all weights happen to be integral). That
is, Theorem 3, below, implies Theorem 2.

Theorem 3. For any winner–loser labeled compressed sequence D = (D,W,L)
where D is majorized by 〈0, . . . , n− 1〉, g(D) ≤ 2f(D).

Proof. We begin with an outline of the proof. Define a compressed sequence D as
being canonical if it consists of at most three degrees: a smallest degree d1 having
only losers (w1 = 0), a middle degree d2 potentially with both winners and losers
(w2, `2 ≥ 0), and a largest degree d3 having only winners (`3 = 0). We first establish
that any canonical sequence has g(D)−2f(D) ≤ 0. We then show how to transform
any degree sequence to a canonical one with a larger (or equal) value of g − 2f ,
which completes the argument.

9

We first show that a canonical sequence D has g − 2f ≤ 0. For the canonical
configuration, g = w2`2 and f = `1d1 + `2d2 −

(
`1+`2

2

)
, and hence our goal is to

show that
`1d1 + `2d2 ≥ (`1 + `2)(`1 + `2 − 1)/2 + w2`2/2 (2)

By Landau’s condition applied to `1 and `1 + w2 + `2, we have the following two
relations:

`1d1 ≥
(

`1
2

)
(3)

and

`1d1 + (`2 + w2)d2 ≥
(

`1 + w2 + `2
2

)
. (4)

Multiplying (3) by w2/(`2 + w2) and (4) by `2/(`2 + w2) and adding them, we
obtain that

`1d1 + `2d2 ≥
1

`2 + w2

(
w2

(
`1
2

)
+ `2

(
`1 + `2 + w2

2

))
. (5)

A simple calculation shows that the right side of inequality (5) is exactly equal to
the right hand side of (2). This proves that g ≤ 2f for a canonical sequence.

If a sequence is not canonical then there are two consecutive degrees di and dj

(j = i + 1) such that one of the cases 1a, 1b, or 2 (described below) holds. In
each case we apply a transformation producing from the degree sequence D a new
degree sequence D′, where:

– the total weight of winners in D′ is equal to that of D; similarly for losers, and
thus for the total weight; furthermore, the total weight on each degree remains
integral;

– D′ maintains the majorization needed for Landau’s theorem;

– the value of g − 2f is at least as large for D′ as for D; and

– either the number of nonzero values wi and `i or the number of distinct degrees
di is strictly smaller for D′ than for D, and the other is no larger for D′ than
for D.

We first sketch the cases and then detail the transformations.

Case 1a di has only winners (li = 0).
Apply Transformation 1a, combining the two degrees into one.

Case 1b dj has only losers (wj = 0).
Apply Transformation 1b, combining the two degrees into one.

Case 2 All of wi, li, wj and lj are nonzero.
Apply Transformation 2, leaving the degrees the same but transforming the
weights so that one of them is equal to 0 and one of the preceding cases applies,
or the weights obey an equality allowing application of Transformation 3, which
combines the two degrees into one.

10

Either there is some pair i, j to which one of the cases applies, or the sequence is
canonical. We argue this by showing that if there is no pair i, j for which Cases
1a or 1b apply, then either the sequence is canonical, or there is a pair to which
Case 2 applies. First, note that for any i 6= n, li > 0 (else Case 1a applies to i, i+1)
and for any i 6= 1, wi > 0 (else Case 1b applies to i − 1, i). In particular, for any
1 < i < n, both li, wi > 0. If n ≥ 4 this implies immediately that Case 2 applies to
the pair 2, 3. If n = 1, D is automatically canonical. If n = 2 and l2 = 0 or w1 = 0
then D is canonical, while if both l2, w1 > 0 we may apply Case 2 (since, as we
first argued, l1, w2 > 0). Finally, if n = 3, we know l1, l2, w2, w3 > 0. If w1 = l3 = 0
then D is canonical, and otherwise Case 2 applies.

Transformation 1a: In Case 1a, where di has only winners, change D to a new
sequence D′ by replacing the pair (di, wi, 0), (dj , wj , lj) by their “average”: the
single degree (d′, w′, l′), where

w′ = wi + wj , l′ = lj , d′ =
widi + (wj + lj)dj

wi + wj + lj
.

The stated conditions on a transformation are easily checked. The total weight of
winners is clearly preserved, as is the total weight of losers and the total degree
(out-edges). Summing weights preserves integrality. The number of distinct degrees
is reduced by one, and the number of nonzero weights may be decreased by one
or may remain unchanged. The Landau majorization condition holds because D′,
as an averaging of D, is majorized by it, and majorization is transitive. The only
non-trivial condition is the non-decrease in g − 2f . The number of loser–winner
pairs where the loser outranks the winner remains the same, so g(D) = g(D′).
Also, f depends only on the total weight of losers (which is unchanged) and on the
average degree of losers. This average degree would be unchanged if wi were 0; since
wi ≥ 0, the average degree may decrease. Thus f(D) ≥ f(D′), and (g − 2f)(D) ≤
(g − 2f)(D′), as desired.

Transformation 1b: Symmetrically to Transformation 1a, obtain D′ by replac-
ing the pair of labeled weighted degrees (di, wi, li) and (dj , 0, lj) with a single one
(d′, w′, l′), where w′ = wi, l′ = li + lj , and d′ = [(li + wi)di + ljdj]/(li + wi + lj).

Transformation 2: Where wi, li, wj and lj are all nonzero, we begin with one
case, which leads to one other. In the usual case, we transform D to D′ by replacing
the pair (di, wi, li), (dj , wj , lj) with (di, wi + x, li − x), (dj , wj − x, lj + x), for some
value of x (positive or negative) to be determined. This affects only the labeling,
not the weighted degree sequence itself, and is therefore legitimate as long as the
four quantities wi + x, li − x, wj − x and lj + x are all non-negative.

Defining ∆ = (g − 2f)(D′)− (g − 2f)(D), we wish to choose x to make ∆ > 0.

∆ =
{[

(lj + x)(wi + x + wj − x) + (li − x)(wi + x)
]
−

[
lj(wi + wj) + liwi

]}
− 2

{[
(li − x)di + (lj + x)dj

]
−

[
lidi + ljdj

]}
= x(wj + li − 2(dj − di)− x) = x(a− x),

where a = wj + li − 2(dj − di). This is a simple quadratic expression with negative
coefficient on x2, so its value increases monotonically as x is varied from 0 to a/2,

11

where the maximum is obtained. (Note that a may be negative.) If a = 0 then
we do not use this transformation but Transformation 3, below. Otherwise, vary x
from 0 to a/2 stopping when x reaches a/2 or when any of wi + x, li − x, wj − x
and lj + x becomes 0. Call this value x?, and use it to define the transformation.

If any of wi +x, li−x, wj −x and lj +x is 0 then the number of nonzero weights is
decreased (while the number of distinct degees is unchanged). Otherwise, x? = a/2.
In that case, the new D′ has a = 0 (the optimal “weight shift” has already been
performed). With a = 0 we apply Transformation 3, which reduces the number of
nonzero weights.

Transformation 3: Similar to Cases 1a and 1b, transform D to D′ by replacing
the pair (di, wi, li), (dj , wj , lj) with a single degree (d′, w′, l′) that is their weighted
average,

w′ = wi + wj , l′ = li + lj , d′ =
(wi + li)di + (wj + lj)dj

wi + li + wj + lj
.

This gives

∆ = (g − 2f)(D′)− (g − 2f)(D)
= (liwj)− 2(lid′ + ljd

′ − lidi − ljdj)

= liwj +
2(dj − di)(wilj − wj li)

wi + li + wj + lj
.

We apply this transformation only in the case where Transformation 2 fails to give
any improvement because its “a” expression is equal to 0, i.e., dj−di = (wj + li)/2.
Making the corresponding substitution gives

∆ = liwj +
(wj + li)(wilj − wj li)

wi + li + wj + lj

=
(liwj)(lj + wi) + (ljwi)(li + wj)

wi + li + wj + lj
> 0.

This reduces the number of distinct degrees by one, without increasing the number
of nonzero weights.

Concluding the argument, we have shown that any non-canonical configuration D
can be replaced by a configuration with a strictly smaller total of distinct degrees
and nonzero weights, and at least as large a value of g − 2f . Since D had at most
n distinct degrees and 2n nonzero weights originally, a canonical configuration D?

is reached after at most 3n− 1 transformations. (All that is important is that the
number of transformations is finite: that a canonical configuration is eventually
reached.) Then, (g − 2f)(D) ≤ (g − 2f)(D?) ≤ 0.

A further generalization of Theorem 3 may be found in [BCS06].

4 An Upper Bound for Minimum Feedback Arc Set

This section shows an analog of Theorem 2 for an optimal solution to the feed-
back arc set problem. (The decomposition argument in Theorem 1 is algorithm-
independent and applies here as well.) For a tournament T and an ordering π, a

12

back edge is an edge i → j in T such that j is ordered before i in π. Let back(T, π)
denote the number of back edges induced by π in T .

For a winner–loser partitioned tournament T = (T,W,L) and any minimum feed-
back arc set ordering π of T , let g′(T, π) be the number of winner–loser pairs where
the loser comes before the winner in π, and as before let

f(T) =
∑
`∈L

∑
w∈W

1(` → w)

be the number of winner–loser pairs where the loser beats the winner.

Theorem 4. For any winner–loser partitioned tournament T = (T,W,L) and any
minimum feedback arc set ordering π of T , g′(T, π) ≤ 2f(T).

Proof. Let kw be the smallest possible number of back edges in the subtournament
induced by W . Define kl similarly for the subtournament induced by L. Let kπ

w

and kπ
l be the number of back edges in π that go from W to W and from L to L,

respectively. Denote the number of remaining (i.e., winner–loser or loser–winner)
back edges in π by kπ

o .

Consider another ordering σ where all winners are ordered before all losers, and
both the winners and the losers are ordered optimally among themselves, i.e., with
kw and kl back edges respectively. The number of back edges in σ is back(T, σ) =
kw + kl + f(T). But we also have back(T, σ) ≥ back(T, π) since π minimizes the
number of back edges, and thus kw + kl + f(T) ≥ kπ

w + kπ
l + kπ

o . Since kw ≤ kπ
w

and kl ≤ kπ
l by definition of kw and kl, we have f(T) ≥ kπ

o .

Consider any winner–loser pair with the loser ordered before the winner. If w → l
is the edge, it is a back edge in π and thus is counted by kπ

o . If l → w is the edge
instead, it is counted by f(T). Thus g′(T, π) is at most kπ

o +f(T). Since f(T) ≥ kπ
o ,

this number is never more than 2f(T), which implies g′(T, π) ≤ 2f(T).

5 Lower Bounds

We first show that Theorem 2 is best possible: the Degree ranking really can
make twice as many mistakes as the adversary. Recall that f denotes the number
of winner–loser pairs where the loser beats the winner, and g the number of winner–
loser pairs where the loser outranks the winner. The example below generates an
infinite family of tournaments with g = 2f .

Example 1. With n odd, let every vertex have degree (n − 1)/2; note that the
degree sequence 〈n−1

2 , . . . , n−1
2 〉 does indeed respect Landau’s condition, so it is

realizable as a tournament. Label (n−1)/2 of the vertices as winners and (n+1)/2
as losers. With ties broken against us, all winners are ordered after all losers. This
gives f = n+1

2 · n−1
2 −

(
(n+1)/2

2

)
= (n + 1)(n − 1)/8, while g = n+1

2 · n−1
2 =

(n + 1)(n− 1)/4 = 2f . (A similar example gives a lower bound of 2−O(1/n) with
ties broken optimally.)

13

Theorem 4 is also essentially best possible. The next construction gives an infinite
family of tournaments for which an optimal solution to the feedback arc set problem
has g ≥ (2− ε)f , for any ε > 0.

Example 2. Set δ = ε
1−ε , and let the set of vertices be partitioned into three

components, V1, V2, and V3, with |V1| = δn2, |V2| = 2n2, and |V3| = n, for a
sufficiently large n. The vertices in V1 ∪ V2 are the winners, the vertices in V3 are
the losers.

The edges within each of the three components form acyclic tournaments. The
cross-component edges are defined as follows: All edges between V3 and V1 point
from V3 to V1, and all edges between V1 and V2 point from V1 to V2. To define the
edges between V2 and V3, divide V2 into 2n consecutive blocks B1, . . . , B2n of n
vertices each, such that edges point from Bi to Bj where 1 ≤ i < j ≤ 2n. If i is
odd, all edges from Bi point to V3; otherwise all edges from V3 point to Bi.

We have f = (1 + δ)n3. What is the value of g induced by an ordering minimizing
the number of back edges? Any such ordering must put V1 before V2; otherwise
we would have Ω(n4) back edges while an optimal ordering does not need to have
more than O(n3) such edges. Now, the tournament induced by V2∪V3 has n3 edge-
disjoint cycles of length 3 since there are n2 such cycles for every pair of blocks
in V2 (and there are n disjoint pairs). There has to be at least one back edge for
every such cycle, so any ordering must have at least n3 back edges. The ordering
that puts V3 before V2 is thus optimal since it has exactly n3 back edges. Thus
the ordering {V3, V1, V2} minimizes the number of back edges. This ordering has
(2 + δ)n3 pairs where the loser is ordered before the winner, implying the bound
g ≥ (2− δ

1+δ)f = (2− ε)f .

6 Practicality and Relation to Other Work

The reduction analysis is representation independent, which implies that it works
for any representation. Naturally, some representations are more computationally
efficient than others. If, for example, c(xi, xj) = 1(s(xi) > s(xj)) for some learned
score function s : X → [0, 1], the complexity of test-time evaluation is linear rather
than quadratic in the number of elements. Note that s is not trained as a simple
regressor, because what we want to optimize is the pairwise ordering of elements
(see [CLV05]).5

Cohen, Schapire, and Singer [CSS99], similarly, use a two-stage approach to rank-
ing: They first learn a preference function that takes a pair of instances and returns
a score predicting how certain it is that the first instance should be ranked before
the second. The learned function is then evaluated on all pairs of instances in the
test set and an ordering approximating the largest possible l1 agreement with the

5 Note that the minimum in the definition of classification regret is over all possible
preference functions. The result also holds if c is constrained to be in some class of
functions, as long as the class contains an optimal classifier minimizing the loss on the
induced problem. For the case of binary labels, the optimal classifier can clearly be
represented by a scoring function [CLV05].

14

predictions is created, using a variant of the degree-based algorithm. One of the
results they show is that the agreement achieved by an optimal feedback arc set
ordering is at most twice the agreement obtained by their algorithm. To translate
this result into the language of losses, let Mfa be the AUC loss of the minimum
feedback arc set ordering and Approx be the AUC loss of the approximation. Then
the result says that 1−Approx ≥ 1

2 (1−Mfa) or Approx ≤ 1
2 +Mfa/2. The result

is difficult to compare with the results given here, as the settings are different. A
very rough comparison requires specializations and yields a bound that is weaker
than ours: As we have seen in Section 4, Mfa ≤ 2Bin, where Bin is the loss of the
pairwise predictor, so the result of [CSS99] roughly says that Approx ≤ 1

2 + Bin,
while we show that Approx ≤ 2Bin (modulo the slight differences in the approx-
imation algorithm and the binary problem).

Cortes and Mohri [CM04] analyzed the relationship between the AUC and the error
rate on the same classification problem, treating the two as different loss functions.
They derived expressions for the expected value and the standard deviation of the
AUC over all classifications with a fixed number of errors, under the assumption
that all such classifications are equiprobable (i.e., the classifier is as likely to err on
any one example as on any other). There is no direct connection with the present
work.

References

[AHR05] S. Agarwal, S. Har-Peled, and D. Roth. A uniform convergence bound for the
area under the ROC curve, Proceedings of the 10th International Workshop
on Artificial Intelligence and Statistics, 2005.

[AN05] S. Agarwal, P. Niyogi. Stability and Generalization of Bipartite Ranking Al-
gorithms, Proceedings of the Eighteenth Annual Conference on Computational
Learning Theory (COLT), 32–47, 2005.

[A06] N. Alon. Ranking tournaments, SIAM Journal on Discrete Mathematics 20:
137–142, 2006.

[BCS06] N. Bansal, D. Coppersmith, and G.B. Sorkin. A Winner–Loser Labeled Tour-
nament Has at Most Twice as Many Outdegree Misrankings as Pair Misrank-
ings, IBM Research Report RC24107, Nov. 2006.

[CLV05] S. Clémençon, G. Lugosi, N. Vayatis. Ranking and Scoring Using Empiri-
cal Risk Minimization, Proceedings of the Eighteenth Annual Conference on
Computational Learning Theory (COLT), 1–15, 2005.

[CSS99] W. Cohen, R. Schapire, and Y. Singer. Learning to order things, Journal of
Artificial Intelligence Research 10: 243–270, 1999.

[CFR06] D. Coppersmith, L. Fleischer and A. Rudra. Ordering by Weighted Number
of Wins Gives a Good Ranking for Weighted Tournaments. Proceeding of the
17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 776–
782, 2006.

[CM04] C. Cortes and M. Mohri. AUC Optimization vs. Error Rate Minimization,
Advances in Neural Information Processing Systems (NIPS), 2004.

[FIS+03] Y. Freund, R. Iyer, R. Schapire, and Y. Singer. An efficient boosting algorithm
for combining preferences, Journal of Machine Learning Research 4: 933–969,
2003.

[Lan53] H. G. Landau. On Dominance Relations and the Structure of Animal Societies:
III. The Condition for a Score Structure, Bull. Math. Biophys., 15: 143–148,
1953.

15

[LZ05] J. Langford and B. Zadrozny. Estimating Class Membership Probabilities
Using Classifier Learners, Proceedings of the 10th International Workshop on
Artificial Intelligence and Statistics, 2005.

[MO79] A. Marshall and I. Olkin. Inequalities: Theory of majorization and its appli-
cations, Mathematics in Science and Engineering, 143, New York, 1979.

[RCM+05] C. Rudin, C. Cortes, M. Mohri, and R. Schapire. Margin-based ranking meets
Boosting in the middle, Proceedings of the Eighteenth Annual Conference on
Computational Learning Theory (COLT), 2005.

A Supporting Lemmas

The proof of Theorem 1 used two simple lemmas which we prove here. Recall that
Q denotes the distribution of label sequences {0, 1}n of an unlabeled set {1, . . . , n}.

Lemma 1. For any i, j, and k in {1, . . . , n}, rQ(i, j) + rQ(j, k) = rQ(i, k).

Proof. Let p be a shorthand for the restriction of Q to indices {i, j, k} (so p is a
distribution over {0, 1}3 obtained by summing over all label indices other than i,
j, and k). A simple algebraic manipulation verifies the claim.

rQ(i, j) + rQ(j, k) =
p(100) + p(101)− p(010)− p(011) + p(010) + p(110)− p(001)− p(101) =
p(100) + p(110)− p(001)− p(011) = rQ(i, k).

Notice that all label assignments above have exactly two mixed pairs, so the factor
of 1/2 is cancelled.

Lemma 2. If, with respect to Q, the ordering 〈1, 2, . . . , n〉 is the ordering minimiz-
ing the AUC loss (thus having zero AUC regret), then all regret-zero pairwise predic-
tions must be consistent with the ordering; i.e., rQ(i, j) = 0 for all 1 ≤ i < j ≤ n.

Proof. All regrets rQ(i, i + 1) must be 0, since swapping i and i + 1 does not affect
other pairwise regrets and would thus decrease the overall regret, contradicting the
assumption that 1 2 . . . n is regret minimizing. We prove that all other pairwise
regrets must be 0 recursively. Consider a triple, i < j < k with rQ(i, j) = 0 and
rQ(j, k) = 0. We show that rQ(i, k) = 0. Let p be defined as in the proof of Lemma 1.
We have lQ(i, j) ≤ lQ(j, i) and lQ(j, k) ≤ lQ(k, j), which can be expanded as

p(100) + p(101) ≤ p(010) + p(011), p(010) + p(110) ≤ p(001) + p(101). (6)

We now have

lQ(i, k) = p(100) + p(110) ≤ p(100) + p(101) + p(010) + p(110)
≤ p(010) + p(011) + p(001) + p(101) ≤ p(001) + p(011) = lQ(k, i),

where the second inequality follows by adding the two inequalities in (6). Thus
lQ(i, k) ≤ lQ(k, i) implying rQ(i, k) = 0.

