A Taxonomy of Learning Theory

1. (Some) online learning

2. Reductions

3. Algorithmic complexity?

4. Data Constrained \Rightarrow (other) online learning

5. I.I.D. Data \Rightarrow learning verifiability

6. I.I.D. Data $+$ Data Constrained \Rightarrow PAC-learning
Learning Domains

Learning Domain = \(L = (K, Y, l) \)

\(K \) = information about what should be predicted.

\(Y \) = the space of predictions

\(l : K \times Y \rightarrow [0, \infty) \) = “loss” function

Learning problem \(L, X, D = \)

- \(L = (K, Y, l) \) Learning Domain

- \(X \) = “feature space” = the thing you predict from

- \(D \) a distribution over \(X \times K \)
Learning Problem examples

1. Domain = classification, $K = Y =$ snow or not, $X =$ weather report

2. Domain = importance classification, $X =$ past history, $K =$ Fraud or not (and cost of fraud or unnecessary study).

3. Domain = Cost sensitive classification, $X =$ hour of day, $K =$ cost of taking various paths, $Y =$ path taken.
Learning Domains, Examples

<table>
<thead>
<tr>
<th>L</th>
<th>K</th>
<th>Y</th>
<th>$l(k, y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification</td>
<td>${0, 1}$</td>
<td>${0, 1}$</td>
<td>$I(k \neq y)$</td>
</tr>
<tr>
<td>Importance Classification</td>
<td>${0, 1} \times [0, \infty)$</td>
<td>${0, 1}$</td>
<td>$k_2 I(k_1 \neq y)$</td>
</tr>
<tr>
<td>ℓ-class Classification</td>
<td>${1, \ldots, \ell}$</td>
<td>${1, \ldots, \ell}$</td>
<td>$I(k \neq y)$</td>
</tr>
<tr>
<td>Ranking</td>
<td>${1, \ldots, \ell}$</td>
<td>${1, \ldots, \ell}$</td>
<td>$</td>
</tr>
<tr>
<td>n-of-ℓ Classification</td>
<td>$2^{{1, \ldots, \ell}}$</td>
<td>${1, \ldots, \ell}$</td>
<td>$I(y \notin k)$</td>
</tr>
<tr>
<td>Cost Sensitive Classification</td>
<td>$[0, \infty)^\ell$</td>
<td>${0, \ldots, \ell}$</td>
<td>k_y</td>
</tr>
<tr>
<td>Regression</td>
<td>$(-\infty, \infty)$</td>
<td>$(-\infty, \infty)$</td>
<td>$(k - y)^2$</td>
</tr>
</tbody>
</table>
Learning Algorithm = Domain solver

Examples:

1. Support Vector Machines (Domain = Classification)

2. EM (Domain = Density estimation)

3. Neural Networks (Domain = Classification or Regression)
Reduction \(R(A) = L' \) solver given \(L \) solver, \(A \)

Reduction satisfies one property:

1. (Error limitation) If for all created sets \(S \), \(A(S') \) produces a predictor \(h \) with \(h_D \leq \epsilon \), then \(R(A, S') \) has error rate less than \(g(\epsilon) \) where \(g(0) = 0 \) and \(g(z) \geq g(z') \) for \(z \geq z' \).

Let

\[
D_{S'}(x, k) = \frac{|\{(x, k) : (x, k) \in S'\}|}{|S|}
\]

Derived Problem:

\[
D(x, k) = E_{S' \sim D'} D_{S'}(x, k)
\]
Let R_{12} be a reduction from L_1 to L_2 with error transform g_{12}.

Let R_{23} be a reduction from L_2 to L_3 with error transform g_{23}.

Theorem: $R_{12} \circ R_{23}$ is a reduction from L_1 to L_3 with error transform $g_{12} \circ g_{23}$.

Proof:

1. Everything has the right type.

2. Error bounds propagate.
Import C. to Classification

Let $D'(x, y, i) \propto iD(x, y, i)$

Let $N = E_{x,y,i \sim D}i$

Folk Theorem:

For all c, $E_{x,y,i \sim D'}I(c(x) \neq y) = \frac{1}{N} E_{x,y,i \sim D}iI(c(x) \neq y)$

⇒ if we transform examples to be from D', and apply A, we have a learning reduction.
IC to C Attempt #1: Resampling

Resample($A, (x, y, i)^m$)

1. $S = m$ times: draw (x, y) proportional to i

2. return $A(S)$

Basic problem with resampling: samples in S not drawn i.i.d. from correct distribution.

\Rightarrow Learning algorithms fail
IC to C Attempt #2: Rejection Sample

Rejection_Sample(\(A, (x, y, i)^m\))

1. \(S = \) for each \((x, y, i)\) if \(\text{Rand}(\max_{(x, y, i) \in S} i) < i\) then include \((x, y)\)

2. \(A(S)\)

The right distribution, but we throw away too many samples.
IC to C Attempt #3: “Costing”

Costing($A, (x, y, i)^m$)

1. For $t = 1$ to 200

2. $c_t = \text{Rejection Sample}(A, (x, y, i)^m)$

3. Return $c(x) = I\left(\frac{1}{200} \sum_{t=1}^{200} c_t(x) > 0.5\right)$
Learning Preserving: Definition

A reduction R from L' to L is learning preserving if there exists a reduction R' from L to L' such that for all oracle learning algorithms A and all datasets S:

$$R'(R(A), S) = A(S)$$
Theorem: Costing is learning preserving

Proof: Let $R'(A', S) = A'((x, y, 1) : (x, y) \in S)$.

$\text{Rejection_Sample}(A, S')$

$$= A((x, y) : (x, y, i) \in S' \text{ and } \text{Rand}(\max_{(x, y, i) \in S} i) < i)$$

$max i = min i = 1 \Rightarrow$ no examples rejected.

$\Rightarrow \text{Rejection_Sample learning preserving}$

Costing = majority vote of Rejection_Sample

\Rightarrow Costing learning preserving.
A Table of Reduction Results

<table>
<thead>
<tr>
<th>Class. to IC</th>
<th>Boosting</th>
<th>$g(\epsilon) = e^{-2T(\frac{1}{2}-\epsilon)^2}$</th>
<th>$O(T)$</th>
<th>$O(T)$</th>
<th>Yes</th>
<th>??</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC to Class.</td>
<td>Costing</td>
<td>ϵEi</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ℓ-class to C</td>
<td>ECOC</td>
<td>4ϵ</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>Yes</td>
<td>??</td>
</tr>
<tr>
<td>ℓ-class to C</td>
<td>1 vs all</td>
<td>$\epsilon (\ell - 1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>Yes</td>
<td>??</td>
</tr>
<tr>
<td>ℓ-class to C</td>
<td>Tree</td>
<td>$\epsilon \log_2 \ell$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ℓ-class to IC</td>
<td>Wghtd 1vsAll</td>
<td>$\epsilon \frac{\ell}{2}$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>Yes</td>
<td>??</td>
</tr>
</tbody>
</table>

C = Binary Classification

IC = Importance weighted Binary classification

IID? = Does the reduction preserve IID sampling?

Learning? = Is the reduction learning preserving?