Lessons From Statistical Learning Theory for Benchmark Design

John Langford

Toyota Technological Institute - Chicago
A Prototypical Result from Learning Theory

\[D = \text{distribution on } X \times \{0, 1\} \]

\[S \sim D^m \text{ be } m \text{ i.i.d. draws from } D \]

\[c : X \to \{0, 1\} \text{ be a classifier} \]

\[\hat{c}_S = \Pr_{(x,y) \sim S} (c(x) \neq y) = \frac{1}{|S|} \sum_{(x,y) \in S} I(c(x) \neq y) \]

\[c_D = \Pr_{(x,y) \sim D} (c(x) \neq y) \]

Theorem: For all \(D \), for all \(c \), for all \(\delta > 0 \):

\[\Pr_{S \sim D^m} \left(c_D \leq \hat{c}_S + \sqrt{\frac{\ln \frac{1}{\delta}}{2m}} \right) \geq 1 - \delta \]
Note:

1. Very General (few assumptions \(\Rightarrow\) many applications)

2. Directly Applicable (demo)

Hidden here: even tighter results hold
Outline

1. Prediction Domains and Loss functions
 (a) Classification (Predict a bit)
 (b) Regression (Predict a real)
 (c) Density Estimation (Predict a measure)

2. Prediction Settings

3. Assumption Failure
Regression

\[D = \text{distribution on } X \times [0, 1] \]

\[S \sim D^m \text{ be } m \text{ i.i.d. draws from } D \]

\[r: X \rightarrow [0, 1] \text{ be a regressor} \]

\[\hat{r}_S = E_{(x,y) \sim S}(r(x) - y)^2 = \frac{1}{|S|} \sum_{(x,y) \in S}(r(x) - y)^2 \]

\[r_D = E_{(x,y) \sim D}(r(x) - y)^2 \]

Theorem: For all \(D \), for all \(r \), for all \(\delta > 0 \):

\[\Pr_{S \sim D^m}\left(r_D \leq \hat{r}_S + \sqrt{\frac{\ln \frac{1}{\delta}}{2m}}\right) \geq 1 - \delta \]
Regression Notes

1. Sometimes D on $(-\infty, \infty)$ \Rightarrow Theorem fails!

2. Sometimes assume $D(y|x) = f(x) + \text{normal noise}$ \Rightarrow similar theorem.

3. Hidden detail: Very tight bounds are harder than for classification.
Density Estimation

\(D\) on domain \(X\)

\(p(x) = \) probability or probability density on \(x\)

\[p_D = E_{x \sim D} \ln \frac{1}{p(x)}\]

1. **Impossible** to make theorem statement given above.

2. Assume \(D\) normal \(\Rightarrow\) theorem statement.

Outline

1. Prediction Domains and Loss functions
 (a) Classification (Cleanest analysis)
 (b) Regression (Reasonable analysis)
 (c) Density Estimation (Tricky)

2. Prediction Settings

3. Assumption Failure
Outline

1. Prediction Domains and Loss functions

2. Prediction Settings
 (a) Batch: Train classifier, then evaluate on test set.
 (b) Online: Interactive train and test.
 (c) Pure Train: Train and test on the same sample set.

3. Assumption Failure
Test Set Bound

Verifier

\(\delta \)

Draw Examples

Evaluate Bound

Classifier C

Choose C

Learner
Progressive Validation Bound

Verifier

Draw Example

Evaluate Bound

Hypothesis h_1

Example

Hypothesis h_2

Example

Learner

Choose h_1

Choose h_2
Occam’s Razor Bound Protocol

Verifier

\[\delta \]

Draw Training Examples

"Prior", \(P(c) \)

Learner

Choose \(c \)

Evaluate Bound

\(m \) examples

Classifier, \(c \)
Outline

1. Prediction Domains and Loss functions

2. Prediction Settings

 (a) Correlated samples: “purify” by subsampling
 (b) Drifting distribution: Get lots of data so drift = correlation
Purification, before
Purification, after
Final Note: Classification is more adaptable than it looks