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Tutorial on Pratial Predition Theory for Classi�ationJohn Langford jl�hunh.netToyota Tehnologial Institute at Chiago1427 East 60th StreetChiago, IL 60637, USAEditor: Robert Shapire AbstratWe disuss basi predition theory and its impat on lassi�ation suess evaluation,impliations for learning algorithm design, and uses in learning algorithm exeution. Thistutorial is meant to be a omprehensive ompilation of results whih are both theoretiallyrigorous and quantitatively useful.There are two important impliations of the results presented here. The �rst is thatommon praties for reporting results in lassi�ation should hange to use the test setbound. The seond is that train set bounds an sometimes be used to diretly motivatelearning algorithms.Keywords: sample omplexity bounds, lassi�ation, quantitative bounds1. IntrodutionClassi�ers are funtions whih partition a set into two lasses (for example, the set of rainydays and the set of sunny days). Classi�ers appear to be the most simple nontrivial deisionmaking element so their study often has impliations for other learning systems. Classi�ersare su�iently omplex that many phenomena observed in mahine learning (theoretiallyor experimentally) an be observed in the lassi�ation setting. Yet, lassi�ers are simpleenough to make their analysis easy to understand. This ombination of su�ient yet minimalomplexity for apturing phenomena makes the study of lassi�ers espeially fruitful.The goal of this paper is an introdution to the theory of predition for lassi�ation.Here �predition theory� means statements about the future error rate of learned lassi�ers.A typial statement has the form, �With probability 1−δ over an i.i.d. draw of some sample,the expeted future error rate of a lassi�er is bounded by f(δ, error rate on sample)�. Thesestatements are on�dene intervals on the error rate of a learned lassi�er. Many of theseresults have been presented elsewhere, although the style, tightness, and generality of thepresentation are often new here (and partiularly oriented towards pratial use). The fousof this tutorial is on those results whih are both theoretially sound and pratially useful.There are several important aspets of learning whih the theory here asts light on.Perhaps the most important of these is the problem of performane reporting for lassi�ers.Many people use some form of empirial variane to estimate upper and lower bounds. Thisis an error-prone pratie, and the test set bound in Setion 3 implies a better method bynearly any metri. Hopefully, this will beome ommon pratie.©2005 John Langford.



LangfordAfter disussing the test set bound we over the Oam's Razor bound, the simplesttrain set bound, whih explains (and quanti�es) the ommon phenomenon of over�tting.We also prove that the Oam's Razor bound annot be improved without inorporatingextra information and apply the bound to deision trees.Next, we disuss two train set bounds, the PAC-Bayes bound and the Sample Compres-sion bound, whih have proved to give pratial results for more general lassi�ers, suhas Support Vetor Mahines and Neural Networks. All of the results here should be easilyapproahable and understandable. The proofs are simple, and examples are given. Pointersto related work are also given.There are some aveats about the sope of this doument.1. All of the results presented here fall in the realm of lassial statistis. In partiular, allrandomizations are over draws of the data, and our results have the form of on�deneintervals.2. This tutorial is not omprehensive for predition theory in general (whih would beextremely di�ult due to the sope of the subjet). We only fous on those resultsyielding quanti�ably interesting performane.3. In partiular, other nonquantitative uses of bounds (suh as providing indiret moti-vations for learning algorithms via onstant �tting) do exist. We do not fous on thoseuses here.The layout of this doument is as follows:
• Setion 2 presents the formal model.
• Setion 3 presents the test set bound.
• Setion 4 presents the Oam's Razor bound.
• Setion 5 presents the PAC-Bayes bound.
• Setion 6 presents the Sample Compression bound.The formal model and test set bound must be understood in order to appreiate all laterresults. There is no partiular dependeny between the various train set bounds we present.2. Formal ModelThere are many somewhat arbitrary hoies of learning model. The one we use an (at best)be motivated by its simpliity. Other models suh as the online learning model (Kivinenand Warmuth, 1997), PAC learning (Valiant, 1984), and the uniform onvergene model(Vapnik and Chervonenkis, 1971) di�er in formulation, generality, and in the sope of ad-dressable questions. The strongest motivation for studying the predition theory model hereis simpliity and orresponding generality of results. The appendix disusses the onnetionsbetween various models. 212



Pratial Predition Theory for Classifiation2.1 Basi quantitiesWe are onerned with a learning model in whih examples of (input, output) pairs omeindependently from some unknown distribution (similar to (Shawe-Taylor et al., 1998) andmany other papers). The goal is to �nd a funtion apable of prediting the output giventhe input. There are several mathematial objets we work with.Objet Desription
X The (arbitrary) spae of the input to a lassi�er

Y = {−1, 1} The output of a lassi�ation.
D An (unknown) distribution over X × Y

S A sequene of examples drawn independently from D.
m = |S| the number of examples
c A funtion mapping X to YThere are several distintions between this model and other (perhaps more familiar)models. There is no mention of a lassi�er spae, beause the results do not depend upona lassi�er spae. Also, the notion of a distribution on X × Y is stritly more general thanthe �target onept� model whih assumes that there exists some funtion f : X → Y usedto generate the label (Valiant, 1984). In partiular we an model noisy learning problemswhih do not have a partiular Y value for eah X value. This generalization is essentially�free� in the sense that it does not add to the omplexity of presenting the results.It is worth noting that the only unveri�able assumption we make is that examples aredrawn independently from D. The strength of all the results whih follow rests upon theorretness of this assumption.Sometimes, we deorate these objets with labels like Strain (a train set1) or Stest (atest set). These deorations should always be lear.Example 1 Weather predition: Will it rain today or not? In this ase X = barometripressure, observations of loud over or other sensory input and Y = 0 if the predition is�no rain� and 1 otherwise. The distribution D is over sensory inputs and outomes. Thesample set S, might onsist of m = 100 (observation, outome) pairs suh as (pressure low,loudy, rain), (pressure high, loudy, not rain), et. A lassi�er, c, is any funtion whihpredits �rain� or �not rain� based upon the observation.Note that the independene assumption here is not perfetly satis�ed although it seemsto be a reasonable approximation for well-separated days. In any appliation of this theory,it must be arefully judged whether the independene assumption holds or not.2.2 Derived quantitiesThere are several derived quantities whih the results are stated in terms of.1. Throughout this tutorial we use the word 'set' when 'sequene' is what is atually meant. This usagepattern is historial. 213



LangfordDe�nition 2.1 (True Error) The true error cD of a lassi�er c is de�ned as the probabilitythat the lassi�er errs:
cD ≡ Pr

(x,y)∼D
(c(x) 6= y)under draws from the distribution D.The true error is sometimes alled the �generalization error�. Unfortunately, the true error isnot an observable quantity in our model beause the distribution D is unknown. However,there is a related quantity whih is observable.De�nition 2.2 (Empirial Error) Given a sample set S, the empirial error, ĉS is theobserved number of errors:

ĉS ≡ m Pr
(x,y)∼S

(c(x) 6= y) =

m
∑

i=1

I(c(xi) 6= yi)where I() is a funtion whih maps �true� to 1 and �false� to 0. Also, Pr(x,y)∼S(...) is aprobability taken with respet to the uniform distribution over the set of examples, S.The empirial error is sometimes alled the �training error�, �test error�, or �observed error�depending on whether it is the error on a training set, test set, or a more general set.Example 2 (ontinued) The lassi�er c whih always predits �not rain� might have anempirial error of 38 out of 100 examples and an unknown true error rate (whih might infat be 0.5).2.3 Addressable questionsGiven the true error cD of a lassi�er c we an preisely desribe the distribution of suessand failure on future examples drawn aording to D. This quantity is derived from theunknown distribution D, so our e�ort is direted toward upper and lower bounding the valueof cD for a lassi�er c.The variations in all of the bounds that we present are related to the method of hoosinga lassi�er c. We over two types of bounds:1. Test: Use examples in a test set whih were not used in piking c.2. Train: Use examples for both hoosing c and evaluating c.These methods are addressed in the next two setions.It is worth noting that one question that annot be addressed in this model is �Can learn-ing our for my problem?� Extra assumptions (Valiant, 1984) (Vapnik and Chervonenkis,1971) are inherently neessary. 214



Pratial Predition Theory for Classifiation
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Figure 1: A depition of the Binomial distribution. The umulative of the Binomial is thearea under the urve up to some point on the horizontal axis.3. The Test Set MethodThe simplest bound arises for the lassial tehnique of using m fresh examples to evaluatea lassi�er. In a statistial setting, this an be viewed as omputing a on�dene intervalfor the binomial distribution as in (Clopper and Pearson, 1934). This setion is organizedinto two subsetions:
• Subsetion 3.1 presents the basi upper bound on the true error rate, handy approxi-mations, and a lower bound.
• Subsetion 3.2 disusses the impliations of the test set bound on error reportingpratie. A better method for error reporting is applied to several datasets and theresults are shown.3.1 The BoundBefore stating the bound, we note a few basi observations whih make the results less sur-prising. The prinipal observable quantity is the empirial error ĉS of a lassi�er. What isthe distribution of the empirial error for a �xed lassi�er? For eah example, our indepen-dene assumption implies the probability that the lassi�er makes an error is given by thetrue error, cD. This an be modeled by a biased oin �ip: heads if you are right and tails ifyou are wrong. 215



LangfordWhat is the probability of observing k errors (heads) out of m examples (oin �ips)?This is a very familiar distribution in statistis alled the Binomial and so it should not besurprising that the bounds presented here are fundamentally dependent upon the umulativedistribution of a Binomial. For the following de�nition B(p) is the distribution of a Bernoullioin �ip.De�nition 3.1 (Binomial Tail Distribution)Bin (m,k, cD) ≡ Pr
Z1,...Zm∼B(cD)m

(

m
∑

i=1

Zi ≤ k

)

=

k
∑

j=0

(

m

j

)

c
j
D(1 − cD)m−j= the probability that m examples (oins) with error rate (bias) cD produe k or fewer errors(heads).A depition of the Binomial distribution is given in Figure 1.For the learning problem, we always hoose a bias of cD and Zi = 1 when the lassi�erommits an error (and 0 otherwise). With these de�nitions, we an interpret the Binomialtail as the probability of an empirial error less than or equal to k.Sine we are interested in alulating a bound on the true error given a on�dene δ,and an empirial error ĉS , it is handy to de�ne the inversion of a Binomial tail.De�nition 3.2 (Binomial Tail Inversion)Bin (m,k, δ) ≡ max

p
{p : Bin (m,k, p) ≥ δ}= the largest true error suh that the probability of observing k or fewer �heads� is at least

δ.For intuition's sake, the quantity Bin (m,k, δ) obeys the following inequalities (some of whihwe prove later).1. Bin (m,k, δ) ≤ k
m +

√

ln 1
δ

2m2. Bin (m,k, δ) ≤ k
m +

√

2 k
m

ln 1
δ

m +
2 ln 1

δ

m3. Bin (m, 0, δ) ≤
ln 1

δ

mWith these de�nitions �nished, the results are all very simple statements.Theorem 3.3 (Test Set Bound) For all D, for all lassi�ers c, for all δ ∈ (0, 1]

Pr
S∼Dm

(

cD ≤ Bin (m, ĉS , δ)
)

≥ 1 − δ216



Pratial Predition Theory for Classifiation
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Figure 2: A graphial depition of the test set bound. The �rst graph depits several possibleBinomials given their true error rates. The seond depits several Binomials, eahwith a tail ut. The third �gure shows the Binomials onsistent with the tail utand observed test error. The worst ase over all true error rates is the onsistentBinomial with the largest bias.Note that m in this equation is mtest = |Stest|, the size of the test set.Proof (pitorially in 2) The proof is just a simple identi�ation with the Binomial. Forany distribution over (x, y) pairs and any lassi�er c, there exists some probability cD thatthe lassi�er predits inorretly. We an regard this event as a oin �ip with bias cD. Sineeah example is piked independently, the distribution of the empirial error is a Binomialdistribution.Whatever our true error cD is, with probability 1− δ the observation ĉS will not fall intoa tail of size δ. Assuming (orretly with probability 1− δ) that the empirial error is not inthe Binomial tail, we an onstrain (and therefore bound) the value of the true error cD.The test set bound is, essentially, perfetly tight. For any lassi�er with a su�ientlylarge true error, the bound is violated exatly a δ portion of the time.217
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Figure 3: A graph suggesting e−ǫm ≥ (1 − ǫ)m.3.1.1 ApproximationsThere are several immediate orollaries of the test set bound (3.3) whih are more onvenientwhen a omputer is not handy. The �rst orollary applies to the limited �realizable� settingwhere you happen to observe 0 test errors.Corollary 3.4 (Realizable Test Set Bound) For all D, For all lassi�ers c, for all δ ∈ (0, 1]

Pr
S∼Dm

(

ĉS = 0 ⇒ cD ≤
ln 1

δ

m

)

≥ 1 − δ.Proof Speializing the test set bound (Theorem 3.3) to the zero empirial error ase, weget: Bin (m, 0, ǫ) = (1 − ǫ)m ≤ e−ǫm.Setting this equal to δ and solving for ǫ gives us the result. The last inequality an be mostsimply motivated by omparing graphs as in �gure 3.Approximations whih hold for arbitrary (nonzero) error rates rely upon the Cherno� boundwhih we state next, for ompleteness. For this bound (and it's later appliations) weoverload the de�nition of KL-divergene so it applies to two p, q ∈ [0, 1] variables.De�nition 3.5 (KL-divergene overload) KL+ (q||p) = q log q
p + (1 − q) log 1−q

1−p for p > qand 0 otherwise. 218



Pratial Predition Theory for ClassifiationLemma 3.6 (Relative Entropy Cherno� Bound)2 For k
m < p:Bin (m,k, p) ≤ e−mKL+( k
m
||p).Proof (Originally from (Cherno�, 1952). The proof here is based on (Seung)) For all λ > 0,we have:Bin (m,k, p) = Pr

Xm∼pm

(

m
∑

i=1

Xi ≤ k

)

= Pr
Xm∼pm

(

e−mλ 1
m

Pm
i=1 Xi ≥ e−mλ k

m

)

.Using Markov's inequality (X ≥ 0, EX = µ, ⇒ Pr(X ≥ δ) ≤ µ
δ ):

≤
EXm∼pme−λ

Pm
i=1 Xi

e−λk
.Using independene, we get:

= eλk
(

pe−λ + (1 − p)
)mand rewriting, we get:

= emf(λ)where f(λ) = λ k
m + ln

(

pe−λ + 1 − p
).

λ is a free parameter whih an be optimized to �nd the tightest possible bound. To�nd the optimal value, �nd λ∗ so that f ′(λ∗) = 0.
0 = f ′(λ∗) =

k

m
−

pe−λ∗

pe−λ∗ + 1 − p

⇒
k
m

p

(

pe−λ∗
+ 1 − p

)

= e−λ∗

⇒
k
m

p
(1 − p) =

(

1 −
k

m

)

e−λ∗

⇒ eλ∗
=

p
(

1 − k
m

)

k
m(1 − p)whih is valid for p > k

m . Using this, we get:
f(λ∗) =

k

m
ln

p
(

1 − k
m

)

k
m(1 − p)

+ ln

(

1 − p

1 − k
m

)

=
k

m
ln

p
k
m

+

(

1 −
k

m

)

ln

(

1 − p

1 − k
m

)

= −KL( k

m
||p

)

.Using the Cherno� bound, we an loosen the test set bound to ahieve a more analyti form.2. The losely related Hoe�ding bound(Hoe�ding, 1963) makes the same statement for sums of [0, 1] randomvariables. 219



LangfordCorollary 3.7 (Agnosti Test Set Bound) For all D, for all lassi�ers c, for all δ ∈ (0, 1]

Pr
S∼Dm

(KL( ĉS

m
||cD

)

≤
ln 1

δ

m

)

≥ 1 − δ.Proof Loosening the test set bound (theorem 3.3) with the Cherno� approximation for
k
m < cD we get: Bin (m,k, cD) ≤ e−mKL( k

m
||cD).Setting this equal to δ, and solving for ǫ gives the result.The agnosti test set bound an be further loosened by bounding the value of KL(q||p).Corollary 3.8 (Agnosti Test Set Bound II) For all lassi�ers c, for all δ ∈ (0, 1]

Pr
S∼Dm



cD ≤
ĉS

m
+

√

ln 1
δ

2m



 ≥ 1 − δ.Proof Use the approximation:KL( k

m
||cD

)

≥ 2(cD −
k

m
)2with the Cherno� bound and Test set bounds to get the result.The di�erenes between the agnosti and realizable ase are fundamentally related to thederease in the variane of a Binomial as the bias (i.e. true error) approahes 0. Note thatthis implies using the exat Binomial tail alulation an result in funtional (rather thanmerely onstant) improvements on the above orollary.3.1.2 A Test Set Lower BoundThe true error an be lower bounded using a symmetri appliation of the same tehniques.Theorem 3.9 (Test Set Lower Bound) For all lassi�ers, c, for all δ ∈ (0, 1]

Pr
S∼Dm

(

cD ≥ min
p

{p : 1 − Bin (m, ĉS , p) ≥ δ}

)

≥ 1 − δ.The proof is ompletely symmetri. Note that both bounds hold with probability 1 − 2δsine Pr(A or B) ≤ Pr(A) + Pr(B). This is partiularly onvenient when the square-rootversion of the Cherno� approximation is used in both diretions to get:
∀c Pr

S∼Dm





∣

∣

∣

∣

cD −
ĉS

m

∣

∣

∣

∣

≤

√

ln 2
δ

2m



 ≥ 1 − δ.Example 3 (ontinued) let δ = 0.1. Using the square root Cherno� bound with ĉS =
38 out of 100 examples, we get the on�dene interval cD ∈ [0.26, 0.50]. Using an exatalulation for the Binomial tail, we get: cD ∈ [0.30, 0.47]. In general, as the observed errormoves toward 0, the exat alulation provides a tighter on�dene interval than the agnostiapproximation. 220



Pratial Predition Theory for Classifiation3.1.3 The state of the artAlthough the test set bound is very well understood, the same annot be said of othertesting methods. Only weak general results in this model are known for some variants ofross validation (Blum et al., 1999, see). For spei� learning algorithms (suh as nearestneighbor), stronger results are known (Devroye et al., 1996, see). There are a wide range ofessentially unanalyzed methods and a suessful analysis seems partiularly triky althoughvery worthwhile if ompleted.3.2 Test Set Bound ImpliationsThere are some ommon praties in mahine learning whih an be improved by appliationof the test set bound. When attempting to alulate a on�dene interval on the true errorrate given the test set, many people follow a standard statistial presription:1. Calulate the empirial mean µ̂ =
ĉStest

m = 1
m

∑m
i=1 I(h(xi) 6= yi).2. Calulate the empirial variane σ̂2 = 1

m−1

∑m
i=1(I(c(xi) = yi) − µ̂)2.3. Pretend that the distribution is Gaussian with the above variane and onstrut aon�dene interval by utting the tails of the Gaussian umulative distribution at the

2σ̂ (or some other) point.This approah is motivated by the fat that for any �xed true error rate, the distribution ofthe observed auray behaves like a Gaussian asymptotially. Here, asymptotially means�in the limit as the number of test examples goes to in�nity�.The problem with this approah is that it leads to fundamentally misleading results asshown in Figure 4. To onstrut this �gure, a olletion of disrete (aka �nominal�) featuredatasets from the UCI mahine learning database were split into training and test sets. Adeision tree lassi�er was learned on eah training set and then evaluated on the held-outtest set.This �misleading� is both pessimisti and (muh worse) optimisti. The pessimism anbe seen by intervals with boundaries less than 0 or greater than 1 and the optimism byobserving what happens when the test error is 0. When we observe perfet lassi�ation,our on�dene interval should not have size 0 for any �nite m.The basi problem with this approah is that the Binomial distribution is not similar toa Gaussian when the error rate is near 0. Sine our goal is �nding a lassi�er with a smalltrue error, it is essential that the means we use to evaluate lassi�ers work in this regime.The test set bound an satisfy this requirement (and, in fat, operates well for all true errorregimes).1. The test set bound approah is never optimisti.2. The test set bound based on�dene interval always returns an upper and lower boundin [0, 1].The 2σ̂ method is a reli of times when omputational e�ort was expensive. It is now simpleand easy to alulate a bound based upon the umulative distribution of the Binomial(Langford, see). 221
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Pratial Predition Theory for Classifiation
Verifier Learner

Test Set Bound

Evaluate Bound

Draw Examples

δ

Choose cclassifier c

Figure 5: For this diagram �inreasing time� is pointing downwards. The only requirementfor applying this bound is that the learner must ommit to a lassi�er withoutknowledge of the test examples. A similar diagram for train set bounds is pre-sented later (and is somewhat more ompliated). We an think of the bound asa tehnique by whih the �Learner� an onvine the �Veri�er� that learning hasourred (and the degree to whih it has ourred). Eah of the proofs an bethought of as a ommuniation protool for an interative proof of learning by theLearner.The test set bound an be thought of as a game where a �Learner� attempts to onvinea reasonable �Veri�er� of the amount of learning whih has ourred. Pitorially we anrepresent this as in Figure 5.4. The Oam's Razor BoundGiven that the simple test set bound works well, why do we need to engage in furtherwork? There is one serious drawbak to the test set tehnique�it requires mtest otherwiseunused examples. An extra mtest examples for the training set dereases the true error ofthe learned hypothesis to 0 from 0.5 for some natural learning algorithm/learning problempairs. This loss of performane due to holding out examples is very severe.There is another reason why training set based bounds are important. Many learningalgorithms impliitly assume that the train set auray �behaves like� the true error inhoosing the hypothesis. With an inadequate number of training examples, there may bevery little relationship between the behavior of the train set auray and the true error.223



LangfordTraining set based bounds an be used in the training algorithm and an provide insightinto the learning problem itself.This setion is organized into three subsetions.1. Subsetion 4.1 states and proves the Oam's Razor bound.2. Subsetion 4.2 proves that the Oam's Razor bound annot be improved in general.3. Subsetion 4.3 disusses impliations of the Oam's Razor bound and shows resultsfor its appliation.4.1 The Oam's Razor boundThis Oam's Razor bound (Blumer et al., 1987)(MAllester, 1999) in more approximateforms has appeared elsewhere. We use �prior� (with quotes) here beause it is an arbitraryprobability distribution over lassi�ers and not neessarily a Bayesian prior. The distintionis important, beause the theory holds regardless of whether or not a Bayesian prior is used.Theorem 4.1 (Oam's Razor Bound) For all D, for all �priors� P (c) over the lassi�ers
c, for all δ ∈ (0, 1]:

Pr
S∼Dm

(

∀c : cD ≤ Bin (m, ĉS , δP (c))
)

≥ 1 − δThe appliation of the Oam's Razor bound is somewhat more ompliated than the ap-pliation of the test set bound. Pitorially, the protool for bound appliation is given inFigure 6. It is very important to notie that the �prior� P (c) must be seleted before seeingthe training examples.Proof (pitorially in Figure 7) First, note that if P (c) = 0, then Bin (m, ĉS , 0) = 1 andthe bound is always valid. The remainder of this proof applies to the ountable set of csatisfying P (c) > 0.The proof starts with the test set bound:
∀c Pr

S∼Dm

(

cD ≤ Bin (m, ĉS , δP (c))
)

≥ 1 − δP (c)Negating this statement, we get:
∀c Pr

S∼Dm

(

cD > Bin (m, ĉS , δP (c))
)

< δP (c)then, we apply the union bound in a nonuniform manner. The union bound says that
Pr(A or B) ≤ Pr(A) + Pr(B). Applying the union bound to every lassi�er with a positivemeasure gives a total probability of failure of

∑

c:P (c)>0

δP (c) = δ
∑

c:P (c)>0

P (c) = δwhih implies
Pr

S∼Dm

(

∃c : cD > Bin (m, ĉS , δP (c))
)

< δ.Negating this again ompletes the proof. 224
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Figure 6: In order to apply the Oam's Razor bound it is neessary that the hoie of �prior�be made before seeing any training examples. Then, the bound is alulated basedupon the hosen lassi�er. Note that it is �legal� to hose the lassi�er based uponthe prior P (c) as well as the empirial error ĉS .
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Figure 7: The sequene of pitures is the pitorial representation of the proof of the Oam'sRazor Bound. The �rst �gure shows a set of lassi�ers, eah with a tail ut ofsome varying depth. The seond piture shows an observed training error and thepossible Binomial distributions for a hosen lassi�er. The third piture showsthe true errors whih are onsistent with the observation and the tail uts. Thefourth piture shows the true error bound.
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Pratial Predition Theory for Classifiation4.1.1 Oam's Razor CorollariesJust as with the test set bound, we an relax the Oam's Razor bound (Theorem 4.1) withthe Cherno� approximations to get a somewhat more tratable expression.Corollary 4.2 (Cherno� Oam's Razor Bound) For all D, for all �priors� P (c) over las-si�ers, for all δ ∈ (0, 1]:
Pr

S∼Dm



∀c : cD ≤
ĉS

m
+

√

ln 1
P (c) + ln 1

δ

2m



 ≥ 1 − δProof Approximate the Binomial tail with the Cherno� Bound (lemma 3.6).Many people are more familiar with a degenerate form of this bound where P (c) = 1
|H|and H is some set of lassi�ers. In that ase, simply replae ln 1

P (c) with ln |H|. The formpresented here is both more general and neessary if the bound is to be used in pratie.Other orollaries as in Setion 3.1.1 exist for the Oam's Razor bound. In general, justsubstitute δ → δP (c).4.1.2 Oam's Razor Lower boundJust as for the test set bound, a lower bound of the same form applies.Theorem 4.3 (Oam's Razor Lower Bound) For all D, for all �priors� P (c) over thelassi�ers, c, for all δ ∈ (0, 1]:
Pr

S∼Dm

(

∀c : cD ≥ min
p

{p : 1 − Bin (m, ĉS , p) ≥ δP (c)}

)

≥ 1 − δ.Example 4 (ontinued) Suppose that instead of having 100 test examples, we had 100 trainexamples. Also suppose that before seeing the train examples, we ommitted to P (c) = 0.1for c the onstant lassi�er whih predits �no rain�. Then, the Cherno� approximations ofthe upper and lower bound give the interval, cD ∈ [0.22, 0.54]. With an exat alulation, weget cD ∈ [0.26, 0.51].4.1.3 The state of the artA very large amount of work has been done on train set bounds. In addition to thoseinluded here, there are:1. Reinterpretations of uniform onvergene (Vapnik and Chervonenkis, 1971) results forontinuously parameterized lassi�ers.2. Reinterpretations of PAC onvergene (Valiant, 1984) results.3. Shell bounds (Langford and MAllester, 2000) whih take advantage of the distributionof true error rates on lassi�ers.4. Train and Test bounds (Langford, 2002) whih ombine train set and test set bounds.227



Langford5. (Loal) Rademaher omplexity (Bartlett et al., 2004) results whih take advantage ofthe error geometry of nearby lassi�ers.... and many other results.Of this large amount of work only a small fration has been shown to be useful on real-world learning algorithm/learning problem pairs. The looseness of train set based boundsoften preludes analytial use.4.2 The Oam's Razor Bound is Sometimes TightThe question of tightness for train set bounds is important to address, as many of themhave been extremely loose. The simplest method to address this tightness is onstrutive:exhibit a learning problem/algorithm pair for whih the bound is almost ahieved. For thetest set bound, this is trivial as any lassi�er with a large enough true error will ahieve thebound. For the train set bound, this is not so trivial.How tight is the Oam's Razor bound (4.1)? The answer is sometimes tight. In par-tiular, we an exhibit a set of learning problems where the Oam's Razor bound an notbe made signi�antly tighter as a funtion of the observables, m, δ, P (c), and ĉS . After�xing the value of these quantities we onstrut a learning problem exhibiting this nearequivalene to the Oam's Razor bound.Theorem 4.4 (Oam's Razor tightness) For all P (c), m, k, δ there exists a learning prob-lem D and algorithm suh that:
Pr

S∼Dm

(

∃c : ĉS ≤ k and cD ≥ Bin (m, ĉS , δP (c))
)

≥ δ − δ2.Furthermore, if c∗ is the lassi�er with minimal training error, then:
Pr

S∼Dm

(

c∗D ≥ Bin (m, ĉ∗S , δP (c))
)

≥ δ − δ2.Intuitively, this theorem implies that we an not improve signi�antly on the Oam's Razorbound (Theorem 4.1) without using extra information about our learning problem.Proof The proof is onstrutive: we reate a learning problem on whih large deviationsare likely. We start with a prior P (c), probability of error δ, m, and a targeted empirialerror number, k. For suintness we assume that P (c) has support on a �nite set of size n.To de�ne the learning problem, let: X = {0, 1}n and Y = {0, 1}.The distribution D an be drawn by �rst seleting Y with a single unbiased oin �ip,and then hoosing the ith omponent of the vetor X independently, Pr((X1, ...,Xn)|Y ) =
Πn

i=1 Pr(Xi|Y ) . The individual omponents are hosen so Pr(Xi = Y |Y ) = Bin (m,k, δP (c)).The lassi�ers we onsider just use one feature to make their lassi�ation: ci(x) = xi.The true error of these lassi�ers is given by: cD = Bin (m,k, δP (c)).This partiular hoie of true errors implies that if any lassi�er has a too-small trainerror, then the lassi�er with minimal train error must have a too-small train error.Using this learning problem, we know that:
∀c,∀δ ∈ (0, 1] : Pr

S∼Dm

(

cD ≥ Bin (m, ĉS , δP (c))
)

= δP (c)228



Pratial Predition Theory for Classifiation(negation)
⇒ ∀c,∀δ ∈ (0, 1] : Pr

S∼Dm

(

cD < Bin (m, ĉS , δP (c))
)

= 1 − δP (c)(independene)
⇒ ∀δ ∈ (0, 1] : Pr

S∼Dm

(

∀c cD < Bin (m, ĉS , δP (c))
)

<
∏

c

(1 − δP (c))(negation)
⇒ ∀δ ∈ (0, 1] : Pr

S∼Dm

(

∃c cD ≥ Bin (m, ĉS , δP (c))
)

≥ 1 −
∏

c

(1 − δP (c))

=

n
∑

i=1

δP (ci)
∏

j<i

(1 − δP (cj)) ≥

n
∑

i=1

δP (ci)(1 − δ) = δ − δ2where the last inequality follows from (1 − a)(1 − b) ≥ 1 − a − b for a, b ∈ [0, 1].The lower bound theorem implies that we an not improve an Oam's Razor like statement.However, it is important to note that large improvements are possible if we use other souresof information. To see this, just note the ase where every single lassi�er happens to bethe same. In this ase the �right� bound would the be the test set bound, rather thanthe Oam's Razor bound. The PAC-Bayes bound and the Sample Compression boundpresented in the next setions use other soures of information. Another ommon soure ofinformation is speialization to lassi�ers of some spei� sort.4.3 Oam's Razor Bound ImpliationsThe Oam's Razor bound is strongly related to ompression. In partiular, for any self-terminating desription language, d(c), we an assoiate a �prior� P (c) = 2−|d(c)| with theproperty that∑c P (c) ≤ 1. Consequently, short desription length lassi�ers tend to have atighter onvergene and the penalty term, ln 1
P (c) is the number of �nats� (bits base e). Forany language �xed before seeing the training sequene, lassi�ers with shorter desriptionlengths have tighter bounds on the true error rate.One partiularly useful desription language to onsider is the exeution trae of a learn-ing algorithm. If we arefully note the sequene of data-dependent hoies whih a learningalgorithm makes, then the output lassi�er an be spei�ed by a sequene suh as �2ndhoie, third hoie, �rst hoie, et...� This is the idea behind mirohoie bounds (Lang-ford and Blum, 1999). Results for this approah are reported in Figure 8 and are strongenough to at as an empirial existene proof that Oam's Razor bounds an be made tightenough for useful appliation.5. PAC-Bayes BoundThe PAC-Bayes bound (MAllester, 1999) is partiularly exiting beause it an providequantitatively useful results for lassi�ers with real valued parameters. This inludes suh229
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Figure 9: The �interative proof of learning� assoiated with the PAC-Bayes bound. The�gure is the same as for the Oam's razor bound, exept that instead of ommit-ting to a single lassi�er, the PAC-Bayes bound applies to any distribution overlassi�ers.ommonly used lassi�ers as Support Vetor Mahines and Neural Networks.3 This setionis divided into three parts:1. Subsetion 5.1 states and proves the PAC-Bayes Bound.2. Subsetion 5.2 shows that the PAC-Bayes Bound is nearly as tight as possible giventhe observations.3. Subsetion 5.3 disusses results from the appliation of the PAC-Bayes bound to sup-port vetor mahines.5.1 The PAC-Bayes BoundThe PAC-Bayes bound has been improved by tightening (Langford and Seeger, 2001) andthen with a muh simpler proof (Seeger, 2002) sine it was originally stated. The statementand proof presented here inorporate these improvements and improve on them slightly.The PAC-Bayes bound is dependent upon two derived quantities, an average true error:
QD ≡ Ec∼QcDand an average train error rate:
Q̂S ≡ Ec∼Q

ĉS

m
.3. There is a aveat here�the bound only applies to stohasti versions of the lassi�ers. However, theprobability that the stohasti lassi�er di�ers from the lassi�er an be made very small.231



LangfordThese quantities an be interpreted as the train error rate and true error of the meta-lassi�erwhih hooses a lassi�er aording to Q every time a lassi�ation is made. If we refer tothis meta-lassi�er as Q, the notation for error rates is onsistent with our earlier notation.The �interative proof of learning� viewpoint of the PAC-Bayes bound is shown in Figure9. It is essentially the same as for the Oam's Razor bound exept for the ommitment tothe metalassi�er Q rather than the lassi�er c.Theorem 5.1 (PAC-Bayes Bound) For all D, for all �priors� P (c) over the lassi�ers c,for all δ ∈ (0, 1]:
Pr

S∼Dm

(

∀Q(c) : KL+

(

Q̂S||QD

)

≤
KL(Q||P ) + ln m+1

δ

m

)

≥ 1 − δwhere KL(Q||P ) = Ec∼Q ln Q(c)
P (c) is the KL-divergene between Q and P .Note that the PAC-Bayes bound applies to any distribution over lassi�ers. When Q isonentrated on one lassi�er, we have KL(Q||P ) = ln 1

P (c) , just as in the Oam's razorbound,4 with the only distintion being the additive ln(m+1)
m term. It is somewhat surprisingthat the bound holds for every distribution Q with only the slight worsening by ln(m+1)

m .Sine the KL-divergene applies to distributions over ontinuous valued parameters, thePAC-Bayes bound an be nontrivially tight in this setting as well. This fat is used in theappliation setion.We �rst state a ouple simple lemmas that are handy in the proof. The intuition behindthis lemma is that the expeted probability of an event is not too small.Lemma 5.2 For all D, for all P (c), for all δ ∈ (0, 1]:
Pr

S∼Dm

(

Ec∼P
1

PrS′∼Dm (ĉS = ĉS′)
≤

m + 1

δ

)

≥ 1 − δ.Proof Note that:
∀c ES∼Dm

1

PrS′∼Dm (ĉS = ĉS′)
=
∑

k
m

Pr
S∼Dm

(ĉS = k)
1

PrS′∼Dm (ĉS′ = k)
= m + 1.Taking the expetation over lassi�ers aording to P and swithing the order of expetation,we get:

ES∼DmEc∼P
1

PrS′∼Dm (ĉS = ĉS′)
= m + 1and using the Markov inequality (X ≥ 0, EX = µ, ⇒ Pr(X > µ

δ ) < δ), we get:
∀P Pr

S∼Dm

(

Ec∼P
1

PrS′∼Dm (ĉS = ĉS′)
>

m + 1

δ

)

< δ.The next lemma shows that a ertain expetation is bounded by the Kullbak-Leibler dis-tane between two oin �ips, just as for the relative entropy Cherno� bound (Lemma 3.6).4. As weakened with the relative entropy Cherno� bound (Lemma 3.6) on the Binomial.232



Pratial Predition Theory for ClassifiationLemma 5.3 Fix all example sequenes S. For all Q(c):
Ec∼Q ln 1

PrS′∼Dm(ĉS=ĉs′)

m
≥ KL(Q̂S ||QD).Proof

Ec∼Q ln 1
PrS′∼Dm(ĉS=ĉs′)

m
=

1

m
Ec∼Q ln

1
(

m

ĉS

)

c
ĉS

D (1 − cD)m−ĉS

≥
1

m
Ec∼Q ln

1

∑ĉS

k=0

(

m

k

)

ck
D(1 − cD)m−k

≥ Ec∼QKL( ĉS

m
||cD

)where the last inequality follows from the relative entropy Cherno� bound. Sine ∂2

∂p∂qKL(q||p) =

−1
p−

1
1−p < 0 the funtion is onave in both arguments. Jensen's inequality (f(x, y) onave

⇒ Ef(x, y) ≥ f(Ex,Ey)) gives us:
≥ KL(Ec∼QĉS ||Ec∼QcD)whih ompletes the proof.With these two lemmas, the PAC-Bayes theorem is easy to prove.Proof (Of the PAC-Bayes theorem) Fix a training set S. Let

PG(c) =
1

PrS′∼Dm (ĉS′ = ĉS)Ed∼P
1

PrS′∼Dm(d̂S=d̂S′)

P (c).

PG(c) is a normalized distribution beause it has the form ac

Eac
P (c) where P (c) is a distri-bution.

⇒ 0 ≤ KL(Q||PG) = Ec∼Q ln





Q(c)

P (c)
Pr

S′∼Dm
(ĉS′ = ĉS) Ed∼P

1

PrS′∼Dm

(

d̂S = d̂S′

)





= KL(Q||P ) − Ec∼Q ln
1

PrS′∼Dm (ĉS′ = ĉS)
+ ln Ed∼P

1

PrS′∼Dm

(

d̂S = d̂S′

)

⇒ Ec∼Q ln
1

PrS′∼Dm (ĉS′ = ĉS)
≤ KL(Q||P ) + ln Ed∼P

1

PrS′∼Dm

(

d̂S = d̂S′

) .Applying lemma 5.3 on the left hand term we get:
mKL(Q̂S ||QD) ≤ KL(Q||P ) + ln Ed∼P

1

PrS′∼Dm

(

d̂S = d̂S′

) .This holds for all S. Applying Lemma 5.2 whih randomizes over S, we get the theorem.233



Langford5.2 The PAC-Bayes Bound is sometimes TightSine the PAC-Bayes bound is (almost) a generalization of the Oam's Razor bound, thetightness result for Oam's Razor also applies to PAC-Bayes bounds.5.3 Appliation of the PAC-Bayes BoundApplying the PAC-Bayes bound requires speialization (Langford and Shawe-Taylor, 2002).Here, we speialize to lassi�ers of the form:
c(x) = sign (~w · ~x) .Note that via the kernel trik, Support Vetor Mahines also have this form.The speialization is naturally expressed in terms of a few derived quantities:1. The umulative distribution of a Gaussian. Let F̄ (x) =

∫∞
x

1√
2π

e−x2/2. Here we use
F̄ rather than F to denote the fat that we integrate from x to ∞ rather than −∞ to
x.2. A �posterior� distribution Q(~w, µ) whih is N(µ, 1) for some µ > 0 in the diretion of
~w and N(0, 1) in all perpendiular diretions.3. The normalized margin of the examples

γ(~x, y) =
y ~w · ~x

||~w||||~x||
.4. A stohasti error rate, Q̂(~w, µ)S = E~x,y∼SF̄ (µγ(~x, y)) .This last quantity in partiular is very important to understand. Consider the ase as

µ approahes ∞. When the margin is negative (indiating an inorret lassi�ation),
F̄ (µγ(~x, y)) approahes 1. When the margin is positive F̄ (µγ(~x, y)) approahes 0. Thus,
Q̂(~w, µ)S is a softened form of the empirial error ĉS whih takes into aount the margin.Corollary 5.4 (PAC-Bayes Margin Bound) For all distributions D, for all δ ∈ (0, 1], wehave:

Pr
S∼Dm

(

∀~w, µ : KL(Q̂(~w, µ)S ||Q(~w, µ)D

)

≤
µ2

2 + ln m+1
δ

m

)

≥ 1 − δ.Proof The proof is very simple. We just hose the prior P = N(0, 1)n and work out theimpliations.Sine the Gaussian distribution is the same in every diretion, we an reorient the o-ordinate system of the prior to have one dimension parallel to w. Sine the draws in theparallel and perpendiular diretions are independent, we have:KL(Q||P ) = KL(Q⊥||P⊥) +KL(N(µ, 1)||N(0, 1))

=
µ2

2234



Pratial Predition Theory for Classifiationas required.All that remains is alulating the stohasti error rate Q̂(~w, µ)S . Fix a partiularexample (~x, y). This example has a natural deomposition ~x = ~x|| + ~x⊥ into a omponent
~x|| parallel to the weight vetor ~w and a omponent ~x⊥ perpendiular to the weight vetor.To lassify, we draw weight vetor ~w

′ from Q̂(~w, µ). This ~w
′ onsists of three omponents,

~w
′
= ~w

′

|| + ~w
′

⊥ + ~w
′

⊥⊥. Here ~w
′

|| ∼ N(µ, 1) is parallel to the original weight vetor, ~w
′

⊥ ∼

N(0, 1) whih is parallel to ~x⊥ and ~w
′

⊥⊥ is perpendiular to both ~w and ~x. We have:
Q̂(~w, µ)S = E~x,y∼S,~w′∼Q(~w,µ)I

(

y 6= sign(~w
′
· ~x
))

= E~x,y∼S,~w′∼Q(~w,µ)I (y ~w · ~x ≤ 0) .If we let w
′

|| = ||~w
′

||||, w
′

⊥ = ||~w
′

⊥||, x|| = ||~x||||, and x⊥ = ||~x⊥||, and assume (without loss ofgenerality) that y = 1 we get:
= E~x,y∼S,w

′

||
∼N(µ,1),w

′
⊥∼N(0,1)I

(

y(w
′

||x|| + w
′

⊥x⊥) ≤ 0
)

= E~x,y∼SE
w

′

||
∼N(µ,1)

E
w

′
⊥∼N(0,1)

I
(

y(w
′

||x|| + w
′

⊥x⊥) ≤ 0
)

= E~x,y∼SEz′∼N(0,1)Ew
′
⊥∼N(0,1)

I

(

yµ ≤ −yz
′
− yw

′

⊥
x⊥
x||

)

.Using the symmetry of the Gaussian, this is:
= E~x,y∼SEz′∼N(0,1)Ew

′
⊥∼N(0,1)I

(

yµ ≤ yz
′
+ yw

′

⊥
x⊥
x||

)Using the fat that the sum of two Gaussians is a Gaussian:
= E~x,y∼SE

v∼N

 

0,1+
x2
⊥

x2
||

!I (yµ ≤ yv)

= E~x,y∼SE
v∼N

“

0, 1
γ(~x,y)2

”I (yµ ≤ yv)

= E~x,y∼SF̄ (µγ(~x, y))�nishing the proof.Using the orollary, the true error bound Q̄(~w, µ)D satis�es the equation:KL(Q̂(~w, µ)S ||Q̄(~w, µ)D

)

=
µ2

2 + ln m+1
δ

m
.This is an impliit equation for Q̄ whih an be easily solved numerially.The bound is stated in terms of dot produts here, so naturally it is possible to kernelizethe result using methods from (Herbrih and Graepel, 2001). In kernelized form, the boundapplies to lassi�ers (as output by SVM learning algorithms) of the form:

c(x) = sign( m
∑

i=1

αik(xi, x)

)

. (1)235



LangfordSine, by assumption, k is a kernel, we know that k(xi, x) = ~Φ(xi) · ~Φ(x) where ~Φ(x)is some projetion into another spae. In kernelized form, we get ~w · ~x =
∑m

i=1 αik(xi, x),
~x ·~x = k(x, x), ~w · ~w =

∑

i,j αiαjk(xi, xj), de�ning all of the neessary quantities to alulatethe normalized margin,
γ(x, y) =

∑m
i=1 αik(xi, x)

√

k(x, x)
∑m,m

i,j=1,1 αiαjk(xi, xj)
.One element remains, whih is the value of µ. Unfortunately the bound an be non-monotoni in the value of µ, but it turns out that for lassi�ers learned by support vetormahines on reasonable datasets, there is only one value of µ whih is (loally, and thusglobally) minimal. A binary searh over some reasonable range of µ (say from 1 to 100) an�nd the minima quikly, given the preomputation of the margins. It is worth noting againhere that we are not �heating��the bound holds for all values of µ simultaneously.The omputational time of the bound alulation is dominated by the alulation ofthe margins whih is O

(

m2
) where m is the number of support vetors with a nonzeroassoiated α. This omputational time is typially dominated by the time of the SVMlearning algorithm.5.3.1 ResultsAppliation of this bound to support vetor mahines is of signi�ant importane beauseSVMs are reasonably e�etive and adaptable lassi�ers in ommon and widespread use. AnSVM learns a kernelized lassi�er as per equation (1)5.We apply the support vetor mahine to 8 UCI database problems hosen to �t theriteria �two lasses� and �real valued input features�. The problems vary in size over anorder of magnitude from 145 to 1428 examples. In Figure 10 we use a 70/30 train/test splitof the data.In all experiments, we use SVMlight (Joahims) with a Gaussian kernel and the defaultbandwidth. Results for other reasonable hoies of the �C�, bandwidth6, and kernel appearto be qualitatively similar (although of ourse they di�er quantitatively).It is important to note that the PAC-Bayes margin bound is not preisely a bound (oron�dene interval) on the true error rate of the learned lassi�er. Instead, it is a trueerror rate bound on an assoiated stohasti lassi�er hosen so as to have a similar testerror rate. These bounds an be regarded as bounds for the original lassi�er only underan additional assumption: that piking a lassi�er aording to the majority vote of thisstohasti distribution does not worsen the true error rate. This is not true in general, butmay be true in pratie.It is of ourse unfair to ompare the train set bound with the test set bound on a 70/30train/test split beause a very tight train set bound would imply that it is unneessary toeven have a test set. In Figure 11 we ompare the true error bounds on all of the data tothe true error bounds generated from the 70/30 train/test split.5. Some SVM learning algorithms atually learn a lassi�er of the form: c(x) = sign `

b +
Pm

i=1 αik(xi, x)
´.We don't handle this form here.6. Note that the bandwidth of a Gaussian kernel used by an SVM is not diretly related to the optimizedvalue of µ we �nd. 236
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Figure 10: This �gure shows the results of applying SVMlight to 8 datasets with a Gaussiankernel and a 70/30 train/test split. The observed test error rate is graphed asan X. On the test set, we alulate a Binomial on�dene interval (probability ofbound failure = 0.01) whih upper bounds the true error rate. On the trainingset we alulate the PAC-Bayes margin bound for an optimized hoie of µ.
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Figure 11: In addition to omparing with everything in Figure 10, we graph the marginbound when all of the data is used for the train set. Note that it improvessomewhat on the margin bound alulated using the 70% train set (7/10 marginbound), but not enough to ompete with the test set bound.
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Pratial Predition Theory for ClassifiationThe results show that the PAC-Bayes margin bound is tight enough to give useful infor-mation, but still not ompetitive with the test set bounds. This is in strong ontrast with atradition of quantitatively impratial margin bounds. There are several uses available forbounds whih provide some information but whih are not fully tight.1. They might be ombined with a train/test bound (Langford, 2002).2. The train set bound might easily beome tighter for smaller sample sizes. This wasobserved in (Langford, 2002).3. The train set bound might still have the right �shape� for hoosing an optimal param-eter setting, suh as �C� in a Support Vetor Mahine.6. Sample Compression BoundThe sample ompression bound (Littlestone and Warmuth), (Floyd and Warmuth, 1995)is like the PAC-Bayes bound in that it applies to arbitrary preision ontinuous valuedlassi�ers. Unlike the PAC-Bayes bound, it applies meaningfully to nonstohasti lassi-�ers. Mainstream learning algorithms do not optimize the sample ompression metri, sothe bound appliation is somewhat rarer. Nonetheless, there do exist some reasonably om-petitive learning algorithms for whih the sample ompression bound produes signi�antresults.The setion is organized as follows:1. Subsetion 6.1 states and proves the sample ompression bound.2. Subsetion 6.2 shows that the sample ompression bound is nearly as tight as possiblegiven the observations.3. Subsetion 6.3 disusses results from the appliation of the sample ompression boundto support vetor mahines.6.1 The Sample Compression BoundThe Sample Compression bound (Littlestone and Warmuth) (Floyd and Warmuth, 1995)stated here di�ers from older results by generalization and simpli�ation but the boundbehavior is qualitatively idential.Suppose we have a learning algorithm A(S) whose training is �sparse�7 in the sense thatthe output lassi�er is dependent upon only a subset of the data, A(S) = A(S′) for S′ ⊆ S.The sample ompression bound is dependent on the errors, ĉS−S′ on the subset S −S′. Themotivation here is that the examples whih the learning algorithm does not depend uponare �almost� independent and so we an �almost� get a test set bound. In general, the boundbeomes tighter as the dependent subset S′ beomes smaller and as the error number on thenondependent subset S − S′ beomes smaller.7. This is satis�ed, for example, by the Support Vetor Mahine algorithm whih only depends upon theset of support vetors. 239
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Figure 12: The interative proof of learning for the sample ompression bound. Note thatthe learning algorithm is arbitrary here, similar to the test set bound.Viewed as an interative proof of learning (in Figure 12), the sample ompression boundis unique amongst training set bounds beause it does not require any initial ommitmentto a measure over the lassi�ers8.Theorem 6.1 (Sample Compression Bound) For all δ ∈ (0, 1], D, A:
Pr

S∼Dm

(

∀S′ ⊆ S with c = A(S′) : cD ≤ Bin(|S − S′|, ĉS−S′ ,
δ

m
( m
|S−S′|

)

))

≥ 1 − δ.Proof Suppose we knew in advane that the learning algorithm will not depend upon somesubset of the examples. Then, the �undependent� subset ats like a test set and gives us atest set bound:
∀S′ ⊆ S, c = A(S′) : Pr

S∼Dm

(

cD ≤ Bin(|S − S′|, ĉS−S′ ,
δ

m
( m
|S−S′|

)

))

≥ 1 −
δ

m
( m
|S−S′|

) .(Note that, tehnially, it is possible to refer to S′ unambiguously before randomizing over
S by speifying the indexes of S ontained in S′.) Negating this, we get:

∀S′ ⊆ S, c = A(S′) : Pr
S∼Dm

(

cD > Bin(|S − S′|, ĉS−S′ ,
δ

m
( m
|S−S′|

)

))

<
δ

m
( m
|S−S′|

)8. However, we an regard the ommitment to a learning algorithm as an impliit ommitment to a measureover lassi�ers whih is dependent on the learning algorithm and the distribution generating the data.Viewed from this perspetive, the sample ompression bound is the Oam's Razor bound, exept forthe minor detail that the set of evaluating examples varies.240



Pratial Predition Theory for Classifiationand using the union bound (Pr(A or B) ≤ Pr(A)+ Pr(B)) over eah possible subset, S′, weget:
Pr

S∼Dm

(

∃S′ ⊆ S with c = A(S′) : cD > Bin(|S − S′|, ĉS−S′ ,
δ

m
(

m
|S−S′|

)

))

< δ.Negating this again gives us the proof.6.2 The Sample Compression Bound is Sometimes TightWe an onstrut a learning algorithm/learning problem pair suh that the Sample om-pression bound is provably near optimal, as a funtion of its observables.Theorem 6.2 (Sample Compression Tightness) For all δ ∈ (0, 1], m, k, there exists adistribution D and learning algorithm A s.t.
Pr

S∼Dm

(

∃S′ ⊆ S with c = A(S′) : cD > Bin(|S − S′|, ĉS−S′ ,
δ

m
( m
|S−S′|

)

))

> δ − δ2.furthermore, if S∗ minimizes Bin(|S − S′|, ĉS−S′ , δ
m( m

|S−S′|)

), then
Pr

S∼Dm

(

c∗ = A(S∗) : c∗D > Bin(|S − S∗|, ĉ∗S−S∗ ,
δ

m
(

m
|S−S∗|

)

))

> δ − δ2.Proof The proof is onstrutive and similar to the Oam's Razor tightness result. Inpartiular, we show how to onstrut a learning algorithm whih outputs lassi�ers that errindependently depending on the subset S′ used.Consider an input spae X = {0, 1}2m . Eah variable in the input spae xS′ an bethought of as indexing a unique subset S′ ⊆ S of the examples. In the rest of the proof, weindex variables by the subset they orrespond to.Draws from the distribution D an be made by �rst �ipping an unbiased oin to get
y = 1 with probability 0.5 and y = −1 with probability 0.5. The distribution on X onsistsof a set of independent values after onditioning on y. Choose

Pr(xS′ 6= y) = Bin(m,k,
δ

m
( m
|S−S′|

)

)

.Now, the learning algorithm A(S′) is very simple�it just outputs the lassi�er c(x) = xS′ .On the set S − S′, we have:
∀S′ Pr

S∼Dm

(

ĉS−S′ ≥
k

m

)

= 1 −
δ

m
( m
|S−S′|

) .Using independene, we get:
Pr

S∼Dm

(

∀S′ ĉS−S′ ≥
k

m

)

=
∏

S′

(

1 −
δ

m
( m
|S−S′|

)

)
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Figure 13: The sample ompression bound applied to the output of a support vetor mahinewith a Gaussian kernel. Here we use δ = 0.01Negating, we get:
Pr

S∼Dm

(

∀S′ ĉS−S′ <
k

m

)

= 1 −
∏

S′

(

1 −
δ

m
( m
|S−S′|

)

)and doing some algebra, we get the result.6.3 Appliation of the Sample Compression BoundOne obvious appliation of the Sample Compression bound is to support vetor mahines,sine the learned lassi�er is only dependent on the set of support vetors. If S′ is the setof support vetors then S − S′ is the set of nonsupport vetors. Unfortunately, it turns outthat this does not work so well, as observed in Figure 13.There are other less ommon learning algorithms for whih the sample ompressionbound works well. The Set Covering mahine (Marhand and Shawe-Taylor, 2001) has anassoiated bound whih is a variant of the Sample Compression Bound.7. DisussionHere, we disuss several aspets and impliations of the presented bounds.242



Pratial Predition Theory for Classifiation7.1 Learning algorithm designEvery train set bound implies a learning algorithm: hoose the lassi�er whih minimizesthe true error bound. This sounds like a rih soure of learning algorithms, but there aresome severe aveats to that statement.1. It is important to note that the form of a train set bound does not imply that thisminimization is a good idea. Choosing between two lassi�ers based upon their trueerror bound implies a better worst-ase bound on the true error. It does not implyan improved true error. In many situations, there is some other metri of omparison(suh as train error) whih in fat reates better behavior.2. Another strong aveat is that, historially, train set bounds have simply not beentight enough on real datasets for a nonvauous appliation. This is hanging with newresults, but more progress is neessary.3. Often the optimization problem is simply not very tratable. In addition to sampleomplexity, learning algorithms must be onerned with run time and spae usage.7.2 PhilosophyTrain set bounds teah us about ways in whih veri�able learning is possible, a subjetwhih borders on philosophy. The train set bound presented here essentially shows that areasonable person will be onvined of learning suess when a short-desription lassi�erdoes well on train set data. The results here do not imply that this is the only way toonviningly learn. In fat, the (sometimes large) looseness of the Oam's Razor boundsuggests that other methods for onvining learning proesses exist. This observation ispartially shown by the other train set bounds whih are presented.7.3 ConlusionThis introdution to predition theory overed two styles of bound: the test set bound andthe train set bound. There are two important lessons here:1. Test set bounds provide a better way to report error rates and on�dene intervals onfuture error rates than some urrent methods.2. Train set bounds an provide useful information.It is important to note that the train set bound and test set bound tehniques are notmutually exlusive. It is possible to use both simultaneously (Langford, 2002), and doing sois often desirable. Test set bounds are improved by the �free� information about the trainingerror and train set bounds beome appliable, even when not always tight.AknowledgmentsMany people were ritial to this tutorial. This inludes Sam Roweis who started this,anonymous reviewers who were patient and apable, several oauthors on previous papers,243
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