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ABSTRACT
We propose and test an objective criterion for evaluation
of clustering performance: How well does a clustering algo-
rithm run on unlabeled data aid a classification algorithm?
The accuracy is quantified using the PAC-MDL bound [3] in
a semisupervised setting. Clustering algorithms which nat-
urally separate the data according to (hidden) labels with a
small number of clusters perform well. A simple extension of
the argument leads to an objective model selection method.
Experimental results on text analysis datasets demonstrate
that this approach empirically results in very competitive
bounds on test set performance on natural datasets.

Categories and Subject Descriptors: I.5.3 [Pattern Recog-
nition]: Clustering

Keywords: Clustering, Evaluation, PAC bounds, MDL

1. MOTIVATION
Clustering is perhaps the most widely used exploratory

data analysis tool using in data mining. There are many
clustering algorithms that have been proposed in the liter-
ature based on various requirements. Each one optimizes
some unsupervised internal quality measure such as min-
imizing the intra-cluster distances, maximizing the inter-
cluster distances, maximizing the log-likelihood of a para-
metric mixture model, minimizing the cut-value of a pair-
wise similarity graph, etc. The differences between these
internal quality measures make it practically impossible to
objectively compare clustering algorithms. Due to the lack
of an objective measure, choosing the “right” algorithm for
a particular task is confusing.

We propose a method which eliminates some of these con-
fusions in some settings. Clustering is often used as an in-
termediate exploratory data analysis step for a prediction
problem. Hence, the answer to what is a good clustering

algorithm for my problem? often depends on how much pre-
diction power the clustering step provides, or, more directly,
what is the predictive accuracy of a clustering algorithm? In
other words, since clustering is often used as a method for
gaining insight into a dataset, our method here evaluates
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the degree to which clustering aids the understanding of a
dataset for the purpose of classification. On natural semi-
supervised learning datasets, if the clustering “agrees well”
with a set of hidden labels using a small number of clusters,
we say that the clustering algorithm is good for prediction.
The precise definition of “agrees well” is mediated by the
PAC-MDL bound [3] on the accuracy of a test set. Our
proposed criterion has several natural properties:

1. It applies to every clustering algorithm.

2. It is inherently normalized to the interval [0, 1].

3. All possible values are exercised on natural datasets.

4. The metric can flexibly incorporate prior information by
proper design of a description language.

5. It can be used for model selection.

6. It is directly related to a concrete goal (good prediction).

It is important to note that this is not the only possible
objective criterion for evaluation of clustering algorithms.
Clustering algorithms may be used for other purposes, and
when so used, other measures may be more appropriate.
Our results here are only directly applicable when the goal
in clustering is related to prediction.

The rest of the paper is organized as follows. First, we
explain the PAC-MDL bound [3] in section 2. In section 3,
we discuss how the PAC-MDL bound can be applied to a
clustering setting for performance evaluation and model se-
lection. We present experimental results on benchmark text
datasets in section 4 to demonstrate the proposed approach.
Related work is presented in section 5. We end with a dis-
cussion on the proposed criterion in section 6.

2. THE PAC-MDL BOUND
The PAC-MDL bound is the core mechanism used to trade

off between a sufficiently rich representation to capture the
data and over-fitting on the data. Clustering algorithms
with a small bound must have a small number of clusters
which agree well with a set of (hidden) labels.

Consider the following learning setting: Let D be any
distribution over (X, Y ) where X denotes the input and Y

denotes the label. We assume Y can take one of ` > 1
possible values, i.e., Y ∈ {1, · · · , `}. Consider a train set
S = (Xm, Y m) and a test set S′ = (Xn, Y n), where (Xi, Y i)
denotes the set of i independently drawn samples from the
(unknown) joint distribution D over (X, Y ). The PAC-
MDL bound applies to a transductive learning algorithm,
T : (X × Y )m × Xn 7→ σ, where σ : Xm+n 7→ Ŷ m+n is
a transductive classifier which produces a simultaneous la-
beling Ŷ m+n for all of the data points Xm+n. Given the



description complexity of the transductive classifier mea-
sured by its bit description length |σ|, and the prediction

error count on the train set, σ̂S = |{Y m 6= Ŷ m}|, the bound

limits the error count on the test set σ̂S′ = |{Y n 6= Ŷ n}|.
The precise bound is defined in terms of a cumulative hy-

pergeometric distribution. To understand this distribution,
imagine a bucket with m red balls and n blue balls, from
which (a + b) balls are drawn without replacement. Now,
define Bucket(m, n, a, b) to be the probability that at least
b blue balls are drawn. That is,

Bucket(m, n, a, b) =

a+b
X

t=b

`

n
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´`

m

a+b−t

´

`
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The bound is actually defined in terms of a “worst case”
over the value of b defined according to:

bmax(m, n, a, δ) = max{b : Bucket(m, n, a, b) ≥ δ}

Thus, for any b > bmax(m,n, a, δ), if (a+b) balls are drawn
out of the (m + n) balls, the probability of getting at least
b blue balls is less than δ. In the PAC-MDL bound, a plays
the role of σ̂S, the number of errors on the train set, and b

plays the role of σ̂S′ , the number of errors on the test set,
which is exactly the number we wish to bound.

Theorem 1 (PAC-MDL bound [3]) For any distribution

D, for any label description language L = {σ}, with proba-

bility at least (1− δ) over the draw of the train and test sets

S, S′ ∼ Dm+n: ∀σ, σ̂S′ ≤ bmax(m, n, σ̂S , 2−|σ|δ)}

Intuitively, the theorem says that if a transductive classifier
with a short description length achieves few errors on the
train set, then the number of errors on the test set is small
with high probability. For details on this theorem, its proof,
and its connection to other PAC bounds, see [3]. For now, it
is important to note that the applicability of this theorem is
only limited by the assumption that the train and test sets
are each drawn independently from the distribution D, and
that L = {σ} is a “valid” description language.

3. APPLICATION TO CLUSTERING
In this section, we discuss the application of the PAC-

MDL bound to clustering. Two important issues are rele-
vant for clustering bounds:

A. How does a clustering algorithm produce a prediction?

B. What is a “valid” description language for transductive
classifiers?

For A, recall that the PAC-MDL bound is applicable to a
transductive classifier. It turns out that any clustering can
be converted into a transductive classifier. Given the en-
tire train set (Xm, Y m), and Xn from the test set, consider
Xm+n as the input to the clustering algorithm. Say the
clustering algorithm partitions Xm+n into k subsets. To
find the labels Ŷ m+n on all points, first compute the most
common label in each cluster using Y m. Then,

i. if the most common is of class i, i ∈ 1, · · · , `, label all

points in that cluster as class i;

ii. if there is a tie between two or more class labels, pick
one of them uniformly at random and label all points in
that cluster with that label;

iii. if there are no labeled points in a cluster, choose a label
i ∈ {1, · · · , `} uniformly at random and label all points
in that cluster with that label.

After the assignment of the new labels, all points in each
cluster have the same label.

For issue B above, note that the description σ of a clas-
sifier can be considered a binary code that contains all the
relevant information for generating the labels Ŷ m+n. Hence,
formally speaking, there is a Turing machine that takes σ as
an input, produces the labels Ŷ m+n as output and halts.
Therefore, the description language L = {σ} must be a
prefix-free code (by the halting property) and hence sat-
isfy Kraft’s inequality (see [4], Theorem 5.2.1, Lemma 7.3.1,

for details), i.e.,
P

σ∈L
2−|σ| ≤ 1. This is the only condition

a label description language L = {σ} must satisfy for the
proposed bound to hold.

3.1 PAC-MDL Bound for Clustering
Consider the problem of clustering a dataset Xm+n, where

m is the train-set size and n is the test-set size. For any
fixed1 clustering algorithm, we can construct a description
language L = {σ} by letting each description σ have a con-
stant label on each cluster, as discussed earlier. Given the
clustering, this description is sufficient to generate the new
labels Ŷ m+n over the entire data. Now, if c is the number
of clusters and ` is the number of labels, then the set of
descriptions, i.e., the language L = {σ}, has size at most
`c which can be indexed using only |σ| = c log ` bits (“frac-
tional bits” are ok here). Since |L| ≤ `c, it is straightforward
to see that Kraft’s inequality is indeed satisfied, and hence
L is a valid description language. On a more general note,
if one assigns a probability measure p(σ) to all σ ∈ L, since

X

σ∈L

p(σ) = 1 ⇒
X

σ∈L

2
− log

“

1
p(σ)

”

= 1 ,

|σ| = log
“

1
p(σ)

”

always gives a valid bit description com-

plexity for σ. Here, since |L| = `c, we have essentially as-
signed a uniform probability of p(σ) = 1

`c , ∀σ ∈ L.
We call the above description language Simple. Using a

direct application of the PAC-MDL bound, we get: With
probability at least (1 − δ) over the draw of the train and
test sets S, S′ ∼ Dm+n, the test-set error is bounded by:

σ̂S′ ≤ bmax

„

m, n, σ̂S,
δ

lc

«

(1)

In practice, clustering algorithms are highly dependent
upon random initializations, so the algorithm is run multi-
ple times with the best2 performing run chosen. Note that
the description length of this scheme is higher since the de-
scription language must specify which random initialization
to use. If the best initialization is chosen from r random
initializations, the description length is |σ| = c log ` + log r.
We call this language Init. Applying the PAC-MDL bound
for Init, we get with probability at least (1−δ) over the draw
of the train and test sets:

σ̂S′ ≤ bmax

„

m, n, σ̂S,
δ

rlc

«

(2)

1We mean fixed initialization and fixed cluster number here.
2“Best” might be defined with respect to some algorithm-
specific metric or with respect to bound performance, de-
pending on what you want to evaluate.



3.2 The Right Number of Clusters
Most clustering algorithms need the number of clusters as

an input to the algorithm. The PAC-MDL bound provides a
natural mechanism for cluster number selection when some
label information is available. Consider running a cluster-
ing algorithm on a dataset over a range of cluster numbers
and picking the cluster number with the tightest bound on
the test-set error. This process increases the size of our
set of descriptions again. We use a description language
for the cluster number c requiring log c(c + 1) bits. This
is “legal” because it does not violate the Kraft inequality
since:

P∞
c=1

1
c(c+1)

= 1. One slight optimization is pos-

sible here: the nature of our metric disallows the c = 1
case, implying that we can substitute c → c − 1. With
this description language, the length of our description is
|σ| = c log `+log r +log(c(c−1)) bits. We call the language
Cluster. Applying the PAC-MDL bound for Cluster, we get
that with probability at least (1 − δ) over the draw of the
train and test sets, the optimal cluster number c∗ achieves
a test-set error of:

σ̂S′ ≤ bmax

„

m, n, σ̂S ,
δ

rlc
∗

c∗(c∗ − 1)

«

(3)

3.3 The Right Algorithm
In practice, for a given dataset, it is not clear which clus-

tering algorithm is appropriate for use. Typically an algo-
rithm is chosen using domain knowledge, and there is nor-
mally no objective way to verify whether the choice made
was good or bad. To cope with this, we can extend our
description language to specify one of multiple algorithms.
More precisely, if we are choosing the best among s cluster-
ing algorithms, an extra log s bits are required to send the
index of the clustering algorithm that performs the best.
Hence, |σ| = c∗ log ` + log r + log((c∗ − 1)c∗) + log s. Being
the best over all algorithms, we call this language Algo. Ap-
plying the PAC-MDL bound, we see that with probability
at least (1 − δ) over the draw of the train and test sets, the
best algorithm with the optimal cluster number and optimal
initialization achieves a test-set error of:

σ̂S′ ≤ bmax

„

m, n, σ̂S,
δ

r`c∗c∗(c∗ − 1)s

«

. (4)

4. EMPIRICAL RESULTS
We present an empirical study of the proposed evalua-

tion technique on the problem of text clustering for several
benchmark datasets using various algorithms.

4.1 Datasets
The datasets that we used for empirical validation and

comparison of our algorithms were carefully selected to rep-
resent some typical clustering problems: (a) classic3 is a
well known collection of documents that contains 3893 doc-
uments, among which 1400 Cranfield documents are from
aeronautical system papers, 1033 Medline documents are
from medical journals, and 1460 Cisi documents are from
information retrieval papers; (b) classic2 is a subset of 2860
documents from the classic3 collection formed with the 1400
Cranfield documents and the 1460 Cisi documents; (c)
cmu-newsgroup-clean-1000, or, the CMU 20 newsgroups dataset
is a widely used text analysis dataset that is a collection of
approximately 20,000 messages from 20 different USENET
newsgroups, with approximately 1000 messages per group;

(d) cmu-newsgroup-clean-100 was formed by sampling 100
messages per group from the full 20 newsgroup dataset;
(e) cmu-different-1000 is a subset of the original 20 news-
groups dataset consisting of 3 groups on very different topics:
alt.atheism, rec.sport.baseball, sci.space; (f) cmu-different-

100 is a subset of (e) formed by sampling 100 documents
per topic; (g) cmu-similar-1000 is a subset of the original 20
newsgroups dataset consisting of 3 groups on similar topics:
talk.politics.guns, talk.politics.mideast, talk.politics.misc; (h)
cmu-similar-100 is a subset of (g) formed by taking 100 docu-
ments per topic; (i) cmu-same-1000 is a subset of the original
20 newsgroups dataset consisting of 3 groups on the same
topic viz computers, with different subtopics : comp.graphics,
comp.os.ms-windows, comp.windows.x; (j) cmu-same-100 is
a subset of (i) formed by sampling 100 documents per topic;
and, (k) yahoo, or, the Yahoo News (K-series) dataset that
has 2340 Yahoo news articles from 20 different categories.

4.2 Algorithms
We experiment with 6 algorithms that have been applied

to text datasets with varying degrees of success. Since the
motivation behind the experiments is to establish the effi-
cacy of the proposed criterion in evaluation, comparison and
model selection for clustering, we have not tried to be ex-
haustive in the list of algorithms that have been used. How-
ever, we have chosen algorithms that represent the state-of-
the-art and have been applied to text clustering in the liter-
ature. The algorithms we consider are: SPKMeans [6], better
known as spherical kmeans, that employs the widely used co-
sine similarity; FSKMeans [2], a frequency sensitive version of
spherical kmeans; Hard-moVMF [1], a generative model based
clustering that uses a mixture of von Mises-Fisher (vMF)
distributions to model the data; Soft-moVMF [1], that also
uses a mixture of von Mises-Fisher distributions to model
the data with soft-assignments that are finally converted to
hard assignments by the standard method assigning a data
point to the highest probability cluster; KMeans [9], the stan-
dard kmeans clustering algorithm; and KLKMeans [5], better
known as information theoretic clustering, that uses KL-
divergence between L1 normalized document vectors instead
of squared Euclidean distance in the kmeans framework.

4.3 Methodology
Before performing any experiments, an independent train-

test split needs to be made. All experiments reported in this
paper were performed on 5 different train-test splits: 10-90,
30-70, 50-50, 70-30, 90-10. On each train-test split, we per-
formed 4 sets of experiments for each dataset corresponding
to the 4 bounds discussed in section 3:

(a) Experiments for a particular algorithm, with a fixed
cluster number, with a particular initialization. The
test-set error-rate bound is computed using (1).3

(b) The best results for a particular algorithm with a fixed
cluster number, where the best is computed over all the
r possible initializations. The test-set error-rate bound
is computed using (2).

(c) The best results for a particular algorithm, where the
best is computed over all the r possible initializations
and all the cmax possible cluster numbers. The test-set
error-rate bound is computed using (3).

3Code for computing the PAC-MDL bound is available
at http://hunch.net/∼jl/projects/prediction bounds/info theory
n learning theory/pac-mdl bound.tar.gz
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Figure 1: Test set error rate bounds for KMeans and
SPKMeans on cmu-different-1000 and cmu-same-1000: 10
runs with different initializations for 3 clusters

(d) The best performance for a given dataset, where the
best is computed over all algorithms over all possible
cluster sizes and all possible initializations. The bound
on the test-set error-rate is computed using (4).

4.4 Results
Now we are ready to present results on the various datasets.

We start with the simplest language and using (1) present
representative results comparing individual runs of a par-
ticular algorithm for a fixed cluster number with different
random initializations (Fig 1). Taking the best over 10 ini-
tializations for each cluster number, we then compare per-
formance of a particular algorithm over a range of cluster
numbers (Fig 2) using (2). Next, by taking the best over
the entire cluster number range considered, we compare the
performance of various algorithms (Fig 3) using (3). Fi-
nally, by taking the best over the best of all the algorithms
considered, using (4), we present the best results on partic-
ular datasets for various train-test splits (Fig 4-5). Unless
otherwise stated, all results are on a 50-50 train-test split.

In Fig 1, we present test-set error-rate bounds for KMeans
and SPKMeans on cmu-different-1000 and cmu-same-1000 for
10 runs with different initializations for 3 clusters. All bounds
are computed using (1). cmu-different-1000 is a relatively
easy dataset in that its labels are reasonably separated being
samples from 3 quite different newsgroups. As a result, both
algorithms achieve low bounds on the error-rate. SPKMeans

performs particularly well since it was designed to be a text
clustering algorithm [6]. Over the 10 runs, KMeans achieves
a lowest bound of 34.13 % with probability 0.9 in run 4, and
SPKMeans achieves a lowest bound of 4.93 % with probabil-
ity 0.9 in run 6. The best constant classifier has error-rate
66.67 %. cmu-same-1000 is a relatively difficult dataset since
the true labels have significant overlaps. Again, SPKMeans
achieves lower bounds than KMeans in most runs, although
the bounds are in general higher than those for cmu-different-

1000. Over the 10 runs, KMeans achieves a lowest bound of
50.8 % with probability 0.9 in run 7, and SPKMeans achieves
a lowest bound of 31 % with probability 0.9 in run 3, the
best constant classifier has error-rate 66.67 %.

Next, we consider the best performance over all the 10
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Figure 2: Test-set error-rate bounds for KMeans and
SPKMeans on cmu-different-1000 and cmu-same-1000: Best
over 10 runs with different initializations over a clus-
ter number range of (2 to 20).

iterations for each cluster number and compare them over
a range of cluster numbers. The bound calculation is done
using (2). In Fig 2, we present test-set error-rate bounds for
KMeans and SPKMeans on cmu-different-1000 and cmu-same-

1000 over a range of cluster numbers (2 to 20). We observe
that SPKMeans achieves a lower bound than KMeans for most
cluster numbers for reasons described above. Over the en-
tire range, SPKMeans achieves a lowest bound of 5.46 % with
a probability of 0.9 for 3 clusters. This is marginally higher
than the lowest bound of 4.93 % in Fig 1, since the bound
calculation uses (2) after incorporating the extra log 10 bits
required to index the best over the 10 runs with different
random initializations. This is the extra cost for not know-
ing upfront which random initialization is going to perform
the best. This demonstrates the trade-off between improve-
ment in prediction accuracy and considering more runs with
different random initializations. On the other hand, KMeans
achieves a lowest bound of 17.2 % with a probability of 0.9
for 13 clusters. For cmu-same-1000, over the entire range,
SPKMeans achieves a lowest bound of 32.2 % with probabil-
ity 0.9 for 3 clusters, which is marginally higher than the
lowest of 31 % in Fig 1 due to extra description complexity
of log 10 bits in indexing the best. KMeans achieves a lowest
bound of 40.3 % with probability 0.9 for 10 clusters.

From the results in Fig 2, we make an interesting obser-
vation. Note that for SPKMeans, the optimal number of clus-

ters, as dictated by the lowest bound over the entire range
of cluster numbers considered, is 3 for both the datasets.
Interestingly, the number of true labels in both the datasets
is 3. This demonstrates how the proposed criterion can be
used for model-selection, the “right” number of clusters in
this particular case, for a given algorithm and a dataset.

Next, we compare the best performance of each of the
algorithms, with best taken over all cluster numbers and
initializations, on various datasets. This comparison is of
great practical interest since this determines the appropri-
ateness of an algorithm for a given dataset. Since the best
performance of each algorithm over cluster numbers and ini-
tializations is considered, (3) is used to compute the bounds
in Fig 3. In Fig 3, we compare the test-set error-rate bounds
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Performance of 6 algorithms on 11 datasets

Figure 3: Test-set error-rate bounds for each
algorithm on all the 11 datasets: classic2,
calssic3, cmu-different-1000, cmu-similar-1000, cmu-same-

1000, cmu-different-100, cmu-similar-100, cmu-same-100,
cmu-newsgroup-clean-1000, cmu-newgroup-clean-100, yahoo:
Best over all number of clusters and initializations.

for all the 6 algorithms on all the 11 datasets under con-
sideration. For datasets such as cmu-different-100, cmu-

similar-100, cmu-same-100, the low number of samples in
high-dimensions make the clustering problem hard for most
algorithms. Among the algorithms considered, Soft-moVMF
performs quite well, e.g., it achieves the lowest test-set error-
rate bound of 18.6 % with a probability of 0.9 on cmu-

different-100. On the other hand, datasets such as cmu-

different-1000 has more samples from the same distribution
that makes the clustering problem reasonably simple for
quite a few algorithms. We note that 4 algorithms have
comparative performances, with Soft-moVMF achieving the
lowest bound of 5.67 % with a probability of 0.9. It is in-
teresting to note that SPKMeans achieves a bound of 5.87 %
which is marginally higher than the bound of 5.46 % we ob-
served in Fig 2. The marginal increase is due to the extra
description length of log((3 − 1)3) bits used to describe the
fact that the optimal cluster number is 3. As for the relative
performance of the algorithms, as expected, there is no clear
winner across all datasets although Soft-moVMF appears to
win quite often.

We now present best bounds on the test-set error-rate
by taking the best over all algorithms, cluster numbers and
initializations. We use (4) to compute the bound. Results
over 5 different train-test splits on all the datasets considered
are presented in Figs 4-5.

classic2 is a relatively simple dataset with only 2 reason-
ably separate classes. As we see in Fig 4, for all train-test
splits, the bound on the test-set error-rate is very low. For
the 50-50 train-test split, with probability 0.9 we get a PAC
bound of 1.68% on the error-rate on the test-set. (The best
constant classifier has error-rate of 48.95%.) This is a re-
markably low error-rate bound by PAC standards4. classic3

is also a relatively simple dataset with 3 classes. As shown
in Fig 4, for the 50-50 train-test split, with probability 0.9
we get a bound of 2% on the error-rate on the test-set. (The
best constant classifier has error-rate 62.50%.)

Although cmu-different-100 consists of samples from 3 rel-
atively different classes, the small number of samples and
high dimensionality make the problem difficult. As shown
in Fig 4, with a probability of 0.9, we get a bound of 20.6%
on the test-set error-rate for the 50-50 train-test split. (The

4Note that increasing the train-set fraction need not increase
prediction accuracy since the clustering algorithms never ac-
tually look at the labels.
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Figure 4: Test set error rate bounds for classic2, clas-

sic3, cmu-different-100, cmu-different-1000: Best over all
algorithms, cluster numbers, initializations

best constant classifier has error-rate 66.67%.) In cmu-different-

1000, the extra samples make finding structure in the data
easier — a bound of 6 % is obtained.

Due to a large overlap between the underlying labels, both
cmu-same-100 and cmu-same-1000 are difficult datasets to
get good predictions on by just clustering. As shown in
Fig 5, with a probability of 0.9, we achieve error-rate bounds
of 64% and 28.4% respectively, while the best constant clas-
sifier has error-rate 66.67%.

cmu-newsgroup-clean-100 is a difficult dataset since there
are 20 underlying classes with significant overlaps and small
number of samples per class. As Fig 5 shows, the lowest
bound on the test-set error-rate is 84 % with probability 0.9
on a 50-50 train test split, whereas the best constant clas-
sifier has an error-rate of 95 %. For cmu-newsgroup-clean-

1000, with increased number of samples from the same prob-
lem, a lowest bound of 47.94 % is achieved with probability
0.9.
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Figure 5: Test set error rate bounds for cmu-same-

100, cmu-same-1000, cmu-newsgroup-clean-100 and cmu-

newsgroup-clean-1000: Best over all algorithms, cluster
numbers, initializations
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Performance of 4 languages on 11 datasets

Figure 6: Test-set error-rate bounds on 11 datasets
for 4 languages: Simple, Init, Cluster, and Algo.

yahoo is a dataset with 20 underlying classes and 2340 ex-
amples. The class portions are highly skewed ranging from
as low as 0.0038 to as high as 0.2111. Naturally, unsuper-
vised prediction is nontrivial. The best performance (not
shown) achieves a bound of 73.84% with probability 0.9 on
the 50-50 train-test split. (The best constant classifier has
error-rate 78.89%).

At this point, we make two observations: (i) on all the
datasets considered, the test-set error-rate bound is always

better than the best constant classifier; and, more inter-
estingly, (ii) for most datasets, the bound on the test-set
error-rate for the best clustering algorithm is comparable,
perhaps even better than many supervised learning bounds.
Clustering appears to capture the structure of labeling in
natural datasets.

Finally, we present a comparison between the bounds ob-
tained from the 4 language families considered: Simple, Init,
Cluster and Algo, corresponding to Eqns (1)-(4). It is diffi-
cult to directly compare languages because each optimizes
over a different set of possibilities. For example, it would be
unfair to compare the best bound (across all possibilities)
for Init to the best bound (across all possibilities) for Clus-

ter, since Cluster takes into account the optimization over all
number of clusters while Init does not. To make the compar-
ison fair, we compare the average bound of Init to that for
Cluster. Similar arguments apply to other languages. Fig 6
displays comparisons of the 4 languages on all the datasets
under consideration. As shown in Fig 6, there seems to be
some advantage to using a more complicated language, i.e.,
trying to optimize over several iterations, cluster numbers
and algorithms. In practice, using a more complicated lan-
guage of course implies more computational effort.

5. RELATED WORK
A clustering algorithm typically tries to optimize its inter-

nal quality measure, thereby making objective comparison
of various algorithms practically impossible. Note that sev-
eral unsupervised methods for comparing clusterings, e.g.,
Jaccard index, Rand index, Fowlkes-Mallows index, Mirkin
metric, variation of information etc., exist in the literature
(for details, see [9, 10] and references therein). These com-
pletely unsupervised methods are incapable of measuring
performance in supervised tasks, such as prediction.

Since the predictive ability of clustering algorithms is of-
ten key to their successful application, external prediction-
related quality measures are often appropriate. Several su-

pervised measures such as purity, entropy, normalized mu-
tual information, supervised F-measure etc. have been used
in the literature (see [8] for details). However, it is not clear
how these measures are related to the error-rate of the clus-
tering algorithm when used for prediction. Furthermore,
none of these supervised measures help with cluster num-
ber selection, which is often a big issue for these supervised
measures.

An information theoretic external validity measure moti-
vated by the minimum description length (MDL) principle
has been recently proposed [7]. In spite of having several
desirable properties, this measure has a few drawbacks with
respect to the measure proposed here: (i) the measure is
not normalized to the interval [0,1] (and not easily normal-
ized to exercise that interval) which is desirable in several
settings, and many other quality measures actually satisfy
this; and, (ii) the measure does not provide guarantees of
prediction ability for test data. On a more general note, by
attempting to measure the bits required to precisely specify
all the class labels in the dataset, the method [7] overlooks
the more general possibility of lossy compression, which ap-
pears useful and is heavily utilized in our proposed criterion.

6. DISCUSSION
The PAC-MDL bound provides an objective criterion for

evaluation, comparison and model selection for clustering
that is applicable when the goal of clustering is related to
prediction. Experimental results show that this criterion is
practically and flexibly useful.

It is particularly striking (and perhaps even shocking)
to notice test-set error-rate bounds achieved by the best
clustering algorithms are very competitive with various su-
pervised learning bounds on the true error rate of learned
classifiers. This good performance suggests that clustering
algorithms are doing something fundamentally “right” for
prediction purposes on natural datasets.
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