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Abstract

We propose an importance weighting framework for actively labeling samples.
This technique yields practical yet sound active learning algorithms for general
loss functions. Experiments on passively labeled data showthat this approach
effectively reduces the label complexity required to achieve good prediction per-
formance on many learning problems.

1 Introduction

Active learning is typically defined in contrast to the standard passive learning setting. In passive
learning, all of the labels for an unlabeled dataset are requested at once, while in active learning
the learning algorithm interactively chooses which unlabeled examples to label. The great hope of
active learning is that interaction can substantially reduce the number of labels required, making
solving problems via machine learning more practical. Thishope is known to be valid in certain
special cases where the number of labels required is logarithmic in the number required for passive
learning. Canonical special cases include thresholds on a line or linear separators with a spherically
uniform unlabeled data distribution [10].

For a long time, active learning algorithms (such as [7, 10])were not robust to noise, and could even
yield inconsistent results (i.e., they are not guaranteed to converge to the optimal predictor, even
when given an infinite labeling budget).

This problem has recently been addressed in two threads of research. One approach [3, 9, 12]
constructs sample complexity bounds based algorithms satisfying standard PAC-type guarantees for
supervised learning. The second uses importance weights toavoid bias due to to active learning [2,
16].

Problems with Existing Active Learning. The PAC-guarantee active learning algorithms have yet
to see practical use for a few reasons:

1. In many applications, some loss other than0–1 loss is important. Yet, these algorithms use
the flatness of0–1 loss with respect to parameters of the hypothesis space to avoid labeling
some examples. This technique does not apply to most other loss functions.

2. These algorithms rely on generalization bounds that are often quite loose in practice. When
faced with writing a practical active learning algorithm, using these bounds can impose
much greater labeling requirements than might be fundamentally necessary.

3. The PAC-guarantee algorithms reason use bounding logic on an entire set of hypotheses
which is often computationally intractable (see [8] for an exception for tree-structured hy-
potheses).

The importance weighted approachesarecomputationally tractable algorithms. However, their anal-
ysis and associated guarantees have some drawbacks:
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1. The settings in which an importance weighting approach works is limited compared to
what we assume here. For example[2] considers linear representations and places some
assumptions on the data generation process.

2. The analysis in these works is asymptotic rather than a finite label complexity. Label com-
plexity is of paramount importance in active learning, because otherwise simpler passive
learning approaches work fine. Furthermore, choosing the importance weights in a poor
manner can result in very poor label complexity performance.

Importance Weighted Active Learning. We address the problems above with a new algorithm
satisfying PAC-style label complexity guarantees. The essential idea is to carefully choose rejection
sample probabilities for samples, and use derived importance weights to bias the learning process.

To deal with other loss functions, we use the variation in loss amongst remaining hypotheses to
create a distribution from which to rejection sample. If theprobability of asking for a label isp
according to this distribution, then the corresponding importance weight is proportional to1/p.
This simple method maintains the consistency property for active learning: for any distribution and
any hypothesis class, active learning eventually converges to the optimal hypothesis in the class.

The fundamental contribution of this paper is a family of practical general purpose active learn-
ing algorithms with bounded label complexity. After introducing basic definitions in section 2, we
present an importance weighting algorithm skeleton (IWAL)in section 3, and prove that all algo-
rithms defined by IWAL have a bounded worst-case label complexity to find anǫ-optimal predictor.
Section 4 explores a choice of this subroutine and proves that the resulting algorithm, IWAL(loss-
weighting), has worst-case label complexity requirements within a constant factor of passive learn-
ing. In section 5, we analyze the label complexity, proving both a more general lower bound than
earlier work [13] and an upper bound for IWAL(loss-weighting) based on a form of the disagreement
coefficient [12] generalized to other losses.

We conduct practical experiments with two IWAL algorithms.The first is a specialization of
IWAL( loss-weighting) to the convex loss with linear representation case where the algorithm be-
comes tractable via convex programming (section 7). The second IWAL(bootstrap) uses a simple
bootstrapping scheme, which reduces active learning to (batch) passive learning in a manner which
requires only a small amount of additional computation (section 8). These experiments are extremely
encouraging: in every case they yield substantial reductions in label complexity compared to passive
learning, without compromising predictive performance. These experiments suggest that IWAL is a
practically useful realization of the theoretical claim that active learning can reduce the label com-
plexity without compromising prediction performance or safety compared to passive learning[4].

1.1 Additional Prior Work

Naoki Abe and Hiroshi Mamitsuka[1] proposed active learning algorithms based on boosting and
bagging which are similar (at the surface) to the IWAL(Bootstrap) algorithm used experimentally in
section 8. One critical difference is that these earlier algorithms are not consistent in the presence
of adversarial noise: they may never converge to the correctsolution, even given an infinite label
budget. In contrast, IWAL(Bootstrap) is consistent and satisfies further guarantees (see section 2).

Wiens [17] investigated linear regression in the presence of a contaminating signal added into the
target variable. This paper addresses a fundamentally different problem from the one addressed
here, since we are actually choosing whether or not to gatherand use a target variable, and we are
not concerned with a contaminating signal.

2 Preliminaries

LetX be the input space andY the output space. We consider active learning in the streaming setting
where at each stept, a learner observes an unlabeled examplext ∈ X and has to decide whether or
not to query for the labelyt ∈ Y . The learner works with a hypothesis spaceH = {h : X → Z},
whereZ is some prediction space.

The algorithm is evaluated with respect to a given loss function l : Z × Y → [0,∞). The most
common0–1 loss is given byl(z, y) = 1(y 6= z), whereY = Z = {−1, 1}. The following
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examples address the binary caseY = {−1, 1} with Z = R: l(z, y) = (1 − yz)+ (hinge loss),
l(z, y) = ln(1 + e−yz) (logistic loss),l(z, y) = (y − z)2 = (1 − yz)2 (squared loss),l(z, y) =
|y − z| = |1 − yz| (absolute loss). Since any bounded loss function can be normalized, we assume
thatl maps to[0, 1].

3 The Importance Weighting Skeleton

Algorithm 1 describes the basic outline of importance-weighted active learning (IWAL). IWAL is
parameterized by a subroutinerejection-threshold, which returns the probabilitypt of requesting
yt, givenxt and all previous history{xi, yi, pi, Qi : 1 ≤ i < t}. Later sections explore different
choices for this subroutine. The algorithm maintains a set of labeled examples seen so far, where
each example is assigned an importance value. Ifyt is queried, IWAL adds(xt, yt, 1/p(t)) to the
set, where1/p(t) is the importance of predictingyt onxt.

Algorithm 1 IWAL (subroutinerejection-threshold, minimumpmin)

SetS0 = ∅.

For t from 1, 2, ... until the data stream runs out

1. Receivext .

2. Setpt = rejection-threshold(xt, history{xi, yi, pi, Qi : 1 ≤ i < t}).
3. Flip a coinQt ∈ {0, 1} with E[Qt] = pt. If Qt = 1, requestyt and set

St = St−1 ∪ {(xt, yt, pmin/pt)},
elseSt = St−1.

4. Letht = arg minh∈H

∑

(x,y,c)∈St
c · l(h(x), y).

Let D be the underlying probability distribution onX × Y . The expected loss ofh ∈ H on D is
given byLD(h) = E(x,y)∼Dl(h(x), y). The importance-weighted estimate at timeT is

LT (h) =
1

T

T
∑

t=1

Qt

pt
l(f(xt), yt).

It is not hard to see thatELT (h) = L(h), where the expectation is taken over all the random
variables involved. However, there is a danger of the variance being high. Theorem 4.1 gives a fairly
strong large deviation bound forLT (h), provided that the probabilitiespt are chosen carefully.

3.1 IWAL Safety

A desirable property of any learning algorithm isconsistency: Given an infinite budget of unlabeled
and labeled examples, does the algorithm converge to the best possible predictor? Several older
active learning algorithms [7, 10] do not satisfy this baseline guarantee; in particular, any algorithm
requiring realizability is inconsistent in the presence ofnoise. We prove that IWAL algorithms are
consistent, as long aspt is bounded away from0. Furthermore, we prove that the label complexity
required is within a constant factor of supervised learningin the worst case.

Theorem 3.1. For all distributionsD, for all finite hypothesis classesH , if there is a constant
pmin > 0 such thatpt ≥ pmin for all 1 ≤ t ≤ T , then for anyǫ > 0

P



LT (h) − L(h) >

√
2

pmin

√

ln |H | + ln 1
δ

T



 < δ.

whereh∗ = arg minh∈H LD(h).

Examining this result and comparing with known sample complexity bounds in supervised learning
(For example, see [14] Corollary 4.2), we see that the label complexity is at most 2

p2

min
times a

supervised algorithm’s label complexity.
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The proof is a simple modification of standard results to use aMartingale inequality. In realistic
applications using 32 bit floats to represent real numbers, the hypothesis space is discrete and the
bound above is often only a small constant factor worse than aVC-dimension bound. this can also
be directly extended to VC spaces by appropriate insertion of a martingale inequality.

Proof. Fix D and omitD from the subscripts. For a hypothesish ∈ H , consider a sequence of
random variablesU1, . . . , UT with Ut given by

Ut = pmin

(

Qt

pt
l(h(xt), yt) − L(h)

)

.

Sincepmin/pt ≤ 1, |Ut| ≤ 1. The sequenceZt =
∑t

i=1 Ui is a martingale, lettingZ0 = 0. Indeed,
for any1 ≤ t ≤ T ,

E[Zt | Zt−1, . . . , Z0] = EQt,xt,yt
[Ut + Zt−1 | Zt−1, . . . , Z0]

= Zt−1 + pmin ·EQt,xt,yt

[

Qt

pt
l(h(xt), yt) − L(h) | Zt−1, . . . , Z0

]

= Zt−1 + pmin ·Ext,yt
[ l(h(xt), yt) − L(h) | Zt−1, . . . , Z0 ] = Zt−1.

Observe that|Zt+1 − Zt| = |Ut+1| ≤ 1 for all 0 ≤ t < T . Applying Azuma’s inequality,

P[ZT > λ
√

T ] < e−λ2/2

for anyλ > 0. Rewriting, we get

P

[

LT (h) − L(h) >
λ

pmin
√

T

]

< e−λ2/2.

We wantλ/pmin
√

T < ǫ/2, or λ < pminǫ
√

T/2.

Applying the union bound, we have for allh ∈ H simultaneously

P [LT (h) − L(h) > ǫ/2] < |H |e−Tp2

minǫ2/8
.

Changing variables fromǫ to δ, we get that:

P



LT (h) − L(h) >

√
2

pmin

√

ln |H | + ln 1
δ

T



 < δ.

4 Importance-Weighted Active Learning

Next we instantiate the rejection threshold subroutine in IWAL, and prove that the resulting algo-
rithm IWAL( loss-weighting) has several desirable properties. Step 4 of IWAL is modifiedto do the
minimization overHt instead ofH .

IWAL( loss-weighting) depends on a sample complexity bound derived quantity:

∆t =

√

8

t
ln

t(t + 1)|Ht|2
δ

,

wheret is the index of the sample observed.

4.1 A generalization bound

A fairly strong large deviation bound can be given for eachht output by IWAL(loss-weighting).
Note that this theorem is not a corollary of theorem 3.1 because IWAL(loss-weighting) can set the
importance weight to0.
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Algorithm 2 loss-weighting(x, history{xi, yi, pi, Qi : 1 ≤ i < t})
1. InitializeH0 = H .

2. Update
L∗

t−1 = min
h∈Ht−1

1

t − 1

t−1
∑

i=1

Qi

pi
l(h(xi), yi)

Ht = {h ∈ Ht−1 :
1

t − 1

t−1
∑

i=1

Qi

pi
l(h(xi), yi) ≤ L∗

t−1 + ∆t−1}

3. Returnpt = maxf,g∈Ht,y∈Y l(f(x), y) − l(g(x), y).

Theorem 4.1. For all learning problemsD, for all hypothesis classesH , for all δ > 0, with
probability at least1 − δ, the hypothesis output byIWAL( loss-weighting)at any timeT satisfies

L(hT ) − min
h∈H

L(h) ≤ 2∆T−1.

Roughly speaking, this bound shows that the sample complexity of IWAL( loss-weighting) is within
a constant factor of supervised learning, sinceHT−1 ⊆ H . This safety guarantee also suggests that
the algorithm can sometimes do much better, becauseHT−1 might be much smaller thanH .

The proof of this theorem rests on the following lemma.

Lemma 1. For all learning problemsD, for all hypothesis classesH , for all δ > 0, with probability
at least1 − δ, for all T and for allf, g ∈ HT ,

LT (f) − LT (g) ≤ L(f) − L(g) + ∆T .

Proof. We’ll allow failure probabilityδ/T (T + 1) at timeT . Pick anyT .

Pick anyf, g ∈ HT . Thenf, g ∈ H1, H2, . . . , HT−1. It follows that for allt ≤ T ,

pt ≥ l(f(xt), yt) − l(g(xt), yt).

DefineZt = Qt

pt

(

l(f(xt), yt) − l(g(xt), yt)
)

− (L(f) − L(g)). Then

|Zt| ≤
1

pt
|l(f(xt), yt) − l(g(xt), yt)| + |L(f) − L(g)| ≤ 2.

Also,

E [Zt | Z1, . . . , Zt−1]

= Ext,yt,pt

[

EQt

[

Qt

pt
(l(f(xt), yt) − l(g(xt), yt)) − (L(f) − L(g))

∣

∣

∣

∣

xt, yt, pt

] ∣

∣

∣

∣

Z1, . . . , Zt−1

]

= Ext,yt,pt
[l(f(xt), yt) − l(g(xt), yt) − (L(f) − L(g)) | Z1, . . . , Zt−1] = 0.

ThereforeZ1, Z2, . . . is a martingale difference sequence.

(iii) Applying Azuma’s inequality to this sequence, we have

P [LT (f) − LT (g) ≥ L(f) − L(g) + ∆T ]

= P

[

1

T

(

T
∑

t=1

(

Qt

pt
(l(f(Xt), Yt) − l(g(Xt), Yt)) − (L(f) − L(g))

)

)

≥ ∆T

]

= P

[

T
∑

t=1

Zt ≥ T∆T

]

≤ exp

(

−T∆2
T

8

)

=
δ

T (T + 1)|HT |2
.

(iv) Now do a union bound over allf, g ∈ HT .
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Proof. (of Theorem 4.1) Start by assuming that the1 − δ probability event of Lemma 1 holds.

By induction, we can prove thath∗ = argminh∈H L(h) satisfiesh∗ ∈ HT for all T .

The base case isT = 1, where it clearly holds. Now suppose it holds atT ; we’ll show it remains
true atT + 1. Let hT be the minimizer ofLT (·) overHT . By Lemma 1,

LT (h∗) − LT (hT ) ≤ L(h∗) − L(hT ) + ∆T ≤ ∆T .

ThusLT (h∗) ≤ L∗

T + ∆T and henceh∗ ∈ HT+1.

Next we show that for anyf, g ∈ HT we haveL(f) − L(g) ≤ 2∆T−1. By Lemma 1,

L(f) − L(g) ≤ LT−1(f) − LT−1(g) + ∆T−1

≤ (L∗

T−1 + ∆T−1) − L∗

T−1 + ∆T−1 = 2∆T−1.

Since the optimal hypothesis remains inHT and the difference in error rates is bounded, the hypoth-
esishT must satisfyL(hT ) ≤ L(h∗) + 2∆T−1.

5 Label complexity

Suppose we see a stream ofT examples, some of whose labels we query. The analysis of the
previous section tells us that at the end of this process, thefinal classifier is comparable (in terms of
its loss on the underlying distribution) to the classifier that would have been chosen by a supervised
learner that saw allT labels.

So, how many of thoseT labels does the active learner request? Earlier work [9] studied this
question under an active learning scheme designed specifically for 0–1 loss. For learning problems
with boundeddisagreement coefficient[12] (to be defined shortly), the number of queries was found
to be

O(ηT + d log2 T )

whered is the VC dimension of the function class, andη is the best error rate achievable on the
underlying distribution by that function class.

The termηT is inevitable for any active learning scheme, as we demonstrate in the next section. The
remaining term has just a polylogarithmic dependence onT , which bodes well for active learning.

The method of this paper is substantially more general, because it allows loss functions other than0–
1 loss. To analyze label complexity, we generalize the notionof disagreement coefficient to arbitrary
loss functions. Under similar conditions to the earlier result, we find the number of queries is

O

(

ηT +

√

dT log2 T

)

,

whereη is now the best achievable loss by the function class. The inevitableηT term is still there,
and the second term is not as impressive as before, but still sublinear. With more sophisticated
generalization bounds, it may be possible to reduce this term, at least for0–1 loss.

5.1 A lower bound on label complexity

In recent work [13], it was shown that for any nontrivial hypothesis classH and anyη > ǫ > 0,
there exists a data distribution (overX × Y ) such that:

• The optimal error rate achievable byH is η.

• Any active learner that findsh ∈ H with error rate≤ η + ǫ (with probability> 1/2) must
makeη2/ǫ2 queries.

We now strengthen this lower bound todη2/ǫ2, whered is the VC dimension ofH .

Before getting into the details, let’s see how this lower bound relates to the label complexity rates
mentioned above. It is well-known that if a supervised learner seesT examples (for anyT > d/η),
its final hypothesis has error bounded byη +

√

dη/T [5]. This isη + ǫ for ǫ =
√

dη/T . The lower
bound now implies that an active learner must make at leastdη2/ǫ2 = ηT queries. This explains the
ηT leading term in all the label complexity bounds we have discussed.
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Theorem 5.1. For anyη, ǫ > 0 such that2ǫ ≤ η ≤ 1/4, for any input spaceX and hypothesis
classH (of functions mappingX into Y = {+1,−1}) of VC dimension1 < d < ∞, there is a
distribution overX × Y such that (a) the best error rate achievable byH is η; (b) any active learner
seeking a classifier of error at mostη + ǫ must makeΩ(dη2/ǫ2) queries to succeed with probability
at least3/4.

Proof. Pick a set ofd pointsx1, x2, . . . , xd shattered byH . Here is the distribution overX × Y :

• Pointx1 has probability1 − β, while each of the remainingxi has probabilityβ/(d − 1),
whereβ = 2(η + 2ǫ).

• At x1, the response is alwaysy = 1. At xi, i > 1, the response isy = 1 with probability
1/2 + γbi, wherebi is either+1 or−1, andγ = 2ǫ/β = ǫ/(η + 2ǫ) < 1/4.

Nature starts by pickingb2, . . . , bd uniformly at random. This defines the target hypothesish∗,
whereh∗(x1) = 1 andh∗(xi) = bi. The error rate ofh∗ is β · (1/2 − γ) = η.

An active learner must determine the hidden bitbi of at least a quarter of the pointsx2, . . . , xd;
otherwise (with probability> 1/2) it returns a hypothesis that is wrong on at least a quarter ofthe
pointsxi and thus has error at leastη + (1/4) · β · γ = η + ǫ.

To correctly determine a hidden bitbi with probability> 1/2, the learner needs to makeΩ(1/γ2)
queries to thatxi. Thus the active learner needsΩ(d · (1/γ)2) = Ω(dη2/ǫ2) queries in all.

This is the very same example that is used to give lower boundson supervised sample complexity
(see, for instance, section 14.4 of [11]), although in that case the lower bound isdη/ǫ2. The bound
for active learning is smaller by a factor ofη because the active learner can avoid making repeated
queries to the “heavy” pointx1, whose label is immediately obvious.

5.2 An upper bound on label complexity

This subsection is devoted to proving that IWAL(loss-weighting) can yield substantial label com-
plexity improvements over passive learning. We first describe a few concepts: a broader class of loss
functions than0–1 loss, a distance metric on hypotheses bounding the loss difference between these
hypotheses, and a generalized disagreement coefficient. Wethen prove that for this broader class,
active learning performs better than passive learning whena generalized disagreement coefficient is
small.

5.2.1 A subclass of loss functions

We give label complexity upper bounds for a certain class of loss functions that includes0–1 loss
and logistic loss but not squared loss. Specifically, we require that the loss function has bounded
slope asymmetry, as defined below.

Recall the earlier notation: the set of classifiers isH = {h : X → Z}, whereZ is a response space,
and the loss function isl : Z × Y → [0,∞). In what follows, the label space isY = {−1, +1}.

Definition 1. Theslope asymmetryof a loss functionl : Z × Y → [0,∞) is

Cl = sup
z,z′∈Z

∣

∣

∣

∣

maxy∈Y l(z, y) − l(z′, y)

miny∈Y l(z, y) − l(z′, y)

∣

∣

∣

∣

.

Intuitively, the slope asymmetry is the maximum ratio (overchoices of truthy) of the derivative of
the loss as a function of the prediction. This quantity is generalized to nondifferentiable losses via
discrete differences.

It is easy to check that the slope asymmetry is1 for 0–1 loss, and∞ for hinge loss. For convex loss
functions (of the forml(z, y) = φ(yz) for convexφ) the following lemma helps in boundingCl.

Lemma 2. Let φ be a differentiable convex function defined on some intervalZ = (−B, B) ⊂ R.
Suppose thatC0 ≤ |φ′(z)| ≤ C1 for all z ∈ Z. Then for anyz, z′ ∈ Z, and anyy ∈ {−1, +1},

C0|z − z′| ≤ |lφ(z, y)− lφ(z′, y)| ≤ C1|z − z′|
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wherelφ(z, y) = φ(zy). In particular, lφ has slope asymmetry at mostC1/C0.

Proof. By the mean value theorem, there is someξ ∈ Z such that

lφ(z, y) − lφ(z′, y) = φ(yz) − φ(yz′) = φ′(ξ)(yz − yz′).

Thus|lφ(z, y) − lφ(z′, y)| = |φ′(ξ)| · |z − z′|, and the rest follows from the bounds onφ′.

For instance, this gives a bound on the slope asymmetry of thelogistic loss function.

Corollary 1. The logistic loss functionl(z, y) = ln(1 + e−yz), defined on label spaceY =
{−1, +1} and response space[−B, B], has slope asymmetry at most1 + eB.

Proof. The logistic functionφ satisfies1/(1+eB) ≤ |φ′| ≤ 1. The rest follows from Lemma 2.

5.2.2 Topologizing the space of classifiers

We introduce a simple distance function on the space of classifiers.

Definition 2. For any f, g ∈ H and distributionD defineρ(f, g) = Ex∼D maxy |l(f(x), y) −
l(g(x), y)|. For anyr ≥ 0, let B(f, r) = {g ∈ H : ρ(f, g) ≤ r}.

Let L∗ = minh∈H L(h), and suppose it is realized ath∗. We now relate convergence in loss,
L(ht) → L(h∗), to convergence in the newly topologized classifier space,ρ(ht, h

∗) → 0. The ratio
between these rates of convergence can be expressed in termsof the slope asymmetry of the loss
function.

Lemma 3. For any distributionD, if the loss function has slope asymmetryCl, then

L(h) ≤ L(h∗) + r implies h ∈ B(h∗, Cl(2L∗ + r)).

Proof. Pick anyh ∈ H with L(h) ≤ L(h∗) + r.

ρ(h, h∗) = Ex∼D maxy |l(h(x), y) − l(h∗(x), y)|
≤ Cl Ex,y∼D|l(h(x), y) − l(h∗(x), y)|
≤ Cl (Ex,y∼D[l(h(x), y)] + Ex,y∼D[l(h∗(x), y)])

= Cl (L(h) + L(h∗)) ≤ Cl(2L∗ + r).

5.2.3 A generalized disagreement coefficient

When analyzing theA2 algorithm [3] for active learning under0–1 loss, Hanneke found [12] that
its label complexity could be characterized in terms of whathe called thedisagreement coefficient
of the learning problem. We now generalize this notion to arbitrary loss functions.

Definition 3. The disagreement coefficient is the infimum value ofθ such that for allr,

Ex∼D suph∈B(h∗,r) supy |l(h(x), y) − l(h∗(x), y)| ≤ θr.

Here is a simple example for linear separators under convex loss.

Lemma 4. SupposeH consists of linear classifiers{u ∈ R
d : ‖u‖ ≤ B} and the data distribution

D is uniform over the surface of the unit sphere inR
d. Suppose the loss function isl(z, y) = φ(yz)

for convexφ with C0 ≤ |φ′| ≤ C1. Then the disagreement coefficient is at most(C1/C0)
√

d.

Proof. Let h∗ be the optimal classifier, andh any other classifier withρ(h, h∗) ≤ r. Let u∗, u be
the corresponding vectors inRd. Using Lemma 2,

r ≥ Ex∼D sup
y

|l(h(x), y) − l(h∗(x), y)| ≥ C0 Ex∼D|h(x) − h∗(x)|

= C0 Ex∼D|(u − u∗) · x| ≥ C0
‖u − u∗‖√

d
.
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Thus for anyh ∈ B(h∗, r), we have that the corresponding vectors satisfy‖u − u∗‖ ≤ r
√

d/C0.
We can now bound the disagreement coefficient.

Ex∼D sup
h∈B(h∗,r)

sup
y

|l(h(x), y) − l(h∗(x), y)|

≤ C1 Ex∼D sup
h∈B(h∗,r)

|h(x) − h∗(x)|

≤ C1 Ex∼D sup{|(u − u∗) · x| : ‖u − u∗‖ ≤ r
√

d/C0} ≤ C1 · r
√

d

C0
.

5.2.4 Upper bound on label complexity

Finally, we give an upper bound on label complexity for learning problems that have bounded dis-
agreement coefficient, and loss functions that have boundedslope asymmetry. Recall that the algo-
rithm sees a stream ofT unlabeled examples and chooses to query some of their labels.

Theorem 5.2. For all learning problemsD and hypothesis spacesH , if the loss function has slope
asymmetryCl, and the learning problem has disagreement coefficientθ, then the expected number
of labels requested by IWAL(loss-weighting) during the firstT iterations is at most

4θ · Cl ·
(

L∗T + O

(
√

T ln
|H |T

δ

))

,

whereL∗ is the minimum loss achievable onD byH .

Proof. Let h∗ be an optimal classifier inH , achieving lossL∗. Pick any timet. By Lemma 1,Ht ⊂
{h ∈ H : L(h) ≤ L∗ + 2∆t−1}. Thus, by Lemma 3,Ht ⊂ B(h∗, r) for r = Cl(2L∗ + 2∆t−1).

The expected value ofpt (over the choice ofx at timet) is at most

Ex∼D sup
f,g∈Ht

sup
y

|l(f(x), y) − l(g(x), y)| ≤ 2Ex∼D sup
h∈Ht

sup
y

|l(h(x), y) − l(h∗(x), y)|

≤ 2Ex∼D sup
h∈B(h∗,r)

sup
y

|l(h(x), y) − l(h∗(x), y)|

≤ 2θr = 4θ · Cl · (L∗ + ∆t−1) .

Summing overt = 1, . . . , T , we get the lemma.

Section 2 in the appendix gives an example showing that it is possible to achieve substantial label
complexity reductions over passive learning even when the slope asymmetry is infinite.

6 Other Examples of Low Label Complexity

It’s also sometimes possible to achieve substantial label complexity reductions over passive learning,
even when the slope asymmetry is infinite.

Example 1. Let the spaceX be the ball of radius1 in d dimensions.

Let the distributionD onX be a point mass at the origin with weight1− β and label1 and a point
mass at(1, 0, 0, ..., 0) with weightβ and label−1 half the time and label0 for the other half the
time.

Let the hypothesis space be linear with weight vectors satisfying ||w|| ≤ 1.

Let the loss of interest be squared loss:l(h(x), y) = (h(x)−y)2 which has infinite slope asymmetry.

Observation 6.1. For the example above, IWAL(loss-weighting) requires only an expectedβ frac-
tion of the labeled samples of passive learning to achieve the same loss.
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Proof. Passive learning samples from the point mass at the origin a(1 − β) fraction of the time,
while active learning only samples from the point mass at(1, 0, 0, ..., 0) since all predictors have the
same loss on samples at the origin.

Since all hypothesish have the same loss for samples at the origin, only samples notat the origin
influence the sample complexity. Active learning samples from points not at the origin1/β more
often than passive learning, implying the theorem.

7 Implementation

We now explain how to efficiently implement the learning algorithm in the important case where
H is the class of bounded-length linear separators{u ∈ R

d : ‖u‖2 ≤ B} and the loss function is
convex:l(z, y) = φ(yz) for convexφ.

Each iteration of Algorithm 2 involves solving two optimization problems, both of which are defined
over a restricted hypothesis set

Ht =
⋂

t′<t







h ∈ H :
1

t′

t′
∑

i=1

Qi

pi
l(h(xi), yi) ≤ L∗

t′ + ∆t′







.

Replacing each hypothesish by its corresponding vectoru, this becomes

Ht =
⋂

t′<t







u ∈ R
d : ‖u‖2 ≤ B and

1

t′

t′
∑

i=1

Qi

pi
φ(u · (yixi)) ≤ L∗

t′ + ∆t′







.

Sinceφ is convex, this feasible regionHt is an intersection of convex constraints.

The first optimization problem in Algorithm 2 computesL∗

T = minu∈HT

∑T
i=1

Qi

pi
φ(u · (yixi)).

This is a convex program.

The second optimization problem ismaxu,v∈HT
φ(y(u · x)) − φ(y(v · x)), y ∈ {+1,−1} (where

u, v correspond to functionsf, g). It is not hard to see that ifφ is nonincreasing in its argu-
ment (as it is for0–1 loss, or hinge loss, or logistic loss), then the solution of this problem is
max{φ(−A(−x)) − φ(A(x)), φ(−A(x)) − φ(A(−x))}, whereA(x) is the solution a convex pro-
gram:A(x) ≡ minu∈HT

u · x. The two cases inside the max correspond to the choicesy = 1 and
y = −1, respectively.

Thus Algorithm 2 can be efficiently implemented for nonincreasing convex loss functions and
bounded-length linear separators.

In our experiments below, we use an even simpler implementation. For the first problem (deter-
mining L∗

T ), we minimize overH rather thanHT . The final hypothesishT is then consistent (by
Theorem 3.1) but doesn’t necessarily satisfy the large deviation bound of Theorem 4.1 unless this
hT happens to lie inHT . For the second problem, instead of usingminu∈HT

u · x, in which HT

is defined byT − 1 convex constraints, we simply enforce the very last of theseconstraints (which
corresponds to timeT −1). This yields a larger feasible region foru and could thus lead to an overly
conservative choice ofpt; but once again, the consistency ofhT is assured.

7.1 Experiments

Recent consistent active learning algorithms [3, 9] have suffered from problems of computational
intractability. This section shows that importance weighted active learningis practical.

We implemented IWAL(loss-weighting) for linear separators under logistic loss. As outlined above,
the algorithm involves two convex optimizations as subroutines. These were coded using log-barrier
methods (section 11.2 of [6]). We tried out the algorithm on the MNIST data set of handwritten digits
by picking out the 3’s and 5’s as two classes, and choosing 1000 exemplars of each for training and
another 1000 of each for testing. We used PCA to reduce the dimension from 784 to 25. The
algorithm uses a generalization bound∆t of the form

√

d/t; since this is believed to often be loose
in high dimensions, we also tried a more optimistic bound of1/

√
t. In either case, active learning
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achieved very similar performance (in terms of test error ortest logistic loss) to a supervised learner
that saw all the labels. The active learner asked for less than a third of the labels. More details are
in the appendix.
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Figure 1: The right column corresponds to the same setup and data set as the left column, but using
a more optimistic generalization bound (described in section 6.1). Top: Logistic loss on test set, as
the number of points seen grows from0 to 2000. The solid line is supervised learning and the dotted
line is active learning. Middle: A similar plot for the test error. In both cases, supervised and active
learning give very similar results. Bottom: Number of queries is sublinear in the number of points
seen.

8 Bootstrap instantiation of IWAL

This section discusses another practical implementation of the IWAL skeleton, which fills in the
rejection threshold subroutine with a very simple bootstrapping scheme.
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Algorithm 3 bootstrap(unlabeled examplext, history)
Parameters:b (the length of the initial bootstrap sample),k (the number of predictors used in voting),
pmin (a lower bound on the rejection threshold)

• If t ≤ b, setpt = 1.

• If t = b, train predictorsh1, ..., hk on the initial sample(x1, y1, ct), . . . , (xb, yb, ct). De-
note the set byH .

• If t > b, setpt = pmin + (1 − pmin)
[

maxy,hi∈H,hj∈H L(hi(x), y) − L(hj(x), y)
]

.

• Returnpt.

 200

 300

 400

 500

 600

 700

 200  400  600  800  1000  1200  1400  1600  1800  2000

te
st

 e
rr

or
 (

ou
t o

f 2
00

0)

number of points seen

supervised
active

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0  500  1000  1500  2000

nu
m

be
r 

of
 p

oi
nt

s 
qu

er
ie

d

number of points seen

supervised
active

Figure 2: Experiments withbootstrap. Left: Test error, as the number of unlabeled points seen
grows from 200 (the size of the initial batch, where active learning queries every label) to 2000.
Right: Number of queries as a function of the number of pointsseen.

Thebootstraproutine in Algorithm 3 simplifies Algorithm 2 by replacing the version space with an
approximate version space given by bootstrap trained predictors. Since the version space is only ap-
proximate, the rejection threshold is lower bounded by(1−pmin). The optimization on the collected
importance-weighted training set can be done using any importance-weighted passive learning algo-
rithm for the desired loss function. Thus,bootstrapreduces active learning to importance-weighted
batchpassive learning. The latter can be further reduced to batchpassive learning using some gen-
eral conversion mechanism such as Costing [18].

The results of experiments with the bootstrapping scheme are reported in Figure 2. The same MNIST
dataset was used as in section 6.1. We implementedbootstrapfor 0–1 loss with the following
parameters: the initial sample contained 1/10th of the training dataset (b=200),k = 10, andpmin =
0.1. The Costing technique [18] was used to reduce from importance-weighted binary classification
to binary classification. (The same technique can be appliedto any loss function.) The induced
binary classification problem was then solved using a decision tree learner (J48) from Weka [19].

For simplicity, we did’t retrain the predictors for each queried point, i.e., the predictors are trained
once on an initial batch ofb examples. The final predictor is trained on the collected importance-
weighted training set. IWAL(bootstrap) performed similarly to passive learning with J48, using only
two-thirds of the labels.

Unless stated otherwise, the following experiments use theCosting reduction to remove the impor-
tances, and trees.J48 (in weka) as a base classifier learner.The setH (with 10 classifiers) is trained
only once after bootstrapping on10% of the training set. Each experiment was run once; all runs
tested are reported.
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Figure 4:adult dataset (binary): roughly 4000 training and 2000 test examples, bootstrapped on the
initial 10%. Queried 40.0%.
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Figure 5: pima dataset (binary): 538 training and 230 test examples, bootstrapped on the initial
10%. Queried 67.6%.
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Figure 4:yeastdataset (binary): roughly 1000 training and 500 test examples, bootstrapped on the
initial 10%. Queried 82.2%.
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