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Abstract

We propose an importance weighting framework for activalydling samples.
This technique yields practical yet sound active learnilggpthms for general
loss functions. Experiments on passively labeled data ghaivthis approach
effectively reduces the label complexity required to ackigood prediction per-
formance on many learning problems.

1 Introduction

Active learning is typically defined in contrast to the startipassive learning setting. In passive
learning, all of the labels for an unlabeled dataset areesiga at once, while in active learning
the learning algorithm interactively chooses which unlabexamples to label. The great hope of
active learning is that interaction can substantially w=dthe number of labels required, making
solving problems via machine learning more practical. Tope is known to be valid in certain
special cases where the number of labels required is Ibgaigtin the number required for passive
learning. Canonical special cases include thresholds ime &I linear separators with a spherically
uniform unlabeled data distribution [10].

For a long time, active learning algorithms (such as [7, @¥@)e not robust to noise, and could even
yield inconsistent results (i.e., they are not guaranteecbnverge to the optimal predictor, even
when given an infinite labeling budget).

This problem has recently been addressed in two threadssefiren. One approach [3, 9, 12]

constructs sample complexity bounds based algorithmsfgiaty standard PAC-type guarantees for
supervised learning. The second uses importance weightstd bias due to to active learning [2,

16].

Problems with Existing Active Learning. The PAC-guarantee active learning algorithms have yet
to see practical use for a few reasons:

1. In many applications, some loss other tiiaih loss is important. Yet, these algorithms use
the flatness ofi—1 loss with respect to parameters of the hypothesis spacetd Ebeling
some examples. This technique does not apply to most otbeflactions.

2. These algorithms rely on generalization bounds thatfe® quite loose in practice. When
faced with writing a practical active learning algorithnsing these bounds can impose
much greater labeling requirements than might be fundaatigmtecessary.

3. The PAC-guarantee algorithms reason use bounding loganoentire set of hypotheses
which is often computationally intractable (see [8] for aiception for tree-structured hy-
potheses).

The importance weighted approaclescomputationally tractable algorithms. However, theirlana
ysis and associated guarantees have some drawbacks:



1. The settings in which an importance weighting approackkss limited compared to
what we assume here. For example[2] considers linear reptations and places some
assumptions on the data generation process.

2. The analysis in these works is asymptotic rather than gefiabel complexity. Label com-
plexity is of paramount importance in active learning, hessaotherwise simpler passive
learning approaches work fine. Furthermore, choosing thgoitance weights in a poor
manner can result in very poor label complexity performance

Importance Weighted Active Learning. We address the problems above with a new algorithm
satisfying PAC-style label complexity guarantees. Thewsal idea is to carefully choose rejection
sample probabilities for samples, and use derived impoeaveights to bias the learning process.

To deal with other loss functions, we use the variation irslamongst remaining hypotheses to
create a distribution from which to rejection sample. If iv@bability of asking for a label i
according to this distribution, then the corresponding am@nce weight is proportional to/p.
This simple method maintains the consistency propertydtivalearning: for any distribution and
any hypothesis class, active learning eventually congeti@éhe optimal hypothesis in the class.

The fundamental contribution of this paper is a family of giieal general purpose active learn-
ing algorithms with bounded label complexity. After introzing basic definitions in section 2, we
present an importance weighting algorithm skeleton (IWAL}ection 3, and prove that all algo-
rithms defined by IWAL have a bounded worst-case label conrityléo find ane-optimal predictor.
Section 4 explores a choice of this subroutine and provddhlearesulting algorithm, IWALIpss-
weighting, has worst-case label complexity requirements withingstant factor of passive learn-
ing. In section 5, we analyze the label complexity, provimghba more general lower bound than
earlier work [13] and an upper bound for IWAloss-weightinybased on a form of the disagreement
coefficient [12] generalized to other losses.

We conduct practical experiments with two IWAL algorithmd.he first is a specialization of
IWAL ( loss-weightiny to the convex loss with linear representation case wheazeatforithm be-
comes tractable via convex programming (section 7). ThersktWAL(bootstrap uses a simple
bootstrapping scheme, which reduces active learning telfpa@assive learning in a manner which
requires only a small amount of additional computationtjee®). These experiments are extremely
encouraging: in every case they yield substantial redostio label complexity compared to passive
learning, without compromising predictive performanche$e experiments suggest that IWAL is a
practically useful realization of the theoretical clainatfactive learning can reduce the label com-
plexity without compromising prediction performance ofetg compared to passive learning[4].

1.1 Additional Prior Work

Naoki Abe and Hiroshi Mamitsuka[l] proposed active leagnaiigorithms based on boosting and
bagging which are similar (at the surface) to the IWAL(Bdi&p) algorithm used experimentally in
section 8. One critical difference is that these earliepatgms are not consistent in the presence
of adversarial noise: they may never converge to the cose@lction, even given an infinite label
budget. In contrast, IWAL(Bootstrap) is consistent andsfias further guarantees (see section 2).

Wiens [17] investigated linear regression in the preseri@eantaminating signal added into the
target variable. This paper addresses a fundamentallgrdiit problem from the one addressed
here, since we are actually choosing whether or not to gathéuse a target variable, and we are
not concerned with a contaminating signal.

2 Preliminaries

Let X be the input space andthe output space. We consider active learning in the stiregegtting
where at each stefp a learner observes an unlabeled example X and has to decide whether or
not to query for the labej, € Y. The learner works with a hypothesis spdée= {h : X — Z},
whereZ is some prediction space.

The algorithm is evaluated with respect to a given loss fiondt: Z x Y — [0,00). The most
common0-1 loss is given byl(z,y) = 1(y # z), whereY = Z = {—1,1}. The following



examples address the binary cdse= {—1,1} with Z = R: I(z,y) = (1 — y2z)+ (hinge loss),
I(z,y) = In(1 + e~¥#) (logistic l0ss),l(z,y) = (y — 2)* = (1 — y2)? (squared loss),(z,y) =
ly — z| = |1 — yz| (absolute loss). Since any bounded loss function can bealzed, we assume
that! maps to[0, 1].

3 The Importance Weighting Skeleton

Algorithm 1 describes the basic outline of importance-vagggl active learning (IWAL). IWAL is
parameterized by a subroutimejection-thresholdwhich returns the probability, of requesting
yt, givena, and all previous histonyz;, v;, pi, @; : 1 < ¢ < t}. Later sections explore different
choices for this subroutine. The algorithm maintains a $éalzeled examples seen so far, where
each example is assigned an importance valug; i§ queried, IWAL addgx,, y:, 1/p(t)) to the
set, wherd /p(t) is the importance of predicting on ;.

Algorithm 1 IWAL (subroutinerejection-thresholdninimumpmin)
SetSQ = (.
Fort from 1,2, ... until the data stream runs out

1. Receiver; .
2. Setp, = rejection-thresholfl,, history {x;, y;, pi, Q; : 1 < i < t}).
3. Flipacoin@; € {0, 1} with E[Q;] = p:. If Q: = 1, requesty; and set
St = Si—1 U{(z¢, Y, Pmin/Pe) }»
elseS; = S;_;.
4. Leth, = argminpen Y, opes, ¢ LR(2), y).

Let D be the underlying probability distribution o x Y. The expected loss ¢f € H on D is
given byLp(h) = E¢ 4)~pl(h(z),y). The importance-weighted estimate at tifiés

T
Lelh) = 7 3 (o))

It is not hard to see thdELr(h) = L(h), where the expectation is taken over all the random
variables involved. However, there is a danger of the vagdieing high. Theorem 4.1 gives a fairly
strong large deviation bound fdr;- (%), provided that the probabilities are chosen carefully.

3.1 IWAL Safety

A desirable property of any learning algorithmdsnsistencyGiven an infinite budget of unlabeled

and labeled examples, does the algorithm converge to thepbssible predictor? Several older
active learning algorithms [7, 10] do not satisfy this basehuarantee; in particular, any algorithm
requiring realizability is inconsistent in the presencenofse. We prove that IWAL algorithms are

consistent, as long as is bounded away fromi. Furthermore, we prove that the label complexity
required is within a constant factor of supervised learnimtipe worst case.

Theorem 3.1. For all distributions D, for all finite hypothesis classefd, if there is a constant
Pmin > 0 suchthap; > pyjpforall 1 <t < T, then for anye > 0

V2 [In|H|+In%

P |Lr(h) — L(h) > e 7

< 0.

whereh* = argminpey Lp(h).

Examining this result and comparing with known sample caxity bounds in supervised learning

(For example, see [14] Corollary 4.2), we see that the labeigexity is at mosth—. times a
min
supervised algorithm’s label complexity.



The proof is a simple modification of standard results to us#aatingale inequality. In realistic
applications using 32 bit floats to represent real numbbaeshiypothesis space is discrete and the
bound above is often only a small constant factor worse th@@-alimension bound. this can also
be directly extended to VC spaces by appropriate inserti@noartingale inequality.

Proof. Fix D and omitD from the subscripts. For a hypothegisc H, consider a sequence of
random variable#/y, . . ., Ur with U, given by

Us = i (%zm(xt),yt) - L(h)) |

Sincepmin/p: < 1, [Us| < 1. The sequencg; = Ele U; is a martingale, letting/y = 0. Indeed,
foranyl <t < T,

EZ | Zi—1,....20) =EQ, 4, (Ut + Zt—1 | Zt—1,...,Z0)
— Zee1 4 D B | U@ ) = L) | Zicn, o 2
=Zi—1+Pmin - Bevy [1(R(xe),y:) — L(h) | Zi—1,..., Z0] = Zy—1.
ObservethatZ; 1 — Z;| = |Us1| < 1forall 0 <t < T. Applying Azuma’s inequality,
P[Zr > WT)| < e /2
forany A > 0. Rewriting, we get
.
PminVT
We want\/pminVT < €/2, 0r A < pmineVT /2.
Applying the union bound, we have for @lle H simultaneously

P |Ly(h) — L(h) <eN/2,

P [Lr(h) — L(h) > ¢/2] < |Hle " "min” /.

Changing variables fromto §, we get that:
2 |/In|H|+Ini
P |Lp(h) — L(h) > v2 | [Inlf] +Ing < 6.
Pmin T

4 Importance-Weighted Active Learning

Next we instantiate the rejection threshold subroutinefAL, and prove that the resulting algo-
rithm IWAL(loss-weightinyhas several desirable properties. Step 4 of IWAL is modiftedo the
minimization overH; instead ofH.

IWAL ( loss-weightinydepends on a sample complexity bound derived quantity:

2
A, = \/§ In t(t+ 1)|Hy ,
t )

wheret is the index of the sample observed.

4.1 A generalization bound

A fairly strong large deviation bound can be given for e&ghoutput by IWAL(loss-weighting).
Note that this theorem is not a corollary of theorem 3.1 beedWAL (loss-weighting can set the
importance weight to.



Algorithm 2 loss-weightindz, history{x;, y;, pi, Q; : 1 < i < t})
1. Initialize Hy = H.

2. Update 1 Q
Lt‘lzhth 1t—1z

1« Q; N
= {h (S Ht—l . m Z p—l(h($7),y7) S Ltfl + At—l}
i=1

3. REturnpt = mMaXf geHy,yeY l(f(l‘), y) - l(g(.]?),y)

Theorem 4.1. For all learning problemsD, for all hypothesis classe#, for all 6 > 0, with
probability at leastl — §, the hypothesis output BWAL( loss-weightingat any timel” satisfies

L(hr) — hmln L(h) < 2Ap_;.

Roughly speaking, this bound shows that the sample contpleiWAL (loss-weightingis within
a constant factor of supervised learning, sifite ; C H. This safety guarantee also suggests that
the algorithm can sometimes do much better, becalyse; might be much smaller thaH.

The proof of this theorem rests on the following lemma.

Lemma 1. For all learning problemsD, for all hypothesis classed, for all § > 0, with probability
atleastl — ¢, for all 7"and for all f,g € Hr,

Lr(f) = Lr(g9) < L(f) — L(g) + Ar.

Proof. We'll allow failure probabilityd/T(T + 1) attimeT'. Pick anyT'.
Pickanyf,g € Hy. Thenf,g € Hy, Hs, ..., Hyr_;. It follows that for allt < T,

pe > 1(f(we),ye) — Ug(we), y2)-
DefineZ; = %4 (I(f (1), y:) — l(g(xe), 1)) — (L(f) — L(g))- Then

1240 < a0 0) — Uaan)w)| + 1L() — Lo)| < 2
Also,
E[Zt | Zl,...,Zt_l]
- E {E {% ! — - -
- Tt,Yt,Pt Qt e ( (f(xt)vyt) l(g(xt)vyt)) (L(f) L(g)) Lty Yt Dt Zlv"'vzt—l

= Bopyp [1(f(20)90) = Ug(ee),ue) — (L() = L(9) | Z1, -, Zia] = 0.

ThereforeZ,, Z5, . . . is a martingale difference sequence.

(iii) Applying Azuma’s inequality to this sequence, we have
P[Lr(f)— Lr(g9) = L(f) — L(g9) + Ar]

T (Z <(]‘it( (F(X),Y:) = 1(g(Xy),Y2)) — (L(f) — L(g)))) > Ar

T
P ZZt > TAr

t=1

S TATN g
exp 3 = —T(T—|—1)|HT|2'

(iv) Now do a union bound over afl, g € Hrp. O

=P

IN




Proof. (of Theorem 4.1) Start by assuming that the § probability event of Lemma 1 holds.
By induction, we can prove that" = argmin ey L(h) satisfiesh* € Hp forall T'.
The base case i = 1, where it clearly holds. Now suppose it holdsigtwe’ll show it remains
true at7" + 1. Lethy be the minimizer ofLr(-) over Hy. By Lemma 1,
Lr(h*) = Lr(hr) < L(h*) = L(hr) + Ar < Ar.
ThusLyp(h*) < L% 4+ Ap and hencé* € Hry .
Next we show that for any, g € Hr we haveL(f) — L(g) < 2Ar_;. By Lemma 1,

L(f)—L(g) < Lr_1(f)—Lr-1(9) +Ar_1
< Ly +Ar_q)—Lp_ 1 +Apoy = 2A7_4.

Since the optimal hypothesis remaindii- and the difference in error rates is bounded, the hypoth-
esishr must satisfyL(hr) < L(h*) + 2A7_1. O

5 Label complexity

Suppose we see a stream’Dfexamples, some of whose labels we query. The analysis of the
previous section tells us that at the end of this procesdirtheclassifier is comparable (in terms of

its loss on the underlying distribution) to the classifieatttvould have been chosen by a supervised
learner that saw all” labels.

So, how many of thos&" labels does the active learner request? Earlier work [9listlithis
question under an active learning scheme designed spdygifma0-1 loss. For learning problems
with boundedlisagreement coefficiefit2] (to be defined shortly), the number of queries was found
to be

O(T + dlog®T)
whered is the VC dimension of the function class, ands the best error rate achievable on the
underlying distribution by that function class.

The termnT is inevitable for any active learning scheme, as we dematesin the next section. The
remaining term has just a polylogarithmic dependenc®@ pwhich bodes well for active learning.

The method of this paper is substantially more general,usexh allows loss functions other thesn
1loss. To analyze label complexity, we generalize the natfatisagreement coefficient to arbitrary
loss functions. Under similar conditions to the earlieutesve find the number of queries is

@) (nT+ \/dT log? T) ,

wheren is now the best achievable loss by the function class. Thataide 7" term is still there,
and the second term is not as impressive as before, but wlinear. With more sophisticated
generalization bounds, it may be possible to reduce this,tat least fo0—1 loss.

5.1 Alower bound on label complexity

In recent work [13], it was shown that for any nontrivial hypesis clasg/ and anyn > ¢ > 0,
there exists a data distribution (ov&r x Y’) such that:

e The optimal error rate achievable B¥ is 7.

e Any active learner that finds € H with error rate< 7 + ¢ (with probability > 1/2) must
maken?/e? queries.

We now strengthen this lower bounddg? /¢, whered is the VC dimension ofd.

Before getting into the details, let's see how this lower fbuelates to the label complexity rates
mentioned above. It is well-known that if a supervised leasees” examples (for an{” > d/7),

its final hypothesis has error boundedipy- /dn/T [5]. Thisisn + e fore = \/dn/T. The lower

bound now implies that an active learner must make at lbgste> = T queries. This explains the
7T leading term in all the label complexity bounds we have dised.



Theorem 5.1. For anyn, e > 0 such thake < n < 1/4, for any input spaceX and hypothesis
classH (of functions mappingX into Y = {+1,—1}) of VC dimensionl < d < oo, there is a
distribution overX x Y such that (a) the best error rate achievablebis »; (b) any active learner
seeking a classifier of error at mogt- ¢ must make?(dn? /%) queries to succeed with probability
at least3/4.

Proof. Pick a set ofl pointszy, zo, . . . , 24 Shattered by . Here is the distribution oveX x Y':

e Pointz; has probabilityl — 3, while each of the remaining; has probability3/(d — 1),
whereg = 2(n + 2¢).

e At x4, the response is always= 1. At z;,i > 1, the response ig = 1 with probability
1/2 + ~b;, whereb; is either+1 or —1, andy = 2¢/8 = ¢/(n + 2¢) < 1/4.

Nature starts by pickings, ..., bq uniformly at random. This defines the target hypothésis
whereh*(z1) = 1 andh*(z;) = b;. The errorrate oh*is 5 - (1/2 —~) =n.

An active learner must determine the hiddendiof at least a quarter of the points, . .., xy;
otherwise (with probability> 1/2) it returns a hypothesis that is wrong on at least a quarténef
pointsz; and thus has error at leagt- (1/4) - 6 - v =n +e.

To correctly determine a hidden Hif with probability > 1/2, the learner needs to makg1/~?)
queries to that;. Thus the active learner needgd - (1/7)?) = Q(dn?/e?) queries in all. O

This is the very same example that is used to give lower boandaipervised sample complexity
(see, for instance, section 14.4 of [11]), although in tleestecthe lower bound i#; /2. The bound

for active learning is smaller by a factor gfbecause the active learner can avoid making repeated
gueries to the “heavy” point,, whose label is immediately obvious.

5.2 An upper bound on label complexity

This subsection is devoted to proving that IWAdgs-weightiny can yield substantial label com-
plexity improvements over passive learning. We first désca few concepts: a broader class of loss
functions tharb—1 loss, a distance metric on hypotheses bounding the logs@ifte between these
hypotheses, and a generalized disagreement coefficienth&keprove that for this broader class,
active learning performs better than passive learning vehgeneralized disagreement coefficient is
small.

5.2.1 A subclass of loss functions

We give label complexity upper bounds for a certain clases lfunctions that includés-1 loss
and logistic loss but not squared loss. Specifically, we iredhat the loss function has bounded
slope asymmetnas defined below.

Recall the earlier notation: the set of classifiersfis= {h : X — Z}, whereZ is a response space,
and the loss function is: Z x Y — [0, c0). In what follows, the label space¥ = {—1,+1}.
Definition 1. Theslope asymmetrgf a loss functiori: Z x Y — [0, 00) is

Cl = sup m?.LXyGY Z(Z7y) B Z(Z//7y) ]
z,2'€Z mlnyEYl(Zvy) - Z(Z vy)

Intuitively, the slope asymmetry is the maximum ratio (ogkoices of truthy) of the derivative of
the loss as a function of the prediction. This quantity isegahzed to nondifferentiable losses via
discrete differences.

It is easy to check that the slope asymmetry fer 0—1 loss, andx for hinge loss. For convex loss
functions (of the formi(z, y) = ¢(yz) for convexy) the following lemma helps in bounding.

Lemma 2. Let ¢ be a differentiable convex function defined on some intéfval (—B, B) C R.
Suppose thafy < |¢/(z)] < C; forall z € Z. Then forany, 2z’ € Z,and anyy € {—1,+1},

Colz = 2| < llg(z,y) — lo(2', )| < Culz — 7|



wherely(z,y) = ¢(zy). In particular, i has slope asymmetry at mast/C.

Proof. By the mean value theorem, there is safne Z such that

lo(z,9) —ls(2',y) = d(yz) — d(y2') = ¢'()(yz —y2').
Thus|ly(z,y) — (2", y)| = |¢'(§)| - |# — #/|, and the rest follows from the bounds ¢h O

For instance, this gives a bound on the slope asymmetry dbthistic loss function.
Corollary 1. The logistic loss functiori(z,y) = In(1 + e~¥#), defined on label spac¥ =
{—1,+1} and response spade B, B], has slope asymmetry at mdst- e”.

Proof. The logistic functiony satisfiesl /(1+e”) < |¢/| < 1. The rest follows from Lemma 2.0

5.2.2 Topologizing the space of classifiers

We introduce a simple distance function on the space ofifilerss

Definition 2. For any f,g € H and distributionD definep(f,g) = E,wpmax, |[I(f(z),y) —
I(g(x),y)|. Foranyr > 0, let B(f,r) = {g € H : p(f,g) <1}

Let L* = minyey L(h), and suppose it is realized &t. We now relate convergence in loss,
L(ht) — L(h*), to convergence in the newly topologized classifier spade, h*) — 0. The ratio
between these rates of convergence can be expressed indethesslope asymmetry of the loss
function.

Lemma 3. For any distributionD, if the loss function has slope asymmeithy then
L(h) < L(h*)+r implies h € B(h*,Ci(2L* + 1)).
Proof. Pick anyh € H with L(h) < L(h*) +r

p(h, h") EacND maxy [[(h(z),y) — 1(h" (2),y)]

Ey y~pll(h(z),y) = 1(h7(z),y)]

( 2y~ [l (1), Y)] + Eq y~p[l(h" (2),y)])
Cz( (h) + L(h")) < Ci(2L" + 7).

A IA

5.2.3 A generalized disagreement coefficient

When analyzing thed? algorithm [3] for active learning undéx-1 loss, Hanneke found [12] that
its label complexity could be characterized in terms of wiatalled thelisagreement coefficient
of the learning problem. We now generalize this notion tateaty loss functions.

Definition 3. The disagreement coefficient is the infimum valugsafch that for all-,

E;nD Supyep(ne ) SUP, [L(h(x),y) — L(h*(z),y)] < Or.

Here is a simple example for linear separators under corngsx |

Lemma 4. Supposé{ consists of linear classifiefsu € R? : ||u|| < B} and the data distribution
D is uniform over the surface of the unit spheréiifi. Suppose the loss functionlig, y) = ¢(yz)
for convexp with Cy < |¢| < C;. Then the disagreement coefficient is at nfast/Co)v/d.

Proof. Let h* be the optimal classifier, arfdany other classifier witp(h, h*) < r. Letu*,u be
the corresponding vectors &?. Using Lemma 2,

P2 Beupswpll(h(@),y) — 1 (@), )] = CoBanplh(e) — 1 (2)]
Yy
Ju— )

= CoEw~D|(u—u*)-x| Z CO \/E



Thus for anyh € B(h*,r), we have that the corresponding vectors satjsfy— v*|| < r/d/Cy.
We can now bound the disagreement coefficient.

E,.p sup supll(h(x),y)—I(h"(x),y)
heB(h*,r) Yy
< CiEzop sup  |h(z) — h*(2)]
heB(h*,r)
rvd

CyEzepsup{|(u —u*) - x| : ||lu—u*|| < r\/E/C'O} < C oA
0

IN

5.2.4 Upper bound on label complexity

Finally, we give an upper bound on label complexity for leagiproblems that have bounded dis-
agreement coefficient, and loss functions that have bousidge asymmetry. Recall that the algo-
rithm sees a stream @f unlabeled examples and chooses to query some of their labels

Theorem 5.2. For all learning problemsD and hypothesis spacés, if the loss function has slope
asymmetry(;, and the learning problem has disagreement coefficietiten the expected number
of labels requested by IWAbEs-weightingduring the firstl” iterations is at most

v (vro({rl))

whereL* is the minimum loss achievable éhby H.

Proof. Let h* be an optimal classifier i&/, achieving losd.*. Pick any timet. By Lemma 1,H; C
{h€ H:L(h) <L*+2A;_1}. Thus, by Lemma 3H; C B(h*,r)forr = Cj(2L* + 2A:_4).

The expected value ¢f; (over the choice of at timet) is at most

E;~p sup supl|l(f(z),y) —Ug(x),y)] < 2Es.p sup sup|l(h(z),y) — (A" (x),y)]
fg€Hy Y heH; y

< 2Ew~D sup sup|l(h(x),y) - l(h*(l),y)|
heB(h*,r) Yy

< 20r = 40-C)- (L* + A_y).

Summing overt = 1,...,T, we get the lemma. O

Section 2 in the appendix gives an example showing that ibssiple to achieve substantial label
complexity reductions over passive learning even whenltpgesasymmetry is infinite.

6 Other Examples of Low Label Complexity

It's also sometimes possible to achieve substantial ladrapdexity reductions over passive learning,
even when the slope asymmetry is infinite.

Example 1. Let the spaceX be the ball of radiud in d dimensions.

Let the distributionD on X be a point mass at the origin with weight- 5 and labell and a point
mass at(1,0, 0, ...,0) with weight and label—1 half the time and labeb for the other half the
time.

Let the hypothesis space be linear with weight vectorsfgatg||w|| < 1.
Let the loss of interest be squared lo&8i(z), y) = (h(x)—y)? which has infinite slope asymmetry.

Observation 6.1. For the example above, IWAbEs-weightinyrequires only an expected frac-
tion of the labeled samples of passive learning to achieges#ime loss.



Proof. Passive learning samples from the point mass at the origin-a 3) fraction of the time,
while active learning only samples from the point masd af, 0, ..., 0) since all predictors have the
same loss on samples at the origin.

Since all hypothesig have the same loss for samples at the origin, only sampleatribe origin
influence the sample complexity. Active learning samplesfipoints not at the origin /5 more
often than passive learning, implying the theorem. O

7 Implementation

We now explain how to efficiently implement the learning altdon in the important case where
H is the class of bounded-length linear separafarss R? : ||u||? < B} and the loss function is
convex:l(z,y) = ¢(yz) for convexe.

Each iteration of Algorithm 2 involves solving two optimiizan problems, both of which are defined
over a restricted hypothesis set

t/
1 i N
H = (|{heH: FZ%l(h(azi),yi) < L + Ay
i=1

t'<t

Replacing each hypothegidy its corresponding vectar, this becomes

t/
1 Qi *
H = (J{ueR: |lu|><B and > Eqﬁ(u (i) < Li + Ap
i=1

t'<t
Sinceg is convex, this feasible regiaH; is an intersection of convex constraints.

The first optimization problem in Algorithm 2 computés. = min,e . Zle %qﬁ(u (yizq)).
This is a convex program.

The second optimization problemiisax,, e, ¢(y(u - 2)) — ¢(y(v - x)), y € {+1, -1} (where
u,v correspond to functiong, ¢g). It is not hard to see that i is nonincreasing in its argu-
ment (as it is for0—1 loss, or hinge loss, or logistic loss), then the solutionta$ fproblem is
max{¢p(—A(—z)) — ¢(A(x)), p(—A(z)) — ¢(A(—=x))}, whereA(z) is the solution a convex pro-
gram: A(z) = min,ep, u-x. The two cases inside the max correspond to the chgiced and
y = —1, respectively.

Thus Algorithm 2 can be efficiently implemented for noniresimg convex loss functions and
bounded-length linear separators.

In our experiments below, we use an even simpler implemientat-or the first problem (deter-
mining L), we minimize overH rather thanHr. The final hypothesig is then consistent (by
Theorem 3.1) but doesn’t necessarily satisfy the largeatievi bound of Theorem 4.1 unless this
hr happens to lie inHy. For the second problem, instead of usingh,c ., « - z, in which Hp

is defined byl" — 1 convex constraints, we simply enforce the very last of tlesestraints (which
corresponds to tim@& — 1). This yields a larger feasible region forand could thus lead to an overly
conservative choice gf;; but once again, the consistency/af is assured.

7.1 Experiments

Recent consistent active learning algorithms [3, 9] haWtesed from problems of computational
intractability. This section shows that importance wegghéctive learningis practical.

We implemented IWALlpss-weightinyfor linear separators under logistic loss. As outlinedwaho
the algorithm involves two convex optimizations as subireg. These were coded using log-barrier
methods (section 11.2 of [6]). We tried out the algorithmizeMNIST data set of handwritten digits
by picking out the 3's and 5’s as two classes, and choosing &28mplars of each for training and
another 1000 of each for testing. We used PCA to reduce therdiion from 784 to 25. The
algorithm uses a generalization boufd of the form/d/¢; since this is believed to often be loose

in high dimensions, we also tried a more optimistic bound 6§/z. In either case, active learning
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achieved very similar performance (in terms of test erraest logistic loss) to a supervised learner
that saw all the labels. The active learner asked for less ahthird of the labels. More details are

in the appendix.
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Figure 1: The right column corresponds to the same setup atedset as the left column, but using
a more optimistic generalization bound (described in seddi.1). Top: Logistic loss on test set, as
the number of points seen grows frénto 2000. The solid line is supervised learning and the dotted
line is active learning. Middle: A similar plot for the testrer. In both cases, supervised and active
learning give very similar results. Bottom: Number of qesris sublinear in the number of points

seen.

8 Bootstrap instantiation of IWAL

This section discusses another practical implementatidgheoIWAL skeleton, which fills in the
rejection threshold subroutine with a very simple boofgtiag scheme.



Algorithm 3 bootstragunlabeled example,, history)

Parametersh (the length of the initial bootstrap samplé)the number of predictors used in voting),
Pmin (@ lower bound on the rejection threshold)

o If t <D, setp; = 1.

e If ¢t = b, train predictorshy, ..., by, on the initial sampldxzy, y1,¢t), .- ., (X, yp, ¢t). De-
note the set by{.
o If t >0, setp, = Pmin T+ (1 —pmin)[maxy,h,;eH,hjeH L(hi(x),y) — L(hj($)7y)]-
e Returnp;.
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Figure 2: Experiments wittbootstrap Left: Test error, as the number of unlabeled points seen
grows from 200 (the size of the initial batch, where activarihéng queries every label) to 2000.
Right: Number of queries as a function of the number of pcéetsn.

The bootstragoutine in Algorithm 3 simplifies Algorithm 2 by replacingetversion space with an
approximate version space given by bootstrap trained gi@di. Since the version space is only ap-
proximate, the rejection threshold is lower boundedbypyyin,)- The optimization on the collected
importance-weighted training set can be done using anyntapce-weighted passive learning algo-
rithm for the desired loss function. Thusgotstrageduces active learning to importance-weighted
batchpassive learning. The latter can be further reduced to hzdskive learning using some gen-
eral conversion mechanism such as Costing [18].

The results of experiments with the bootstrapping schemesgiorted in Figure 2. The same MNIST
dataset was used as in section 6.1. We implemehtetstrapfor 0—1 loss with the following
parameters: the initial sample contained 1/10th of theingidatasett=200),k = 10, andpyin =
0.1. The Costing technique [18] was used to reduce from impogameighted binary classification
to binary classification. (The same technique can be appdiexhy loss function.) The induced
binary classification problem was then solved using a decisee learner (J48) from Weka [19].

For simplicity, we did't retrain the predictors for each gieel point, i.e., the predictors are trained
once on an initial batch df examples. The final predictor is trained on the collectedartgnce-
weighted training set. IWALifootstrapperformed similarly to passive learning with J48, usingyon
two-thirds of the labels.

Unless stated otherwise, the following experiments usé€thating reduction to remove the impor-
tances, and trees.J48 (in weka) as a base classifier ledhveesetH (with 10 classifiers) is trained
only once after bootstrapping d% of the training set. Each experiment was run once; all runs
tested are reported.
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