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Abstract

We state and analyze the first active learning algorithm which works in the presence
of arbitrary forms of noise. The algorithm, A2 (for Agnostic Active), relies only
upon the assumption that the samples are drawn i.i.d. from a fixed distribution. A2

achieves an exponential improvement (i.e., requires only O
(
ln 1

ε

)
samples to find

an ε-optimal classifier) over the usual sample complexity of supervised learning,
for several settings considered before in the realizable case. These include learning
threshold classifiers and learning homogeneous linear separators with respect to an
input distribution which is uniform over the unit sphere.
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1 Introduction

Traditionally, machine learning has focused on the problem of learning a
task from labeled examples only. In many applications, however, labeling
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is expensive while unlabeled data is usually ample. This observation moti-
vated substantial work on properly using unlabeled data to benefit learning
[4,9,10,26,30,34,28,33], and there are many examples showing that unlabeled
data can significantly help [8,32].

There are two main frameworks for incorporating unlabeled data into the
learning process. The first framework is semi-supervised learning [17], where
in addition to a set of labeled examples, the learning algorithm can also use
a (usually larger) set of unlabeled examples drawn at random from the same
underlying data distribution. In this setting, unlabeled data becomes useful
under additional assumptions and beliefs about the learning problem. For
example, transductive SVM learning [28] assumes that the target function cuts
through low density regions of the space, while co-training [10] assumes that
the target should be self-consistent in some way. Unlabeled data is potentially
useful in this setting because it allows one to reduce the search space to a set
which is a-priori reasonable with respect to the underlying distribution.

The second setting, which is the main focus of this paper, is active learn-
ing [18,21]. Here the learning algorithm is allowed to draw random unlabeled
examples from the underlying distribution and ask for the labels of any of these
examples. The hope is that a good classifier can be learned with significantly
fewer labels by actively directing the queries to informative examples.

As in passive supervised learning, but unlike in semi-supervised learning, the
only prior belief about the learning problem here is that the target function
(or a good approximation of it) belongs to a given concept class. For some
concept classes such as thresholds on the line, one can achieve an exponential
improvement over the usual sample complexity of supervised learning, under
no additional assumptions about the learning problem [18,21]. In general, the
speedups achievable in active learning depend on the match between the data
distribution and the hypothesis class, and therefore on the target hypothesis
in the class. The most noteworthy non-trivial example of improvement is the
case of homogeneous (i.e., through the origin) linear separators, when the data
is linearly separable and distributed uniformly over the unit sphere [24,23,21].
There are also simple examples where active learning does not help at all, even
in the realizable case [21].

Most of the previous work on active learning has focused on the realizable
case. In fact, many of the existing active learning strategies are noise seeking
on natural learning problems, because the process of actively finding an opti-
mal separation between one class and another often involves label queries for
examples close to the decision boundary, and such examples often have a large
conditional noise rate (e.g., due to a mismatch between the hypothesis class
and the data distribution). Thus the most informative examples are also the
ones that are typically the most noise-prone.
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Consider an active learning algorithm which searches for the optimal threshold
on an interval using binary search. This example is often used to demonstrate
the potential of active learning in the noise-free case when there is a perfect
threshold separating the classes [18]. Binary search needs O(ln 1

ε
) labeled ex-

amples to learn a threshold with error less than ε, while learning passively
requires O

(
1
ε

)
labels. A fundamental drawback of this algorithm is that a

small amount of adversarial noise can force the algorithm to behave badly. Is
this extreme brittleness to small amounts of noise essential? Can an exponen-
tial decrease in sample complexity be achieved? Can assumptions about the
mechanism producing noise be avoided? These are the questions addressed
here.

Previous Work on Active Learning There has been substantial work
on active learning under additional assumptions. For example, the Query by
Committee analysis [24] assumes realizability (i.e., existence of a perfect clas-
sifier in a known set), and a correct Bayesian prior on the set of hypotheses.
Dasgupta [21] has identified sufficient conditions (which are also necessary
against an adversarially chosen distribution) for active learning given only
the additional realizability assumption. There are several other papers that
assume only realizability [20,23]. If there exists a perfect separator amongst
hypotheses, any informative querying strategy can direct the learning process
without the need to worry about the distribution it induces—any inconsis-
tent hypothesis can be eliminated based on a single query, regardless of which
distribution this query comes from. In the agnostic case, however, a hypoth-
esis that performs badly on the query distribution may well be the optimal
hypothesis with respect to the input distribution. This is the main challenge
in agnostic active learning that is not present in the non-agnostic case. Bur-
nashev and Zigangirov [14] allow noise, but require a correct Bayesian prior
on threshold functions. Some papers require specific noise models such as a
constant noise rate everywhere [16] or Tsybakov noise conditions [5,15].

The membership-query setting [1,2,13,27] is similar to active learning con-
sidered here, except that no unlabeled data is given. Instead, the learning
algorithm is allowed to query examples of its own choice. This is problematic
in several applications because natural oracles, such as hired humans, have dif-
ficulty labeling synthetic examples [7]. Ulam’s Problem (quoted in [19]), where
the goal is find a distinguished element in a set by asking subset membership
queries, is also related. The quantity of interest is the smallest number of such
queries required to find the element, given a bound on the number of queries
that can be answered incorrectly. But both types of results do not apply here
since an active learning strategy can only buy labels of the examples it ob-
serves. For example, a membership query algorithm can be used to quickly
find a separating hyperplane in a high-dimensional space. An active learning
algorithm can not do so when the data distribution does not support queries
close to the decision boundary.
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Our Contributions This paper presents the first Agnostic Active learn-
ing algorithm, A2. The only necessary assumption is that samples are drawn
i.i.d. from some (unknown) underlying distribution. In particular, no assump-
tions are made about the mechanism producing noise (e.g., class/target misfit,
fundamental randomization, adversarial situations).

A2 is provably correct (with very high probability 1−δ it returns an ε-optimal
hypothesis) and it is never harmful (it never requires significantly more sam-
ples than batch learning). A2 provides exponential sample complexity reduc-
tions in several settings previously analyzed without noise. This includes learn-
ing threshold functions with small noise with respect to ε and hypothesis
classes consisting of homogeneous (through the origin) linear separators with
the data distributed uniformly over the unit sphere in Rd. The last exam-
ple has been the most encouraging theoretical result so far in the realizable
case [23].

The A2 analysis achieves an almost contradictory property: for some sets of
classifiers, with very high probability confidently an ε-optimal classifier can be
output with fewer samples than are needed to estimate the error rate of the
chosen classifier with precision ε from random examples only.

Lower Bounds It is important to keep in mind that the speedups achiev-
able with active learning depend on the match between the distribution over
example-label pairs and the hypothesis class, and therefore on the target hy-
pothesis in the class. Thus one should expect the results to be distribution-
dependent. There are simple examples where active learning does not help at
all in the model analyzed in this paper, even if there is no noise [21]. These
lower bounds essentially result from an “aliasing” effect and they are unavoid-
able in the setting we analyze in this paper (where we bound the number of
queries an algorithm makes before it can prove it has found a good function). 1

In the noisy situation, the target function itself can be very simple (e.g., a
threshold function), but if the error rate is very close to 1/2 in a sizeable
interval near the threshold, then no active learning procedure can significantly
outperform passive learning. In particular, in the pure agnostic setting one
cannot hope to achieve speedups when the noise rate η is large, due to a lower
bound of Ω(η

2

ε2
) on the sample complexity of any active learner [29]. However,

under specific noise models (such as a constant noise rate everywhere [16] or
Tsybakov noise conditions [5,15]) and for specific classes, one can still show
significant improvement over supervised learning.

1 In recent work Balcan et. al [6] have shown that in an asymptotic model for Active
Learning where one bounds the number of queries the algorithm makes before it
finds a good function (i.e. one of arbitrarily small error rate), but not the number of
queries before it can prove or it knows it has found a good function, one can obtain
significantly better bounds on the number of label queries required to learn.
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Structure of This Paper Preliminaries and notation are covered in Sec-
tion 2, then A2 is presented in Section 3. Section Section 3.1 proves that A2

is correct and Section 3.2 proves it is never harmful (i.e., it never requires sig-
nificantly more samples than batch learning). Threshold functions and homo-
geneous linear separators under the uniform distribution over the unit sphere
are analyzed in Section 4. Conclusions, a discussion of subsequent work, and
open questions are covered in Section 5.

2 Preliminaries

We consider a binary agnostic learning problem specified as follows. Let X be
an instance space and Y = {−1, 1} be the set of possible labels. Let H be the
hypothesis class, a set of functions mapping from X to Y . We assume there is
a distribution D over instances in X, and that the instances are labeled by a
possibly randomized oracle O. The error rate of a hypothesis h with respect
to a distribution P over X ×Y is defined as errP (h) = Prx,y∼P [h(x) 6= y]. Let
η = min

h∈H
(errD,O(h)) denote the minimum error rate of any hypothesis in H

with respect to the distribution (D,O) induced by D and the labeling oracle
O. The goal is to find an ε-optimal hypothesis, i.e. a hypothesis h ∈ H with
errD,O(h) within ε of η, where ε is some target error.

The algorithm A2 relies on a subroutine, which computes a lower bound
LB(S, h, δ) and an upper bound UB(S, h, δ) on the true error rate errP (h)
of h by using a sample S of examples drawn i.i.d. from P . Each of these
bounds must hold for all h simultaneously with probability at least 1− δ. The
subroutine is formally defined below.

Definition 1 A subroutine for computing LB(S, h, δ) and UB(S, h, δ) is said
to be legal if for all distributions P over X × Y , and for all m ∈ N,

LB(S, h, δ) ≤ errP (h) ≤ UB(S, h, δ)

holds for all h ∈ H simultaneously, with probability 1 − δ over the draw of S
according to Pm.

Classic examples of such subroutines are the (distribution independent) VC
bound [35] and the Occam Razor bound [11], or the newer data dependent
generalization bounds such as those based on Rademacher Complexities [12].
For concreteness, a VC bound subroutine is stated in Appendix A.

5



3 The A2 Agnostic Active Learner

At a high level, A2 can be viewed as a robust version of the selective sampling
algorithm of [18]. Selective sampling is a sequential process that keeps track
of two spaces—the current version space Hi, defined as the set of hypotheses
in H consistent with all labels revealed so far, and the current region of un-
certainty Ri, defined as the set of all x ∈ X, for which there exists a pair of
hypotheses in Hi that disagrees on x. In round i, the algorithm picks a ran-
dom unlabeled example from Ri and queries it, eliminating all hypotheses in
Hi inconsistent with the received label. The algorithm then eliminates those
x ∈ Ri on which all surviving hypotheses agree, and recurses. This process
fundamentally relies on the assumption that there exists a consistent hypoth-
esis in H. In the agnostic case, a hypothesis cannot be eliminated based on its
disagreement with a single example. Any algorithm must be more conservative
without risking eliminating the best hypotheses in the class.

A formal specification of A2 is given in Algorithm 1. Let Hi be the set of
hypotheses still under consideration by A2 in round i. If all hypotheses in Hi

agree on some region of the instance space, this region can be safely eliminated.
To help us keep track of progress in decreasing the region of uncertainty, define
DisagreeD(Hi) as the probability that there exists a pair of hypotheses in
Hi that disagrees on a random example drawn from D:

DisagreeD(Hi) = Prx∼D[∃h1, h2 ∈ Hi : h1(x) 6= h2(x)].

Hence DisagreeD(Hi) is the volume of the current region of uncertainty with
respect to D.

Let Di be the distribution D restricted to the current region of uncertainty.
Formally, Di = D(x | ∃h1, h2 ∈ Hi : h1(x) 6= h2(x)). In round i, A2 samples
a fresh set of examples S from Di, O, and uses it to compute upper and
lower bounds for all hypotheses in Hi. It then eliminates all hypotheses whose
lower bound is greater than the minimum upper bound. Figure 3.1 shows the
algorithm in action for the case when the data lie in the [0, 1] interval on
the real line, and H is the set of thresholding functions. The horizontal axis
denotes both the instance space and the hypothesis space, superimposed. The
vertical axis shows the error rates. Round i completes when S is large enough
to eliminate at least half of the current region of uncertainty.

Since A2 eliminates only examples on which the surviving hypotheses agree,
an optimal hypothesis in Hi with respect to Di remains an optimal hypothesis
in Hi+1 with respect to Di+1. Since each round i cuts DisagreeD(Hi) down
by half, the number of rounds is bounded by log 1

ε
. Sections 4 gives examples of

distributions and hypothesis classes for which A2 requires only a small number
of labeled examples to transition between rounds, yielding an exponential
improvement in sample complexity.

6



When evaluating bounds during the course of Algorithm 1, A2 uses a schedule
of δ according to the following rule: the kth bound evaluation has confidence
δk = δ

k(k+1)
, for k ≥ 1. In Algorithm 1, k keeps track of the number of bound

computations and i of the number of rounds.

Algorithm 1 A2 (allowed error rate ε, sampling oracle for D, labeling oracle
O, hypothesis class H)

set i← 1, Di ← D, Hi ← H, Hi−1 ← H, Si−1 ← ∅, and k ← 1.

(1) while DisagreeD(Hi−1) ( min
h∈Hi−1

UB(Si−1, h, δk)− min
h∈Hi−1

LB(Si−1, h, δk)) > ε

set Si ← ∅, H ′i ← Hi, k ← k + 1

(2) while DisagreeD(H ′i) ≥ 1
2
DisagreeD(Hi)

if DisagreeD(Hi) (min
h∈Hi

UB(Si, h, δk)− min
h∈Hi

LB(Si, h, δk)) ≤ ε

(∗) return h = argminh∈Hi UB(Si, h, δk).

else S ′i = rejection sample 2|Si|+1 samples x from D satisfying

∃h1, h2 ∈ Hi : h1(x) 6= h2(x).

Si ← Si ∪ {(x,O(x)) : x ∈ S ′i}, k ← k + 1

(∗∗) H ′i = {h ∈ Hi : LB(Si, h, δk, ) ≤ min
h′∈Hi

UB(Si, h
′, δk)},

k ← k + 1

end if

end while

Hi+1 ← H ′i, Di+1 ← Di restricted to {x : ∃h1, h2 ∈ H ′i : h1(x) 6= h2(x)}

i← i+ 1

end while

return h = argminh∈Hi−1
UB(Si−1, h, δk).

Note: It is important to note that A2 does not need to know η in advance.
Similarly, it does not need to know D in advance, it only needs the ability
to sample unlabeled points from D. In particular, DisagreeD(Hi) can be
computed via Monte Carlo integration on samples from D.

3.1 Correctness

Theorem 3.1 (Correctness) For all H, for all (D,O), for all valid subrou-
tines for computing UB and LB, with probability 1−δ, A2 returns an ε-optimal
hypothesis or does not terminate.
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Fig. 3.1. A2 in action: Sampling, Bounding, Eliminating.

Note 1 For most “reasonable” subroutines for computing UB and LB, A2

terminates with probability at least 1− δ. For more discussion and a proof of
this fact see Section 3.2.

Proof: The first step proves that all bound evaluations are valid simulta-
neously with probability at least 1 − δ, and then show that the procedure
produces an ε-optimal hypothesis upon termination.

To prove the first claim, notice that the samples on which each bound is
evaluated are drawn i.i.d. from some distribution over X × Y . This can be
verified by noting that the distribution Di used in round i is precisely that
given by drawing x from the underlying distribution D conditioned on the
disagreement ∃h1, h2 ∈ Hi : h1(x) 6= h2(x), and then labeling according to the
oracle O.

The k-th bound evaluation fails with probability at most δ
k(k+1)

. By the union
bound, the probability that any bound fails is less then the sum of the proba-
bilities of individual bound failures. This sum is bounded by

∑∞
k=1

δ
k(k+1)

= δ.

To prove the second claim, notice first that since every bound evaluation is
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correct, step (∗∗) never eliminates a hypothesis that has minimum error rate
with respect (D,O).

Let us now introduce the following notation. For a hypothesis h ∈ H and
G ⊆ H define:

eD,G,O(h) = Prx,y∼D,O|∃h1,h2∈G:h1(x)6=h2(x)[h(x) 6= y],

fD,G,O(h) = Prx,y∼D,O|∀h1,h2∈G:h1(x)=h2(x)[h(x) 6= y].

Notice that eD,G,O(h) is in fact errDG,O(h), where DG is D conditioned on the
disagreement ∃h1, h2 ∈ G : h1(x) 6= h2(x). Moreover, given any G ⊆ H, the
error rate of every hypothesis h decomposes into two parts as follows:

errD,O(h) = eD,G,O(h) ·DisagreeD(G) + fD,G,O(h) · (1 −DisagreeD(G)) =
errDG,O(h) ·DisagreeD(G) + fD,G,O(h) · (1−DisagreeD(G)).

Notice that the only term that varies with h ∈ G in the above decomposi-
tion, is eD,G,O(h). Consequently, finding an ε-optimal hypothesis requires only
bounding the error rate of errDG,O(h) ·DisagreeD(G) to precision ε. But this
is exactly what the negation of the main while-loop guard does, and this is also
the condition used in the first step of the second while loop of the algorithm.
In other words, upon termination A2 satisfies

DisagreeD(Hi)(min
h∈Hi

UB(Si, h, δk)− min
h∈Hi

LB(Si, h, δk)) ≤ ε,

which proves the desired result.

3.2 Fall-back Analysis

This section shows that A2 is never much worse than a standard batch, bound-
based algorithm in terms of the number of samples required in order to learn,
assuming that UB and LB are “sane”. (A standard example of a bound-based
learning algorithm is Empirical Risk Minimization (ERM) [36].)

The sample complexity m(ε, δ,H) required by a batch algorithm that uses a
subroutine for computing LB(S, h, δ) and UB(S, h, δ) is defined as the mini-
mum number of samplesm such that for all S ∈ Xm, |UB(S, h, δ)−LB(S, h, δ)| ≤
ε for all h ∈ H. For concreteness, this section uses the following bound on
m(ε, δ,H) stated as Theorem A.1 in Appendix A:

m(ε, δ,H) =
64

ε2

(
2VH ln

(
12

ε

)
+ ln

(
4

δ

))

Here VH is the VC-dimension of H. Assume that m(2ε, δ,H) ≤ m(ε,δ,H)
2

, and
also that the function m is monotonically increasing in 1/δ. These conditions
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are satisfied by many subroutines for computing UB and LB, including those
based on the VC-bound [35] and the Occam’s Razor bound [11].

Theorem 3.2 For all H, for all (D,O), for all UB and LB satisfying the
assumption above, the algorithm A2 makes at most 2m(ε, δ′, H) calls to the
oracle O, where δ′ = δ

N(ε,δ,H)(N(ε,δ,H)+1)
and N(ε, δ,H) satisfies: N(ε, δ,H) ≥

ln 1
ε

lnm(ε, δ
N(ε,δ,H)(N(ε,δ,H)+1)

, H). Here m(ε, δ,H) is the sample complexity of
UB and LB.

Proof: Let δk = δ
k(k+1)

be the confidence parameter used in the k-th applica-
tion of the subroutine for computing UB and LB. The proof work by finding an
upper bound N(ε, δ,H) on the number of bound evaluations throughout the
life of the algorithm. This implies that the confidence parameter δk is always
be greater than δ′ = δ

N(ε,δ,H)(N(ε,δ,H)+1)
.

Recall that Di is the distribution over x used on the ith iteration of the first
while loop.

Consider i = 1. If condition 2 of Algorithm A2 is repeatedly satisfied then
after labeling m(ε, δ′, H) examples from D1 for all hypotheses h ∈ H1,

|UB(S1, h, δ
′)− LB(S1, h, δ

′)| ≤ ε

simultaneously. Note that in these conditions A2 safely halts. Notice also that
the number of bound evaluations during this process is at most lnm(ε, δ′, H).

On the other hand, if loop (2) ever completes and i increases, then it is enough
to have uniformly for all h ∈ H2, |UB(S2, h, δ

′)− LB(S2, h, δ
′)| ≤ 2ε. (This

follows from the exit conditions in the outer while-loop and the ’if’ in Step
2 of A2.) Uniformly bounding the gap between upper and lower bounds over

all hypotheses h ∈ H2 to within 2ε, requires m(2ε, δ′, H) ≤ m(ε,δ′,H)
2

labeled
examples from D2 and the number of bound evaluations in round i = 2 is at
most lnm(ε, δ′, H).

In general, in round i it is enough to have uniformly for all h ∈ Hi,

|UB(Si, h, δ
′)− LB(Si, h, δ

′)| ≤ 2i−1ε,

and which requires m(2i−1ε, δ′, H) ≤ m(ε,δ′,H)
2i−1 labeled examples from Di. Also

the number of bound evaluations in round i is at most lnm(ε, δ′, H).

Since the number of rounds is bounded by ln 1
ε
, it follows that the maximum

number of bound evaluation throughout the life of the algorithm is at most
ln 1

ε
lnm(ε, δ′, H). This implies that in order to determine an upper bound
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N(ε, δ,H) only a solution to the inequality:

N(ε, δ,H) ≥ ln
1

ε
lnm

(
ε,

δ

N(ε, δ,H)(N(ε, δ,H) + 1)
, H

)

is required.

Finally, adding up the number of calls to the oracle in all rounds yields at
most 2m(ε, δ′, H) over the life of the algorithm.

Let VH denote the VC-dimension of H, and let m(ε, δ,H) be the number of
examples required by the ERM algorithm. As stated in Theorem A.1 in Ap-
pendix A a classic bound onm(ε, δ,H) ism(ε, δ,H) = 64

ε2

(
2VH ln

(
12
ε

)
+ ln

(
4
δ

))
.

Using Theorem 3.2, the following corollary holds.

Corollary 3.3 For all hypothesis classes H of VC-dimension VH , for all dis-
tributions (D,O) over X×Y , the algorithm A2 requires at most Õ

(
1
ε2

(VH ln 1
ε

+ ln 1
δ
)
)

labeled examples drawn i.i.d. from (D,O). 2

Proof: The form of m(ε, δ,H) and Theorem 3.2 implies an upper bound on
N = N(ε, δ,H). It is enough to find the smallest N satisfying

N ≥ ln
(

1

ε

)
ln

(
64

ε2

(
2VH ln

(
12

ε

)
+ ln

(
4N2

δ

)))
.

Using the inequality ln a ≤ ab − ln b − 1 for all a, b > 0 and some simple
algebraic manipulations, the desired upper bound on N(ε, δ,H) holds. The
result then follows from Theorem 3.2.

4 Active Learning Speedups

This section, shows that A2 achieves exponential sample complexity improve-
ments even with arbitrary noise for some sets of classifiers.

4.1 Learning Threshold Functions

Linear threshold functions are the simplest and easiest to analyze class. It turns
out that even for linear threshold functions, exponential reductions in sample
complexity are not achievable when the noise rate η is large [29]. Therefore two

2 Here and in the rest of the paper, the Õ(·) notation is used to hide factors loga-
rithmic in the factors present explicitly.
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results are proved: an exponential improvement in sample complexity when
the noise rate is small, and a slower improvement when the noise rate is large.
In the extreme case where the noise rate is 1/2, there is no improvement.

Theorem 4.1 Let H be the set of thresholds on an interval with LB and UB
the VC bound. For all distributions (D,O), for any ε < 1

2
and ε

16
> η, the

algorithm A2 makes O
(

ln
(

1
ε

)
ln
(

ln ( 1
εδ )
δ

))
calls to the oracle O on examples

drawn i.i.d. from D, with probability 1− δ.

Proof: Each execution of loop 2 decreases DisagreeD(Hi) by at least
a factor of 2, implying that the number of executions is bounded by log 1

ε
.

Consequently, the proof holds if only O
(
ln 1

δ′

)
labeled samples are required

per loop. 3

Let h∗ be any minimum error rate hypothesis. For h1, h2 ∈ Hi, let di(h1, h2) be
the probability that h1 and h2 predict differently on a random example drawn
according to the distribution over x on the ith round Di, i.e., di(h1, h2) =
Prx∼Di [h1(x) 6= h2(x)].

Consider i ≥ 1. Let [loweri, upperi] be the support of Di. Note that for any
hypothesis h ∈ Hi, errDi,O(h) ≥ di(h, h

∗) − errDi,O(h∗) and errDi,O(h∗) ≤
η/Zi hold, where Zi = Prx∼D[x ∈ [loweri, upperi] ]. So Zi is a shorthand for
DisagreeD(Hi).

Now notice that at least a 1
2
-fraction (measured with respect to Di) of thresh-

olds in Hi satisfy di(h, h
∗) ≥ 1

4
, and these thresholds are located at the “ends”

of the interval [loweri, upperi]. Formally, assume first that both di(h
∗, loweri) ≥

1
4

and di(h
∗, upperi) ≥ 1

4
, then let li and ui be the hypotheses to the left and

to the right of h∗, respectively, that satisfy di(h
∗, li) = 1

4
and di(h

∗, ui) = 1
4
.

All h ∈ [loweri, li] ∪ [ui, upperi] satisfy di(h
∗, h) ≥ 1

4
and moreover

Prx∼Di [x ∈ [loweri, li] ∪ [ui, upperi] ] ≥ 1

2
.

Now assume without loss of generality that di(h
∗, loweri) ≤ 1

4
. Let ui be the

hypothesis to the right of h∗ with di(h, upperi) = 1
2
. Then all h ∈ [ui, upperi]

satisfy di(h
∗, h) ≥ 1

4
and moreover Prx∼Di [x ∈ [ui, upperi] ] ≥ 1

2
.

Using the VC bound, with probability 1− δ′ if

|Si| = O

 ln 1
δ′(

1
8
− η

Zi

)2

 ,
3 Notice that the difference (minh∈Hi UB(Si, h, δk)−minh∈Hi LB(Si, h, δk)) appear-
ing in in the first step of the second while loop is always constant.
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then for all hypotheses h ∈ Hi simultaneously, |UB(Si, h, δ)− LB(Si, h, δ)| ≤
1
8
− η

Zi
holds.

Consider a hypothesis h ∈ Hi with di(h, h
∗) ≥ 1

4
. For any such h, errDi,O(h) ≥

di(h, h
∗) − errDi,O(h∗) ≥ 1

4
− η

Zi
, and so LB(Si, h, δ) ≥ 1

4
− η

Zi
− (1

8
− η

Zi
) =

1
8
. On the other hand, errDi,O(h∗) ≤ η

Zi
, and so UB(Si, h

∗, δ) ≤ η
Zi

+ 1
8
−

η
Zi

= 1
8
. Thus A2 eliminates all h ∈ Hi with di(h, h

∗) ≥ 1
4
. But that means

DisagreeD(H ′i) ≤ 1
2
DisagreeD(Hi), thus terminating round i. 4

Finally notice that A2 makes O
(
ln
(

1
δ′

)
ln
(

1
ε

))
calls to the oracle, where

δ′ = δ
N2(ε,δ,H)

and N(ε, δ,H) is an upper bound on the number of bound
evaluations throughout the life of the algorithm. Consequently the number of

bound evaluations required in round i is O

 ln 1
δ′(

1
8
− η
Zi

)2

 which implies that the

number of bound evaluations throughout the life of the algorithm N(ε, δ,H)

should satisfy c ln
(
N2(ε,δ,H)

δ

)
ln
(

1
ε

)
≤ N(ε, δ,H), for some constant c. Solving

this inequality, completes the proof.

Theorem 4.2 Let H be the set of thresholds on an interval with LB and UB
the VC bound. Suppose that ε < 1

2
and ε < η

16
. For all D, with probability 1−δ,

the algorithm A2 requires at most Õ
(
η2 ln 1

δ

ε2

)
labeled samples.

Proof: The proof is similar to the previous proof. Theorem 4.1 implies that
loop (2) completes Θ(log 1

η
) times. At this point, the noise becomes sufficient

so that the algorithm may only halt via the return step (∗). In this case,
DisagreeD(H) = Θ(η) implying that the number of samples required is

Õ
(
η2 ln 1

δ

ε2

)
.

Note that Theorem 4.2 asymptotically matches a lower bound of Kaariainen [29].

Note: It is important to note that A2 does not need to know η in advance.

4.2 Linear Separators under the Uniform Distribution

A commonly analyzed case for which active learning is known to give expo-
nential savings in the number of labeled examples is when the data is drawn
uniformly from the unit sphere in Rd, and the labels are consistent with a
linear separator going through the origin. Note that even in this seemingly

4 The assumption in the theorem statement can be weakened to η < ε
(8+∆)

√
d

for
any constant ∆ > 0.

13



simple scenario, there exists an Ω
(

1
ε

(
d+ log 1

δ

))
lower bound on the PAC

passive supervised learning sample complexity [31]. We will show that A2 pro-
vides exponential savings in this case even in the presence of arbitrary forms
of noise.

Let X = {x ∈ Rd : ‖x‖ = 1}, the unit sphere in Rd. Assume that D is uniform
over X, and let H be the class of linear separators through the origin. Any
h ∈ H is a homogeneous hyperplane represented by a unit vector w ∈ X with
the classification rule h(x) = sign(w ·x). The distance between two hypotheses
u and v in H with respect to a distribution D (i.e., the probability that they
predict differently on a random example drawn from D) is given by dD(u, v) =
arccos(u·v)

π
. Finally, let θ(u, v) = arccos(u · v). Thus dD(u, v) = θ(u,v)

π
.

Theorem 4.3 Let X, H, and D be as defined above, and let LB and UB
be the VC bound. Then for any 0 < ε < 1

2
, 0 < η < ε

16
√
d
, and δ > 0, with

probability 1− δ, A2 requires

O
(
d
(
d ln d+ ln

1

δ′

)
ln

1

ε

)

calls to the labeling oracle, where δ′ = δ
N2(ε,δ,H)

and

N(ε, δ,H) = O

(
ln

1

ε

(
d2 ln d+ ln

d ln 1
ε

δ

))
.

Proof: Let w∗ ∈ H be a hypothesis with the minimum error rate η. De-
note the region of uncertainty in round i by Ri. Thus Prx∼D[x ∈ Ri] =
DisagreeD(Hi).

Consider round i of A2. Theorem A.1 says that it suffices to query the oracle
on a set S of O(d2 ln d+d ln 1

δ′
) examples from ith distribution Di to guarantee,

with probability 1− δ′, that for all w ∈ Hi,

| errDi,O(w)− êrrDi,O(w)| < 1

2

(
1

8
√
d
− η

ri

)
,

where ri is a shorthand for DisagreeD(Hi). (By assumption, η < ε
16
√
d
. The

loop guard DisagreeD(Hi) ≥ ε. Thus the precision above is at least 1
16
√
d
.) 5

This implies that UB(S,w, δ′) − errDi,O(w) < 1
8
√
d
− η

ri
, and errDi,O(w) −

LB(S,w, δ′) < 1
8
√
d
− η

ri
. Consider any w ∈ Hi with dDi(w,w

∗) ≥ 1
4
√
d
. For

5 The assumption in the theorem statement can be weakened to η < ε
(8+∆)

√
d

for
any constant ∆ > 0.
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any such w, errDi,O(w) ≥ 1
4
√
d
− η

ri
, and so

LB(S,w, δ′) >
1

4
√
d
− η

ri
− 1

8
√
d

+
η

ri
=

1

8
√
d
.

However, errDi,O(w∗) = η
ri

, and thus UB(S,w∗, δ′) < η
ri

+ 1
8
√
d
− η

ri
= 1

8
√
d
, so

A2 eliminates w in step (∗∗).

Thus round i eliminates all hypotheses w ∈ Hi with dDi(w,w
∗) ≥ 1

4
√
d
. Since

all hypotheses in Hi agree on every x 6∈ Ri,

dDi(w,w
∗) =

1

ri
dD(w,w∗) =

θ(w,w∗)

πri
.

Thus round i eliminates all hypotheses w ∈ Hi with θ(w,w∗) ≥ πri
4
√
d
. But since

2θ/π ≤ sin θ, for θ ∈ (0, π
2
], it certainly eliminates all w with sin θ(w,w∗) ≥

ri
2
√
d
.

Consider any x ∈ Ri+1 and the value |w∗ · x| = cos θ(w∗, x). There must exist
a hypothesis w ∈ Hi+1 that disagrees with w∗ on x; otherwise x would not
be in Ri+1. But then cos θ(w∗, x) ≤ cos(π

2
− θ(w,w∗)) = sin θ(w,w∗) < ri

2
√
d
,

where the last inequality is due to the fact that A2 eliminates all w with
sin θ(w,w∗) ≥ ri

2
√
d
. Thus any x ∈ Ri+1 must satisfy |w∗ · x| < ri

2
√
d
.

Using the fact that Pr[A |B] = Pr[AB]
Pr[B]

≤ Pr[A]
Pr[B]

for any A and B,

Prx∼Di [x ∈ Ri+1] ≤ Prx∼Di

[
|w · x| ≤ ri

2
√
d

]

≤
Prx∼D

[
|w · x| ≤ ri

2
√
d

]
Prx∼D[x ∈ Ri]

≤ ri
2ri

=
1

2
,

where the second inequality follows from Lemma A.2. Thus DisagreeD(Hi+1) ≤
1
2
DisagreeD(Hi), as desired.

In order to finish the argument, it suffices to notice that since every round
cuts DisagreeD(Hi) at least in half, the total number of rounds is bounded

by log 1
ε
. Notice also that A2 makes O

(
d2 ln d+ d ln 1

δ′

)
ln
(

1
ε

)
calls to the or-

acle, where δ′ = δ
N2(ε,δ,H)

and N(ε, δ,H) is an upper bound on the number of
bound evaluations throughout the life of the algorithm. The number of bound
evaluations required in round i is O

(
d2 ln d+ d ln 1

δ′

)
. This implies that the

number of bound evaluations throughout the life of the algorithm N(ε, δ,H)

should satisfy c
(
d2 ln d+ d ln

(
N2(ε,δ,H)

δ

))
ln
(

1
ε

)
≤ N(ε, δ,H) for some con-

stant c. Solving this inequality, completes the proof.

Note: For comparison, the query complexity of the Perceptron-based active
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w∗

1
2
√
d

Fig. 4.1. The region of uncertainty after the first iteration (schematic).

learner of [23] is O(d ln 1
εδ

(ln d
δ

+ ln ln 1
ε
)), for the same H, X, and D, but only

for the realizable case when η = 0. Similar bounds are obtained in [5] both
in the realizable case and for a specific form of noise related to the Tsybakov
small noise condition. The cleanest and simplest argument that exponential
improvement is in principle possible in the realizable case for the same H,
X, and D appears in [21]. As shown in [21], the class of homogeneous linear
separators under the uniform distribution is (1/4, ε, cε)-splitable for any ε. This
roughly means that if we start with a cover, then at each moment in time there
is a reasonable chance that a random example will provide a good split of the
version space. So, if we mostly query such informative points throughout,
we get the desired exponential improvement in query complexity. 6 Our work
provides the first justification of why one can even hope to achieve similarly
strong guarantees in the much harder agnostic case (when the noise rate is
sufficiently small with respect to the desired error), thus paralleling the results
in [21] for the realizable case.

5 Conclusions, Discussion and Open Questions

This paper presents and analyzes A2, the first active learning algorithm which
works in the presence of arbitrary forms of noise. A2 is agnostic in the sense
that it relies only upon the assumption that the samples are drawn i.i.d. from
a fixed (unknown) distribution, and it does not need to know η (the error
rate of the best classifier in the class) in advance. A2 achieves an exponential
improvement over the usual sample complexity of supervised learning, for
several settings considered before in the realizable case.

6 The main contribution of some of the other papers [23,5] was to show that one
can get the desired query complexity in polynomial time and using a polynomial
number of unlabeled examples, perhaps also in an online model.
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Subsequent Work Following the initial publication of A2, Hanneke has
further analyzed the A2 algorithm [25], deriving a general upper bound on the
number of label requests made by A2. This bound is expressed in terms of par-
ticular quantity called the disagreement coefficient, which roughly quantifies
how quickly the region of disagreement can grow as a function of the radius
of the version space. For concreteness the bound is included in Appendix B.

In addition, Dasgupta, Hsu, and Monteleoni [22] introduce and analyze a new
agnostic active learning algorithm. While similar to A2, this algorithm simpli-
fies the maintenance of the region of uncertainty with a reduction to supervised
learning, keeping track of the version space implicitly via label constraints.

Open Questions A common feature of the selective sampling algorithm [18],
A2, and others [22] is that they are all non-aggressive in their choice of query
points. Even points on which there is a small amount of uncertainty are
queried, rather than pursuing the maximally uncertain point. In recent work
Balcan, Broder and Zhang [5] have shown that more aggressive strategies can
generally lead to better bounds. However the analysis in [5] was specific to the
realizable case, or done for a very specific type of noise. It is an open question
to design aggressive agnostic active learning algorithms.

A more general open question is what conditions are sufficient and necessary
for active learning to succeed in the agnostic case. What is the right quantity
that can characterize the sample complexity of agnostic active learning? As
mentioned already, some progress in this direction has been recently made
in [25] and [22]; however, those results characterize non-aggressive agnostic
active learning. Deriving and analyzing the optimal agnostic active learning
strategy is still an open question.

Much of the existing literature on active learning has been focused on binary
classification; it would be interesting to analyze active learning for other loss
functions. The key ingredient allowing recursion in the proof of correctness is a
loss that is unvarying with respect to substantial variation over the hypothesis
space. Many losses such as squared error loss do not have this property, so
achieving substantial speedups, if that is possible, requires new insights. For
other losses with this property (such as hinge loss or clipped squared loss),
generalizations of A2 appear straightforward.

Acknowledgements Part of this work was done while the first author was
visiting IBM T.J. Watson Research Center in Hawthorne, NY, and Toyota
Technological Institute at Chicago.
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A Standard Results

The following standard Sample Complexity bound is in [3].

Theorem A.1 Suppose that H is a set of functions from X to {−1, 1} with
finite VC-dimension VH ≥ 1. Let D be an arbitrary, but fixed probability dis-
tribution over X × {−1, 1}. For any ε, δ > 0, if a sample is drawn from D of
size

m(ε, δ, VH) =
64

ε2

(
2VH ln

(
12

ε

)
+ ln

(
4

δ

))
,

then with probability at least 1− δ, |err(h)− êrr(h)| ≤ ε for all h ∈ H.

Section 4.2 uses the following a classic lemma about the uniform distribution.
For a proof see, for example, [5,23].

Lemma A.2 For any fixed unit vector w and any 0 < γ ≤ 1,

γ

4
≤ Prx

[
|w · x| ≤ γ√

d

]
≤ γ,

where x is drawn uniformly from the unit sphere.

B Subsequent Guarantees for A2

This section describes the disagreement coefficient [25] and the guarantees it
provides for the A2 algorithm. We begin with a few additional definitions, in
the notation of Section 2.

Definition 2 The disagreement rate ∆(V ) of a set V ⊆ H is defined as

∆(V ) = Prx∼D[x ∈ DisagreeD(V )].

Definition 3 For h ∈ H, r > 0, let B(h, r) = {h′ ∈ H : d(h′, h) ≤ r} and
define the disagreement rate at radius r as

∆r = sup
h∈H

(∆(B(h, r))).
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The disagreement coefficient is the infimum value of θ > 0 such that ∀r > η+ε,

∆r ≤ θr.

Theorem B.1 If θ is the disagreement coefficient for H, then with probability
at least 1− δ, given the inputs ε and δ, A2 outputs an ε-optimal hypothesis h.
Moreover, the number of label requests made by A2 is at most:

Õ

(
θ2

(
η2

ε2
+ 1

)(
VH ln

1

ε
+ ln

1

δ

)
ln

1

ε

)
,

where VH ≥ 1 is the VC-dimension of H.
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