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Active Learning

Can a learning algorithm effectively interactively choose which
examples to label?

The Active Learning Setting
Repeatedly:
@ Observe unlabeled example x.
© Make prediction §.
© Asking for label? Yes/no
Q If yes, observe label y.
Goal: Simultaneously minimize the number of mistakes and the

number of labels requested.

Good solutions imply more efficient learning and a better
understanding of how to deal with other forms of interactive
learning.



Typical heuristics for active learning

Start with a pool of unlabeled data
Pick a few points at random and get their labels

Repeat
Fit a classifier to the labels seen so far
Query the unlabeled point that is closest to the boundary
(or most uncertain, or most likely to decrease overall
uncertainty,...)
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Even with infinitely many labels, converges to a classifier with 5%
error instead of the best achievable, 2.5%. Not consistent!
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Is this fixable?

© BBL 2006: Yes, ignoring all issues except label efficiency.

@ DHM 2007: Yes, with an online algorithm also achieving
unlabeled data efficiency.

© BDL 2009: The same for other loss functions.

@ BHLZ 2010: VYes, given an efficient loss optimization
algorithm. This talk.



Importance Weighted Active Learning via Reduction

S=10
While (unlabeled examples remain)
@ Receive unlabeled example x.
@ Set p = Rejection-Threshold(x, S).
@ If U(0,1) < p, get label y, and add (x,y, %)) to S.
Q Let h = Learn(S).

Consistency: (BDL2009) For all reasonable choices of
Rejection-Threshold, the algorithm is consistent.
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What should be?

On the kth unlabeled point, let:

é(h,S) = %Z(X%i)es i1(h(x) # y) = importance weighted error
rate.

Let /" = minimum error rate hypothesis choosing other label.

Let A = &(Hn,S) — &(h,S) = error rate difference.

: log k
Choose p=1if A< O <%

Otherwise, let p = O ('ng>

Competition: (BHLZ2010) With high probability, the IWAL
reduction has a similar error rate as supervised learning on k points.

Success: (BHLZ2010) If there is a small disagreement coefficient
0, the algorithm requires only O (Qx/klog k) 4+ a minimum due to
noise (K2006).
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Disagreement Coefficient (Hanneke 2007)

Characterizes known examples where active learning can help.
Defined for any set of classifiers H and distribution D.

For any ¢ features x are of interest if there exists a hypothesis h:
@ With error rate less than ¢ larger than the best h*.
@ That disagress with the best hypothesis, h*(x) # h(x).

. S Pr(interestin
Disagreement coefficient is # = max, r( sting. x)

(See ICML 2009 tutorial for examples)

€
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The Martingale Barrier Problem

Proofs are complex, but rest on the solution to a Martingale
Barrier Problem.

Given a coin of bias < 0.5, how can we choose the probability of p
of a coin flip so that:

© The average number of heads is small: %Z(h,p)es g < 0.5.
@ The number of coin flips is minimized: min Z(h.p)esp .
© The probability is nontrivial: p > 0.

p too small, implies that condition (1) is violated with a reasonable
probability.



Decision Tree Experiments
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Online

Linear Learning results (with Nikos)
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Demonstration
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@ Works for other loss functions.
O Interpolates to supervised learning.
@ Allows you to switch learning algorithms later (!)

@ Empirically, yields substantial label savings.



Active Learning is only one kind of interactive learning. Does a
similar strategy work with other forms of interactive learning?
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