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Abstract

We present a tree data structure for fast
nearest neighbor operations in general n-
point metric spaces (where the data set con-
sists of n points). The data structure re-
quires O(n) space regardless of the met-
ric’s structure yet maintains all performance
properties of a navigating net [KL04a]. If
the point set has a bounded expansion con-
stant c, which is a measure of the intrinsic
dimensionality (as defined in [KR02]), the
cover tree data structure can be constructed
in O

(
c6n log n

)
time. Furthermore, nearest

neighbor queries require time only logarith-
mic in n, in particular O

(
c12 log n

)
time.

Our experimental results show speedups
over the brute force search varying between
one and several orders of magnitude on nat-
ural machine learning datasets.

1. Introduction

Problem. Nearest neighbor search is a basic com-
putational tool that is particularly relevant to ma-
chine learning, where it is often believed that high-
dimensional datasets have low-dimensional intrinsic
structure. Here we study how one can exploit po-
tential structure in the dataset to speed up nearest
neighbor computations. Such speedups could ben-
efit a number of machine learning algorithms, in-
cluding dimensionality reduction algorithms (which
are inherently based on this belief of low-dimensional
structure) and classification algorithms that rely on
nearest neighbor operations (for example, [LMS05]).
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The basic nearest neighbor problem is as follows:
Given a set S of n points in some metric space (X, d),
the problem is to preprocess S so that given a query
point p ∈ X, one can efficiently find a point q ∈ S
which minimizes d(p, q).

Context. For general metrics, finding (or even ap-
proximating) the nearest neighbor of a point requires
Ω(n) time. The classical example is a uniform met-
ric where every pair of points is near the same dis-
tance, so there is no structure to take advantage of.
However, the metrics of practical interest typically do
have some structure which can be exploited to yield
significant computational speedups. Motivated by
this observation, several notions of metric structure
and algorithms exploiting this structure have been
proposed [Cla99, KR02, KL04a].

Denote the closed ball of radius r around p in S ⊂ X
by BS(p, r) = {q ∈ S : d(p, q) ≤ r}. When clear from
the context, we drop the subscript S. Karger and
Ruhl [KR02] considered the following notion of di-
mension based on point expansion, and described
a randomized algorithm for metrics in which this
dimension is small. The expansion constant of S
is defined as the smallest value c ≥ 2 such that
|BS(p, 2r)| ≤ c|BS(p, r)| for every p ∈ X and r > 0.
If S is arranged uniformly on some surface of di-
mension d, then c ∼ 2d, which suggests defining the
expansion dimension of S (also referred to as KR-
dimension) as dimKR(S) = log c. However, as previ-
ously observed in [KR02, KL04a], some metrics that
should intuitively be considered low-dimensional turn
out to have large growth constants. For example,
adding a single point in a Euclidean space may make
the KR-dimension grow arbitrarily (though such ex-
amples may be pathological in practice).

A more robust alternative is given by the doubling
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constant [Cla99, KL04a], which is the minimum value
c such that every ball in X can be covered by c balls
in X of half the radius. The doubling dimension of
S is then defined as dimKL(S) = log c. This notion
is strictly more general than the KR-dimension, as
shown in [GKL03]. A drawback (so far) of working
with the doubling dimension is that only weaker re-
sults have been provable, and even those apply only
to approximate nearest neighbors.

The aforementioned algorithms have query time
guarantees which are only logarithmic in n (while be-
ing exponential in their respective notion of intrinsic
dimensionality). Unfortunately, in machine learning
applications, most of these theoretically appealing al-
gorithms are still not used in practice. When the
Euclidean dimension is small, one typical approach
is to use KD-trees (see [FBL77]). If the metric is
non-Euclidean, or the Euclidean dimension is large,
ball trees [Uhl91, Omo87] provide compelling perfor-
mance in many practical applications [GM00]. These
methods currently have only trivial query time guar-
antees of O(n), although improved performance may
be provable given some form of structure.

The focus of this paper is to make these theoreti-
cally appealing algorithms more practically applica-
ble. One significant drawback of these algorithms
(based on intrinsic dimensionality notions) is that
their space requirements are exponential in the di-
mension. As we observe experimentally (see Sec-
tion 5), it is common for the dimension to grow with
the dataset size, so space consumption is a reasonable
concern. This drawback is precisely what the cover
tree addresses.

New Results. We propose a simple data struc-
ture, a cover tree, for exact and approximate nearest
neighbor operations. The data structure improves
over other results [KR02, KL04a, Cla99, HM04] by
making the space requirement linear in the dataset
size, independent of any dimensionality assumptions.
The cover tree is simple since the data structure be-
ing manipulated is a tree; in fact, a cover tree (as
a graph) can be viewed as a subgraph of a navigat-
ing net [KL04a]. The cover tree throws away most
of the edges of the navigating net while maintaining
all dimension-dependent guarantees. The algorithms
and proofs needed for this structure are inherently
different because (for example) a greedy traversal of
the tree is not guaranteed to answer a query correctly.
We also provide experiments (see Section 5) and pub-
lic code, suggesting this approach is competitive with
current practical approaches.

In our analysis, we focus primarily on the expansion
constant, because this permits results on exact near-
est neighbor queries. If c is the expansion constant
of S, we can state the dependence on c explicitly:

Cover Tree Nav. Net [KR02]

Constr. Space O(n) cO(1)n cO(1)n ln n

Constr. Time O(c6n ln n) cO(1)n ln n cO(1)n ln n

Insert/Remove O(c6 ln n) cO(1) ln n cO(1) ln n

Query O(c12 ln n) cO(1) ln n cO(1) ln n

It is important to note that the algorithms here (as in
[KL04a] but not in [KR02]) work without knowledge
of the structure; only the analysis is done with respect
to the assumptions. Comparison of time complexity
in terms of c can be subtle (see the discussion in Sec-
tion 4). Also, such a comparison is somewhat unfair
since past work did not explicitly try to optimize the
c dependence.

The algorithms easily extend to approximate nearest
neighbor queries for sets with a bounded doubling
dimension, as in [KL04a]. The algorithm of [KL04a]
depends on the aspect ratio ∆ defined as the ratio of
the largest to the smallest interpoint distance.1 The
query times of our algorithm are the same as those
in [KL04a], namely O(log ∆) + (1/ε)O(1), where ε is
the approximation parameter.

In an extended version [BKL06], we provide several
algorithms of practical interest. These include a lazy
construction (which amortizes the construction cost
over queries), a batch construction (which is empiri-
cally superior to a sequence of single point insertions),
and a batch query (which amortizes the query time
over multiple queries).

Organization. The rest of the paper is organized as
follows. Sections 2 and 3 specify the algorithms and
prove their correctness, with no assumptions about
any structure present in the data set. Section 4 pro-
vides the runtime analysis in terms of dimensionality.
Section 5 presents experimental results.

2. The Cover Tree Datastructure

A cover tree T on a data set S is a leveled tree where
each level is a “cover” for the level beneath it. Each
level is indexed by an integer scale i which decreases

1The results in [Cla99] also depend on this ratio and
rely on some additional stronger assumptions about the
distribution of queries. The algorithms in [KL04b] and
[HM04] eliminate the dependence on the aspect ratio but
do not achieve linear space.
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as the tree is descended. Every node in the tree is
associated with a point in S. Each point in S may be
associated with multiple nodes in the tree; however,
we require that any point appears at most once in
every level. Let Ci denote the set of points in S
associated with the nodes at level i. The cover tree
obeys the following invariants for all i:

1. (Nesting) Ci ⊂ Ci−1. This implies that once a
point p ∈ S appears in Ci then every lower level
in the tree has a node associated with p.

2. (Covering tree) For every p ∈ Ci−1, there exists
a q ∈ Ci such that d(p, q) < 2i and the node in
level i associated with q is a parent of the node
in level i− 1 associated with p.

3. (Separation) For all distinct p, q ∈ Ci, d(p, q) >
2i.

Important Note: With some abuse of terminol-
ogy, we identify nodes with their associated points,
with an understanding of the distinction made above.
Since a point can appear in at most one node in the
same level, no confusion can occur.

These invariants are essentially the same as used in
navigating nets [KL04a], except for (2) where we re-
quire only one parent of a node rather than all pos-
sible parents. (For every node in level i− 1, a navi-
gating net keeps pointers to all nodes in level i that
are within distance γ2i, where γ ≥ 4 is some con-
stant.) Despite potentially throwing out most of the
links in a navigating net, all runtime properties can
be maintained.

It is conceptually easiest to describe the algorithms in
terms of an implicit representation of the cover tree
consisting of an infinite number of levels, with C∞
containing the point in S associated with the root
node and with C−∞ = S. However, we must use and
analyze the explicit representation, which takes only
O(n) space. Recall that if a point p ∈ S first appears
in level i then it is in all levels below i, and, as the
following proof shows, p is a child of itself in all of
these levels (i.e., the node associated with p is a child
of the node associated with p in one level above). The
explicit representation of the tree coalesces all nodes
in which the only child is a self-child. This implies
that every explicit node either has a parent other
than the self-parent or a child other than the self-
child, which immediately gives an O(n) space bound,
independent of the growth constant c.

Theorem 1 (Space bound) A cover tree requires
space at most O(n).

Algorithm 1 Find-Nearest (cover tree T , query
point p)

1. Set Q∞ = C∞, where C∞ is the root level of T .

2. for i from ∞ down to −∞
(a) Set Q = { Children(q) : q ∈ Qi}.
(b) Form cover set Qi−1 = {q ∈ Q : d(p, q) ≤

d(p, Q) + 2i}.
3. return arg minq∈Q−∞ d(p, q).

Proof: Every point has at most one parent other
than itself in the explicit tree. To see this, assume
q 6= p and q′ 6= p are two parents of p. The scale at
which q and q′ are parents must be different by the
covering tree invariant. Nesting implies that p is a
sibling of the parent at some lower scale j. If q′ is
the parent at the lower scale, then separation implies
d(p, q′) > 2j which implies that q′ can not be a parent
at scale j. Every time a point is a parent of itself,
it also has another point as a child. Consequently,
there are at most O(n) links and n points implying
the space bound.

3. Single Point Operations

We now present the basic algorithms for cover trees
and prove their correctness. The runtime analysis is
given in Section 4.

3.1. Finding the nearest neighbor

To find the nearest neighbor of a point p in a cover
tree, we descend through the tree level by level, keep-
ing track of a subset Qi ⊂ Ci of nodes that may con-
tain the nearest neighbor of p as a descendant. The
algorithm iteratively constructs Qi−1 by expanding
Qi to its children in Ci−1 then throwing away any
child q that cannot lead to the nearest neighbor of
p. For simplicity, it is easier to think of the tree as
having an infinite number of levels (with C∞ con-
taining only the root, and with C−∞ = S). Denote
the set of children of node p by Children(p) and let
d(p, Q) = minq∈Q d(p, q) be the distance to the near-
est point of p in a set Q. Note that although the
algorithm is stated using an infinite loop over the
implicit representation, it only needs to operate on
the explicit representation.

Theorem 2 If T is a cover tree on S, Find-
Nearest(T, p) returns the nearest neighbor of p in
S.
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Proof: For any q in Ci−1 the distance between
q and any descendant q′ is bounded by d(q, q′) ≤∑−∞

j=i−1 2j = 2i. Consequently, step 2(b) can never
throw out a grandparent of the nearest neighbor of
p. Eventually, there are no descendants of Qi not in
Qi, so the nearest neighbor is in Qi.

3.2. Approximating the nearest neighbor

The cover tree structure can also be used to approx-
imate nearest neighbors. Given a point p ∈ X and
some ε > 0, we want to find a point q ∈ S satisfying
d(p, q) < (1+ ε)d(p, S). The main idea is to maintain
a lower bound as well as an upper bound, stopping
when the interval implied by the bounds is sufficiently
small. When analyzed with respect to the doubling
constant, the proof of the time bound is essentially
the same as in [KL04a]. The space bound is now lin-
ear (independent of the doubling constant), giving a
strict improvement over the results in [KL04a].

Algorithm: The only change is in line 2, where in-
stead of descending the tree until no node in Qi is
explicit, we stop as soon as 2i+1(1 + 1/ε) ≤ d(p, Qi).

Proof of correctness: Suppose that the descent termi-
nated in level i. Then either 2i+1(1 + 1/ε) ≤ d(p, Qi)
or all nodes in Qi are implicit (in which case we ac-
tually return the exact nearest neighbor). Let us
consider the former case. Since Qi is at distance
at most 2i+1 from the exact nearest neighbor of p
(Theorem 2), and d satisfies the triangle inequality,
we have d(p, Qi) ≤ d(p, S) + 2i+1. Combining with
2i+1(1 + 1/ε) ≤ d(p, Qi), this gives 2i+1(1 + 1/ε) ≤
d(p, S) + 2i+1, or 2i+1 ≤ εd(p, S). Hence, we have
d(p, Qi) ≤ (1 + ε)d(p, S).

The time complexity follows from inspection of
Lemma 2.6 in [KL04a]. An approximate query takes
at most cO(1) log ∆+(1/ε)O(log c), where c is the dou-
bling constant and ∆ is the aspect ratio.

3.3. Single Point Insertion

The insertion algorithm (Algorithm 2) is similar to
the query algorithm but it is stated recursively. Here
Qi is a subset of the points at level i which may con-
tain the new point p as a descendant. The algorithm
starts with the root node, Q∞ = C∞. The proof of
correctness implies that the structure always exists.

Theorem 3 Given a cover tree on S with root C∞,
Insert(p, C∞,∞) returns a cover tree on S ∪ {p}.

Algorithm 2 Insert(point p, cover set Qi, level
i)

1. Set Q = {Children(q) : q ∈ Qi}.
2. if d(p, Q) > 2i then return “no parent found”.

3. else (a) Set Qi−1 = {q ∈ Q : d(p, q) ≤ 2i}.
(b) if Insert(p, Qi−1, i− 1) = “no parent found”

and d(p, Qi) ≤ 2i

pick q ∈ Qi satisfying d(p, q) ≤ 2i

insert p into Children(q)
return “parent found”

(c) else return “no parent found”

Proof: Let us prove that the algorithm is guaranteed
to insert any p not already contained in the cover
tree. (If p is in the tree, this can be determined with
a single invocation of the search procedure.) The set
Q starts non-empty. Since p is not already in the tree,
d(p, S) is nonzero, and the condition in line 2 must
eventually hold. Since the root has scale ∞, there is
some minimal scale i between ∞ and the scale where
line 2 first holds such that d(p, Qi) ≤ 2i and so 3b
holds.

We now prove that the insertion maintains all the
cover tree invariants. If p is inserted in level i − 1,
we know that d(p, Qi) ≤ 2i, and thus we can always
find a parent q ∈ Qi with d(p, q) ≤ 2i, satisfying the
covering tree invariant. Once p is inserted in level i−
1, it is implicitly inserted in every level beneath it (as
a child of itself in the previous level), maintaining the
nesting invariant. Next we show that doing so does
not violate the separation condition in lower levels.

To prove the separation condition in level i− 1, con-
sider q ∈ Ci−1. If q ∈ Q, then d(p, q) > 2i−1. If q /∈
Q, then at some iteration i′ > i, some parent of q, say
q′ ∈ Ci′−1, was eliminated (in Step 3a), which implies
that d(p, q′) > 2i′ . Using the covering tree invariant
at level j we have d(p, q) ≥ d(p, q′) −

∑i
j=i′−1 2j =

d(p, q′)−(2i′−2i) = 2i′−(2i′−2i) = 2i, which proves
the desired separation d(p, Ci−1) > 2i−1. Separation
at levels below is proved similarly.

3.4. Single Point Removal

The removal (Algorithm 3) is similar to insertion,
with some extra complexity due to coping with chil-
dren of removed nodes.

Theorem 4 Given a cover tree on S,
Remove(p, {C∞},∞) returns a cover tree on
S − {p}.
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Algorithm 3 Remove(point p, cover sets
{Qi, Qi+1, ..., Q∞}, level i)

1. set Q = {Children(q) : q ∈ Qi}
2. set Qi−1 = {q ∈ Q : d(p, q) ≤ 2i}
3. Remove(p, {Qi−1, Qi, ..., Q∞}, i− 1)

4. if d(p, Q) = 0 then

(a) remove p from Ci−1 and from
Children(Parent(p))

(b) for every q ∈ Children(p)
set i′ = i− 1
while d(q, Qi′) > 2i′

insert q into Ci′ (and Qi′) and increment
i′.

choose q′ ∈ Qi′ satisfying d(q, q′) ≤ 2i′ and
make q′ point to q

Proof: As before, sets Qi maintain points in level
i closest to p, as we descend through the tree decre-
menting i. The recursion stops when it reaches the
level below which p is always implicit.

For each level i explicitly containing p, we remove p
from Ci and from the list of children of its parent
in Ci+1. This does not disturb the nesting and the
separation invariants. For each child q of p (by this
time p has already been removed from the list of its
children), we go up the tree looking for a new parent.
More precisely, if there exists a node q′ ∈ Ci such that
d(q, q′) ≤ 2i we make q′ a parent of q; otherwise, we
insert q in level Ci and repeat, propagating q up the
tree until a parent is found. Insertion does not vio-
late the separation and the nesting constraints, since
d(q, Ci) > 2i (otherwise we would not be inserting
q in Ci). This propagation process is guaranteed to
terminate since q is covered by the root (at the scale
of the root). Hence the covering tree invariant is en-
forced for all children of p.

4. The Runtime Analysis

In this section, the distinction between implicit and
explicit representation (see Section 2) is important.
We start with three lemmas about some structural
properties of the cover tree.

Lemma 4.1 (Width bound) The number of children
of any node p is bounded by c4.

Proof: Let p be in level i. The number of its chil-
dren is at most |B(p, 2i) ∩ Ci−1|, which is certainly
bounded by |B(p, 2i+1)∩Ci−1|. The idea of the proof
is to bound the number of disjoint balls of radius 2i−2

that we can pack into B(p, 2i+1). Each of these balls
can cover at most one point in Ci−1, thereby bound-
ing the number of children. For any child q of p,
since d(p, q) ≤ 2i, we have B(p, 2i+1) ⊂ B(q, 2i+2)
implying |B(p, 2i+1)| ≤ |B(q, 2i+2)| ≤ c4|B(q, 2i−2)|.
The balls B(q, 2i−2) must be disjoint for all q ∈ Ci−1,
since the points in Ci−1 are at least 2i−1 apart. We
also know that each B(q, 2i−2) is contained within
B(p, 2i+1), since d(p, q) ≤ 2i. Then the number of
disjoint balls around the children that can be packed
into B(p, 2i+1) is bounded by

|B(p, 2i) ∩ Ci−1| ≤
|B(p, 2i+1)|
|B(q, 2i−2)|

≤ c4,

which bounds the number of children of p.

The following lemma is useful in bounding the depth
of the tree. It says that if there is a point in some
annulus centered around p, then the volume growth
of a sufficiently large ball around p containing the
annulus is non-trivial. In other words, it gives a lower
bound on the volume growth in terms of the growth
constant c, while the definition of c gives an upper
bound.

Lemma 4.2 (Growth Bound) For all points p ∈ S
and r > 0, if there exists a point q ∈ S such that
2r < d(p, q) ≤ 3r, then

|B(p, 4r)| ≥
(

1 +
1
c2

)
|B(p, r)|.

Proof: Since B(p, r) ⊂ B(q, 3r + r), we have
|B(p, r)| ≤ |B(q, 4r)| ≤ c2|B(q, r)|. And since B(p, r)
and B(q, r) are disjoint and are subsets of B(p, 4r),
we have |B(p, 4r)| ≥ |B(p, r)| + |B(q, r)|. The result
follows by combining these inequalities.

Using this, we can prove a bound on the explicit
depth of any point p, defined as the number of ex-
plicit grandparent nodes on the path from the root
to p in the lowest level in which p is explicit.

Lemma 4.3 (Depth Bound) The maximum depth of
any point p is O

(
c2 log n

)
.

Proof: Define Si = {q ∈ S : 2i+1 ≤ d(p, q) < 2i+2}.
First let us show that if point q ∈ Si is a grandparent
of p, then q ∈ Ci. If q ∈ Cj for some j, then any of its
grandchildren is at most 2j+1 away implying j ≥ i.
Nesting says that q ∈ Ci, since Cj ⊂ Ci.

Now let us consider the grandparents of p in levels Ci,
Ci+1, Ci+2, Ci+3. There are at most four of these,
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due to the tree property. In fact, there can be no
other unique grandparents above level i + 3 in Si.
Recall that if q ∈ Si, then d(p, q) < 2i+2. If q is also
in Ci+3, the well-separateness constraint implies that
there can be no other point in Si which is also in Ci+3.
Nesting implies that there are no other grandparents
in j > i + 3, else these grandparents would also be in
Ci+3.

Thus any annulus Si can only contain unique grand-
parents of p up to level i + 3. Now we just need to
bound the number of non-empty Si around p con-
taining all points in S. To do this, apply the growth
bound with r = d(p,q)

2 where q is the nearest neigh-
bor of p to discover |B(p, 4r)| ≥

(
1 + 1

c2

)
|B(p, r)| =(

1 + 1
c2

)
. Then, find the next nearest point q sat-

isfying d(p, q) ≥ 8r, and apply the growth bound
with r′ = d(p,q)

2 to discover |B(p, 4r)| ≥
(
1 + 1

c2

)2

since each application of the growth bound is dis-
joint (note that this process may significantly under-
count points). This process can be repeated at most

log n
log(1+1/c2) before the lower bound exceeds the upper
bound of n. Upon termination, every point q can be
associated with the maximal r satisfying 2r ≤ d(p, q).
The set of points associated with every step in the
process lie in at most 4 annuli Si. Consequently, there
are at most O

(
log n

log(1+1/c2)

)
nonempty annuli around

any p. This is O(c2 log n) since c ≥ 2. The number
of explicit grandparents in Si is constant, completing
the proof.

We can now state and prove the main theorem.

Theorem 5 (Query Time) If the dataset S∪{p} has
expansion constant c, the nearest neighbor of p can be
found in time O

(
c12 log n

)
.

Proof: Let Q∗ be the last explicit Qi considered by
the algorithm. Lemma 4.3 bounds the explicit depth
of any point in the tree (and in particular any point in
Q∗) by k = O

(
c2 log n

)
. Consequently, the number

of iterations is at most k|Q∗| ≤ k · maxi |Qi|. In
each iteration, at most O(maxi |Qi|) time is required
to determine which elements need explicit descent,
implying a bound of O(k maxi |Qi|2).

Also note that in Step 2(a), the number of chil-
dren encountered is at most kc4 maxi |Qi| using
Lemma 4.1. Step 2(b) never does more work
than Step 2(a). Step 3 requires at most maxi |Qi|
work. Consequently, the running time is bounded by
O(k maxi |Qi|2 + k maxi |Qi|c4)) finishing the proof,
provided that we can show that maxi |Qi| ≤ c5.

Consider any Qi−1 constructed during the i-th iter-
ation. Recall that Q = { Children(q) : q ∈ Qi}, and
let d = d(p, Q). We have

Qi−1 = {q ∈ Q : d(p, q) ≤ d + 2i}
= B(p, d + 2i) ∩Q ⊆ B(p, d + 2i) ∩ Ci−1,

where the first equality follows by definition of Qi−1

and the second from Q ⊆ Ci−1.

First suppose that d > 2i+1. Then we have

|B(p, d + 2i)| ≤ |B(p, 2d)| ≤ c2

∣∣∣∣B (
p,

d

2

)∣∣∣∣ .

Now since d ≤ d(p, S) + 2i (as a consequence of Q ⊆
Ci−1), and d > 2i+1(by assumption), we also have
d(p, S) ≥ d − 2i > 2i. Hence B

(
p, d

2

)
= {p}, and

|Qi−1| ≤ c2.

We are left with the case d ≤ 2i+1. Consider a point
q ∈ Ci−1 which is also in B(p, d+2i). As in the proof
of Lemma 4.1, we bound the number of disjoint balls
of radius 2i−2 that can be packed into B(p, d + 2i +
2i−2). Any such ball can contain at most one point
in Ci−1 (due to the separation constraint), implying
a bound on |Qi−1|. We have

|B(p, d + 2i + 2i−2)| ≤ |B(q, 2(d + 2i) + 2i−2)| ≤

|B(q, 2i+2+2i+1+2i−2)| ≤ |B(q, 2i+3)| ≤ c5|B(q, 2i−2)|,

and thus |Qi−1| ≤ |B(p, d + 2i) ∩ Ci−1| ≤ c5.

Comparing the time complexity of navigating nets
and cover trees in terms of its dependence on the
expansion constant is non-trivial. Our data structure
does run-time computations which were done in the
preprocessing stage of the navigating nets algorithm.
Navigating nets can be run in a more greedy (depth
first search) mode, while cover trees use a from of a
fused depth and breadth first search. The tradeoff is
even more subtle because the radius of the balls used
to form the covers in the navigating nets is larger
than the radius used in the cover tree, implying that
a node may have to maintain more children.

Finally we analyze dynamic operations.

Theorem 6 Any insertion or removal takes time at
most O

(
c6 log n

)
.

Proof: First we show that all but one node in each
cover set are either expanded to their children or re-
moved in the next two cover sets. To see why, note
that each Qi is contained in a ball of radius 2i+1
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Figure 1. Speedups over the brute force search (logscale)
when querying for the nearest {1, 2, 3, 5, 10}-neighbors of
every point in the dataset; datasets are sorted by their
byte size in ascending order (shown with a dashed line).

around the point p we are inserting (by definition).
Fix i and assume that some node q appears (either
explicitly or implicitly) in all of Qi, Qi−1, Qi−2. Then
no other node q′ ∈ Qi can appear in Qi−2, since the
separation constraint in level i says that d(q, q′) > 2i

while the maximum distance between q ∈ Qi−2 and
any other node in Qi−2 can be at most 2i. Thus q is
either removed or expanded to its children, in which
case it has to consume one level of its explicit depth.

Let k = c2 log |S| be the maximum explicit depth
of any point, given by Lemma 4.3. Then the total
number of cover sets with explicit nodes is at most
3k+k = 4k, where the first term follows from the fact
that any node that is not removed must be explicit at
least once every three iterations, and the additional
k accounts for a single point that may be implicit for
many iterations.

Thus the total amount of work in Steps 1 and 2 is
proportional to O(k maxi |Qi|). Step 3 requires work
no greater than step 1. For every i, Qi is a valid
set of children for a hypothetical node at level i + 1,
and thus |Qi| ≤ c4 from Lemma 4.1. Multiplying the
bounds gives the result.

To obtain the bound for the removal, we can use a
similar argument to show that at most one point can
be propagated up more than twice in the search for
a parent. Thus Step 5 in Algorithm 3 takes at most
O(k maxi |Qi|) steps. Other steps require work no
greater than for insertion.

5. Experimental Results

We tested the algorithm on several datasets drawn
from the UCI machine learning and KDD archives
[UCI], the KDD 2004 championship [KDDCup], the

Figure 2. (b) The cumulative distribution of expansion
constants across points for two datasets with the same
maximum expansion. We achieve very little speedup on
the ‘mnist’ dataset and about a factor of 10 speedup on
the bio test dataset. (c) Speedups versus the worst case
and the 80th percentile expansion constants on various
5000 point datasets obtained as prefixes of datasets form
[UCI, KDDCup, mnist, isomap].

Mnist handwritten digit recognition dataset[mnist],
and the Isomap “Images” dataset [isomap]. For each
dataset, we queried for the nearest {1, 2, 3, 5, 10}-
neighbors of each point using the Euclidean metric.
The results compared to an optimized brute force al-
gorithm, are summarized in Figure 1. Results for the
l1 metric are similar.

A natural question is whether the expansion constant
is a relevant quantity for analysis. Since it is defined
as the worst-case expansion over all points, it may
not be the best measure of hardness of NNS. Figure
2(b) shows two 5000-point datasets with the same
worst-case expansion constant but different distribu-
tions of expansion across points, and not surprisingly,
very different speedups. Figure 2(c) suggests that, for
example, the 80th percentile (over datapoints) ex-
pansion constant seems to be a better predictor of
performance.

Finally, we did experiments comparing cover trees to
Clarkson’s sb(S) data structure [Cla02] developed for
the same setting as ours (see also [Cla99]). For each
dataset, we did exact nearest neighbor queries of ev-
ery point using the “d” method in [Cla02] that was
reported to be uniformly superior to all other meth-
ods available in the sb(S) package. We included the
construction time when evaluating both algorithms
and used the same timing mechanisms and the same
implementation of the distance functions. Our algo-
rithm was significantly faster on almost every dataset
tested; the speedups are shown in Figure 3(b). It
should be noted, however, that the k-nearest neigh-
bor implementation in sb(S) is via a reduction to
fixed-radius queries; a better scheme might be possi-
ble, but it is not straightforward. Figure 3(a) shows
the speedup of the cover tree over sb(S) for strings
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Figure 3. The speedup (logscale) over sb(S) [Cla02]: (a)
NNS of every point in the dataset; points are strings under
the edit distance. Dashed spikes show the corresponding
speedups in the construction times. (b) (1,2)-NNS (solid
and dashed lines respectively). One datapoint is missing
due to parsing issues with sb(S).

under the edit distance.
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