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Reminder: Contextual Bandit Setting

For t = 1, . . . ,T :

1 The world produces some context x ∈ X

2 The learner chooses an action a ∈ A

3 The world reacts with reward ra ∈ [0, 1]

Goal: Learn a good policy for choosing actions given context.

What does learning mean? Efficiently competing with some large
reference class of policies Π = {π : X → A}:

Regret = max
π∈Π

averaget(rπ(x) − ra)



A Basic Observation

This is not a supervised learning problem:

We don’t know the reward of actions not taken—loss function
is unknown even at training time.

Exploration is required to succeed. No exploration ⇒ no basis
for sound decision making.



What is exploration?

Exploration = Choosing not-obviously best actions to gather
information for better performance in the future.

There are two kinds:

1 Deterministic. Choose action A, then B, then C , then A, then
B, ...

2 Randomized. Choose random actions according to some
distribution over actions.

We discuss Randomized here.

1 There are no good deterministic exploration algorithms in this
setting.

2 Supports off-policy evaluation. (See first half.)

3 Randomize = robust to delayed updates, which are very
common in practice.
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Explore τ then Follow the Leader (Explore-τ)

Initially, h = ∅
For the first τ rounds

1 Observe x.

2 Choose a uniform randomly.

3 Observe r , and add (x , a, r) to h.

For the next T rounds, use empirical best.

Suppose all examples are drawn from a fixed distribution D(x ,~r).

Theorem: For all D,Π,Explore-τ has regret O

(
τ
T +

√
|A| ln |Π|

τ

)
with high probability.

Proof: After τ rounds, a large deviation bound implies empirical
average value of a policy deviates from expectation E(x ,~r)∼D [rπ(x)]

by at most
√
|A| ln(|Π|/δ)

τ , so regret is bounded by

τ
T + T

T

√
|A| ln(|Π|/δ)

τ .
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What does this mean?

1 +Easiest approach: offline prerecorded exploration can feed
into any learning algorithm. See first half.

2 -Doesn’t adapt when world changes.

3 -Underexploration common. Think of clinical trials.

Can we do better?
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ε-Greedy

1 Observe x.
2 With probability 1− ε

1 Choose learned a
2 Observe r , and learn with (x , a, r , 1− ε).

With probability ε
1 Choose Uniform random other a
2 Observe r , and learn with (x , a, r , ε/(|A| − 1)).

Theorem: ε-Greedy has regret O
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1 -Harder Approach: Need online learning algorithm to use.

2 +Adapts when world changes.

3 -Overexploration common. Bad possibilities keep being
explored.

Can we do better?
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Epoch Greedy

At every timestep t, the learned policy has an empirical
performance known up to some precision εt which can be
estimated.
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What does this mean?

1 -Harder Approach: Need online learning algorithm to use +
keeping track of deviation bound.

2 +Adapts when world changes.

3 +Neither under nor over exploration.

Is it possible to do better?
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Better 1: Policy Elimination

Policy Elimination

Let Π0 = Π = initial set of policies.
For each t = 1, 2, . . .

1 Choose distribution P over remaining policies Πt−1 so every
remaining policy π has small expected variance in value
estimate.

2 observe x

3 Let p(a) = fraction of policies from P choosing a given x .

4 Choose a ∼ p and observe reward r .

5 Let Πt = remaining near empirical best policies.

Theorem: With high probability Policy Elimination has expected
regret

O

(√
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T

)
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What does this mean?

1 -Doesn’t adapt when world changes.

2 ++Much more efficient exploration. Only efficient in special
cases.

3 - -Much Harder Approach: Need to keep track of policies,
which is often intractable.

Adapting algorithms exist (EXP4).
More efficient versions exist (RUCB), but not yet efficient enough.
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Better 2: Thompson Sampling

Always maintain a Bayesian posterior over policies.
On each round sample policy from posterior, and act according to
it.

An efficient special case: Gaussian Posterior.

Thompson Sampling

Let w = mean 0 multivariate gaussian.
For each t = 1, 2, . . .

1 Draw w ′ ∼ w

2 Observe x

3 Choose a = maxa′ w
′xa′

4 Observe reward r .

5 Bayesian update w with (x , a, r).
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What does it mean?

1 +Efficient special cases for Gaussian posteriors.

2 +Known to work well empirically sometimes.

3 -Not robust to model misspecification.



The current state
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Purring

Shiny

Something to try

You can see the edge of the understood world in this lecture. We
hope to see further soon.
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