
Linear Learning with AllReduce

John Langford (with help from many)

NYU Large Scale Learning Class, February 19, 2013

Applying for a fellowship in 1997

Interviewer: So, what do you want to do?
John: I’d like to solve AI.
I: How?
J: I want to use parallel learning algorithms to create fantastic
learning machines!

I: You fool! The only thing parallel machines are good for is
computational windtunnels!
The worst part: he had a point.

Applying for a fellowship in 1997

Interviewer: So, what do you want to do?
John: I’d like to solve AI.
I: How?
J: I want to use parallel learning algorithms to create fantastic
learning machines!
I: You fool! The only thing parallel machines are good for is
computational windtunnels!

The worst part: he had a point.

Applying for a fellowship in 1997

Interviewer: So, what do you want to do?
John: I’d like to solve AI.
I: How?
J: I want to use parallel learning algorithms to create fantastic
learning machines!
I: You fool! The only thing parallel machines are good for is
computational windtunnels!
The worst part: he had a point.

Terascale Linear Learning ACDL11

Given 2.1 Terafeatures of data, how can you learn a good linear
predictor fw (x) =

∑
i wixi?

17B Examples
16M parameters
1K nodes
How long does it take?

70 minutes = 500M features/second: faster than the IO
bandwidth of a single machine⇒ faster than all possible single
machine linear learning algorithms.

Terascale Linear Learning ACDL11

Given 2.1 Terafeatures of data, how can you learn a good linear
predictor fw (x) =

∑
i wixi?

17B Examples
16M parameters
1K nodes
How long does it take?

70 minutes = 500M features/second: faster than the IO
bandwidth of a single machine⇒ faster than all possible single
machine linear learning algorithms.

Terascale Linear Learning ACDL11

Given 2.1 Terafeatures of data, how can you learn a good linear
predictor fw (x) =

∑
i wixi?

17B Examples
16M parameters
1K nodes
How long does it take?

70 minutes = 500M features/second: faster than the IO
bandwidth of a single machine⇒ faster than all possible single
machine linear learning algorithms.

MPI-style AllReduce

7

2 3 4

6

Allreduce initial state

5

1

Properties:

1 Easily pipelined so no latency concerns.

2 Bandwidth ≤ 6n.

3 No need to rewrite code!

MPI-style AllReduce

2828 28

Allreduce final state

28 28 28 28

Properties:

1 Easily pipelined so no latency concerns.

2 Bandwidth ≤ 6n.

3 No need to rewrite code!

MPI-style AllReduce

2 3 4

6

7

5

1

Create Binary Tree

Properties:

1 Easily pipelined so no latency concerns.

2 Bandwidth ≤ 6n.

3 No need to rewrite code!

MPI-style AllReduce

2 3 4

7

8

1

13

Reducing, step 1

Properties:

1 Easily pipelined so no latency concerns.

2 Bandwidth ≤ 6n.

3 No need to rewrite code!

MPI-style AllReduce

2 3 4

8

1

13

Reducing, step 2

28

Properties:

1 Easily pipelined so no latency concerns.

2 Bandwidth ≤ 6n.

3 No need to rewrite code!

MPI-style AllReduce

2 3 41

28

Broadcast, step 1

28 28

Properties:

1 Easily pipelined so no latency concerns.

2 Bandwidth ≤ 6n.

3 No need to rewrite code!

MPI-style AllReduce

28

28 28

Allreduce final state

28 28 28 28

AllReduce = Reduce+Broadcast

Properties:

1 Easily pipelined so no latency concerns.

2 Bandwidth ≤ 6n.

3 No need to rewrite code!

MPI-style AllReduce

28

28 28

Allreduce final state

28 28 28 28

AllReduce = Reduce+Broadcast
Properties:

1 Easily pipelined so no latency concerns.

2 Bandwidth ≤ 6n.

3 No need to rewrite code!

An Example Algorithm: Weight averaging

n = AllReduce(1)
While (pass number < max)

1 While (examples left)
1 Do online update.

2 AllReduce(weights)

3 For each weight w ← w/n

Other algorithms implemented:

1 Nonuniform averaging for online learning

2 Conjugate Gradient

3 LBFGS

An Example Algorithm: Weight averaging

n = AllReduce(1)
While (pass number < max)

1 While (examples left)
1 Do online update.

2 AllReduce(weights)

3 For each weight w ← w/n

Other algorithms implemented:

1 Nonuniform averaging for online learning

2 Conjugate Gradient

3 LBFGS

What is Hadoop AllReduce?

1

Data
Program

“Map” job moves program to data.

2 Delayed initialization: Most failures are disk failures. First
read (and cache) all data, before initializing allreduce. Failures
autorestart on different node with identical data.

3 Speculative execution: In a busy cluster, one node is often
slow. Hadoop can speculatively start additional mappers. We
use the first to finish reading all data once.

The net effect: Reliable execution out to perhaps 10K node-hours.

What is Hadoop AllReduce?

1

Data
Program

“Map” job moves program to data.

2 Delayed initialization: Most failures are disk failures. First
read (and cache) all data, before initializing allreduce. Failures
autorestart on different node with identical data.

3 Speculative execution: In a busy cluster, one node is often
slow. Hadoop can speculatively start additional mappers. We
use the first to finish reading all data once.

The net effect: Reliable execution out to perhaps 10K node-hours.

What is Hadoop AllReduce?

1

Data
Program

“Map” job moves program to data.

2 Delayed initialization: Most failures are disk failures. First
read (and cache) all data, before initializing allreduce. Failures
autorestart on different node with identical data.

3 Speculative execution: In a busy cluster, one node is often
slow. Hadoop can speculatively start additional mappers. We
use the first to finish reading all data once.

The net effect: Reliable execution out to perhaps 10K node-hours.

What is Hadoop AllReduce?

1

Data
Program

“Map” job moves program to data.

2 Delayed initialization: Most failures are disk failures. First
read (and cache) all data, before initializing allreduce. Failures
autorestart on different node with identical data.

3 Speculative execution: In a busy cluster, one node is often
slow. Hadoop can speculatively start additional mappers. We
use the first to finish reading all data once.

The net effect: Reliable execution out to perhaps 10K node-hours.

Approach Used

1 Optimize hard so few data passes required.
1 Normalized, adaptive, safe, online gradient descent.

2 L-BFGS = batch algorithm that approximates inverse hessian.
3 Use (1) to warmstart (2).

2 Use map-only Hadoop for process control and error recovery.

3 Use AllReduce to sync state.

4 Always save input examples in a cachefile to speed later
passes.

5 Use hashing trick to reduce input complexity.

In Vowpal Wabbit. Allreduce is a separate easily linked library.

Approach Used

1 Optimize hard so few data passes required.
1 Normalized, adaptive, safe, online gradient descent.
2 L-BFGS = batch algorithm that approximates inverse hessian.
3 Use (1) to warmstart (2).

2 Use map-only Hadoop for process control and error recovery.

3 Use AllReduce to sync state.

4 Always save input examples in a cachefile to speed later
passes.

5 Use hashing trick to reduce input complexity.

In Vowpal Wabbit. Allreduce is a separate easily linked library.

Approach Used

1 Optimize hard so few data passes required.
1 Normalized, adaptive, safe, online gradient descent.
2 L-BFGS = batch algorithm that approximates inverse hessian.
3 Use (1) to warmstart (2).

2 Use map-only Hadoop for process control and error recovery.

3 Use AllReduce to sync state.

4 Always save input examples in a cachefile to speed later
passes.

5 Use hashing trick to reduce input complexity.

In Vowpal Wabbit. Allreduce is a separate easily linked library.

Approach Used

1 Optimize hard so few data passes required.
1 Normalized, adaptive, safe, online gradient descent.
2 L-BFGS = batch algorithm that approximates inverse hessian.
3 Use (1) to warmstart (2).

2 Use map-only Hadoop for process control and error recovery.

3 Use AllReduce to sync state.

4 Always save input examples in a cachefile to speed later
passes.

5 Use hashing trick to reduce input complexity.

In Vowpal Wabbit. Allreduce is a separate easily linked library.

Approach Used

1 Optimize hard so few data passes required.
1 Normalized, adaptive, safe, online gradient descent.
2 L-BFGS = batch algorithm that approximates inverse hessian.
3 Use (1) to warmstart (2).

2 Use map-only Hadoop for process control and error recovery.

3 Use AllReduce to sync state.

4 Always save input examples in a cachefile to speed later
passes.

5 Use hashing trick to reduce input complexity.

In Vowpal Wabbit. Allreduce is a separate easily linked library.

Approach Used

1 Optimize hard so few data passes required.
1 Normalized, adaptive, safe, online gradient descent.
2 L-BFGS = batch algorithm that approximates inverse hessian.
3 Use (1) to warmstart (2).

2 Use map-only Hadoop for process control and error recovery.

3 Use AllReduce to sync state.

4 Always save input examples in a cachefile to speed later
passes.

5 Use hashing trick to reduce input complexity.

In Vowpal Wabbit. Allreduce is a separate easily linked library.

Approach Used

1 Optimize hard so few data passes required.
1 Normalized, adaptive, safe, online gradient descent.
2 L-BFGS = batch algorithm that approximates inverse hessian.
3 Use (1) to warmstart (2).

2 Use map-only Hadoop for process control and error recovery.

3 Use AllReduce to sync state.

4 Always save input examples in a cachefile to speed later
passes.

5 Use hashing trick to reduce input complexity.

In Vowpal Wabbit. Allreduce is a separate easily linked library.

Robustness & Speedup

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 10 20 30 40 50 60 70 80 90 100

S
pe

ed
up

Nodes

Speed per method

Average_10
Min_10

Max_10
linear

Splice Site Recognition

0 10 20 30 40 50
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Iteration

a
u
P

R
C

Online

L−BFGS w/ 5 online passes
L−BFGS w/ 1 online pass

L−BFGS

0 5 10 15 20

0.466

0.468

0.47

0.472

0.474

0.476

0.478

0.48

0.482

0.484

Iteration

a
u
P

R
C

Online

L−BFGS w/ 5 online passes
L−BFGS w/ 1 online pass

L−BFGS

Splice Site Recognition

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

Effective number of passes over data

au
P

R
C

L−BFGS w/ one online pass
Zinkevich et al.
Dekel et al.

Bibliography: VW & Algs

Caching L. Bottou. Stochastic Gradient Descent Examples on Toy
Problems, http://leon.bottou.org/projects/sgd, 2007.

Release Vowpal Wabbit open source project,
http://github.com/JohnLangford/vowpal_wabbit/wiki,
2007.

L-BFGS J. Nocedal, Updating Quasi-Newton Matrices with Limited
Storage, Mathematics of Computation 35:773–782, 1980.

Adaptive H. B. McMahan and M. Streeter, Adaptive Bound
Optimization for Online Convex Optimization, COLT 2010.

Adaptive J. Duchi, E. Hazan, and Y. Singer, Adaptive Subgradient
Methods for Online Learning and Stochastic Optimization,
COLT 2010.

Safe N. Karampatziakis, and J. Langford, Online Importance
Weight Aware Updates, UAI 2011.

http://leon.bottou.org/projects/sgd
http://github.com/JohnLangford/vowpal_wabbit/wiki

Bibliography: Parallel

grad sum C. Teo, Q. Le, A. Smola, V. Vishwanathan, A Scalable
Modular Convex Solver for Regularized Risk Minimization,
KDD 2007.

avg. G. Mann et al. Efficient large-scale distributed training of
conditional maximum entropy models, NIPS 2009.

ov. avg M. Zinkevich, M. Weimar, A. Smola, and L. Li, Parallelized
Stochastic Gradient Descent, NIPS 2010.

P. online D. Hsu, N. Karampatziakis, J. Langford, and A. Smola,
Parallel Online Learning, in SUML 2010.

D. Mini O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao,
Optimal Distributed Online Predictions Using Minibatch,
http://arxiv.org/abs/1012.1367

Tera Alekh Agarwal, Olivier Chapelle, Miroslav Dudik, John
Langford A Reliable Effective Terascale Linear Learning
System, http://arxiv.org/abs/1110.4198

http://arxiv.org/abs/1012.1367
http://arxiv.org/abs/1110.4198

