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Features in Practice: Engineered Features

Hand crafted features, built up iteratively over time, each new
feature �xing a discovered problem.
In essence, boosting where humans function as the weak learner.

1 +Good understanding of what's happening.

2 +Never fail to learn the obvious.

3 +Small RAM usage.

4 -Slow at test time. Intuitive features for humans can be hard

5 -Low Capacity. A poor �t for large datasets. (Boosted)
Decision trees are a good compensation on smaller datasets.

6 -High persontime.



Features in Practice: Learned Features

Use a nonlinear/nonconvex possibly deep learning algorithm.

1 +Good results in Speech & Vision.

2 +Fast at test time.

3 +High capacity. Useful on large datasets.

4 -Slow training. Days to weeks are common.

5 -Wizardry may be required.



Features in Practice: Count Features

An example: for each (word, ad) pair keep track of empirical
expectation of click Ê [c|(word , ad)].

1 +High capacity.

2 +Fast learning. Counting is easy on map-reduce architectures.

3 +fast test time. Lookup some numbers, then compute an easy
prediction.

4 -High RAM usage. Irrelevant features take RAM.

5 -Correlation e�ects lost. Adding explicit conjunction features
takes even more RAM.



Features in Practice: sparse words

Generate a feature for every word, ngram, skipgram, pair of (ad
word, query word), etc... and use high dimensional representation.

1 +High capacity.

2 +Correlation e�ects nailed.

3 +fast test time. Lookup some numbers, then compute an easy
prediction.

This lecture.

4 -Slow learning Linear faster than decision tree, but parallel is
tricky.

This lecture + Allreduce lecture.

5 -High RAM usage

This lecture.
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What is hashing?

Hash function: string → {0, 1}b
A hash function maps any string into a range seemingly at random.

Hash table = Hash function + Array< Pair<string, int> > of
length {0, 1}b

Perfect hash = over�t decision tree mapping n �xed (and known in
advance) strings to integers {1, n}.
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How does feature address parameter?

1 Hash Table (aka Dictionary): Store hash function + Every
string + Index.

2 Perfect Hash (+Bloom Filter): Store Custom Hash function
(+ bit array).

3 Hash function: Store Hash function.
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How does feature address parameter?

1 Hash Table (aka Dictionary): Store hash function + Every
string + Index.

2 Perfect Hash (+Bloom Filter): Store Custom Hash function
(+ bit array).

3 Hash function: Store Hash function.
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Objection: Collisions!

Valid sometimes: particularly with low dimensional hand engineered
features.

Theorem: If a feature is duplicated O(log n) times when there are
O(n) features, at least one version of the feature is uncollided when
hashing with log(n log n) bits.
Proof: Similar to Bloom �lter proof.



Objection: Collisions!

Valid sometimes: particularly with low dimensional hand engineered
features.

Theorem: If a feature is duplicated O(log n) times when there are
O(n) features, at least one version of the feature is uncollided when
hashing with log(n log n) bits.
Proof: Similar to Bloom �lter proof.



Example 1: CCAT RCV1

1 | tuesday year million short compan vehicl line stat �nanc commit
exchang plan corp subsid credit issu debt pay gold bureau prelimin
re�n billion telephon time draw
-1 | econom stock rate month year invest week produc report
govern pric index million shar end reserv foreign research in�at gdp
growth export consum output annual industr cent exchang project
trad �sc servic base compar prev money bank debt balanc gold daily
import agricultur ago estimat ton prelimin de�cit currenc nation
...

Run:
vw -b 24 --loss_function logistic --ngram 2 --skips 4 -c
rcv1.train.raw.txt --binary
to see progressive validation loss 4.5%: about 0.6% better than
linear on base features.
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Objection: Incomprehensible!

Use �audit to decode. Or, keep your own dictionary on the side if
desirable.
vw-varinfo rcv1.test.raw.txt.gz = perl script in VW distribution for
automatically decoding and inspecting results.
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Use of Hash: Feature Pairing

Once you accept a hash function, certain operations become very
easy.
-q df pairs every feature in namespaces beginning with d with every
feature in namespaces beginning with f.
But how?

Feature = (index,weight)
pair_weight = d_weight * f_weight
pair_index = (d_index * magic + f_index) & mask
This is done inline for speed.
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Use of Hash: Ngrams

2gram = a feature for every pair of adjacent words.
3gram = a feature for every triple od adjacent words, etc...
ngram = ...

Features computed in the same fashion as for -q

(More clever solution = rolling hash, not yet implemented.)

Computed by the parser on the �y (since #features/example only
grows linearly).



Learning Reductions

In many applications, you must have multiple predictors. Hashing
allows all these to be mapped into the same array using a di�erent
o�sets saving gobs of RAM and programming headaches.

�oaa, �ect, �csoaa, and others.



Example 2: Mass Personalized Spam Filtering

1 3.2 ∗ 106 labeled emails.

2 433167 users.

3 ∼ 40 ∗ 106 unique tokens.

How do we construct a spam �lter which is personalized, yet uses
global information?

Bad answer: Construct a global �lter + 433167 personalized �lters
using a conventional hashmap to specify features. This might
require 433167 ∗ 40 ∗ 106 ∗ 4 ∼ 70Terabytes of RAM.
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Using Hashing

Use hashing to predict according to: 〈w , φ(x)〉+ 〈w , φu(x)〉

NEU
Votre

Apotheke
en

ligne
Euro

...

USER123_NEU
USER123_Votre

USER123_Apotheke
USER123_en

USER123_ligne
USER123_Euro

...

+
323

0
5235

0
0

123
0

626
232
...

text document (email) tokenized, duplicated
bag of words

hashed, 
sparse vector

h2x

classification

w!xh

x xl xh

(in VW: specify the userid as a feature and use -q)



Results
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226 parameters = 64M parameters = 256MB of RAM.
An x270K savings in RAM requirements.



Features sometimes collide, which is scary, but then you love

it

Generate a feature for every word, ngram, skipgram, pair of (ad
word, query word), etc... and use high dimensional representation.

1 +High capacity.

2 +Correlation e�ects nailed.

3 +Fast test time. Compute an easy prediction.

4 +Fast Learning (with Online + parallel techniques. See talks.)

5 +/-Variable RAM usage. Highly problem dependent but fully
controlled.

Another cool observation: Online learning + Hashing = learning
algorithm with fully controlled memory footprint ⇒ Robustness.
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