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A Reminder: The Contextual Bandit Setting

For t = 1, . . . ,T :

1 The world produces some context xt ∈ X

2 The learner chooses an action at ∈ {1, . . . ,K}

3 The world reacts with reward rt(at) ∈ [0, 1]

Goal: Efficiently competing with a large reference class of possible
policies Π = {π : X → {1, ...,K}}:

Regret = max
π∈Π

T∑
t=1

rt(π(xt))−
T∑
t=1

rt(at)

Which combined explore/exploit algorithm is best for your setting?
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A Rejection Sampling approach

Rejection Sampler(policy π, events (~x , a, r , p)T )
Let h = ∅ a history, R = 0
For each event (~x , a, r , p)

1 If π(h,~x) = a

2 then with probability
pmin

p

1 h← h ∪ (~x , a, r)
2 R ← R + r

Return R/|h|

Theorem: For all history lengths T , For all nonstationary policy π,
and all IID worlds D, the probability of a simulated history of
length T = the probability of the same history of length T in the
real world.
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The Master Evaluator

Eval(policy π, events (~x , a, r , p)T , quantile ρ, bound b)
Let h = ∅, R = 0, C = 0, Q = ∅, c = b
For each event (~x , a, r , p)

1 R ← R + c
(
π(a|x ,h)

p (r − r̂(x , a)) +
∑

a′ π(a′|x , h)r̂(x , a′)
)

2 C ← C + c

3 Q ← Q ∪
{

p
π(a|x ,h)

}
4 With probability cπ(a|x ,h)

p :

1 h← h + (x , a, r)
2 c ← min{b, ρ-th quantile of Q}

Return R/C

Incorporates Double Robust + Nonstationary evaluation.
Theorem: Introduces bounded bias + much more efficient.
Empirically, an order of magnitude better for nonstationary eval.
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