LBFGS

John Langford, Large Scale Machine Learning Class,
February 5

(post presentation version)

We are still doing Linear Learning

Features: a vector x € R”

Label: y € R

Goal: Learn w € R” such that y,(x) = >, wjx; is
close to y.

But, this time in a batch fashion

Initialize w
Repeatedly:

Q Let y,(x) =D wix;

Q letgi=> —aL(yéVVE,T)’y)

© Compute update direction d(g)
@ Update weights w; < w; + di(g)

The BFGS Update

d(g) = Dg for some Direction matrix D
What is D7

The BFGS Update

d(g) = Dg for some Direction matrix D
What is D7

D is defined purely in terms of two empirical
observations:

I

& = 8new — &prev
/

W = Wnew — Wprev

> igiwl = g/TW’ should be positive for convex

functions.
Change in weight*gradient
2) —
N convex function
15 L agradient - i
_g) N\ another gradient --------
©
c 1F -
2 .
® 05 =
c AN
o
o O - T .
-0.5 1 | 1
-1.5 -1 -0.5 0 0.5

parameter

8iw; gw'’ ; ; /
Ty = S o = Transforms direction g' to

7
gTw’

direction w’ and vice versa.

!,

.
Ty = 5’(= £+~ Transforms direction g’ to
dlrectlon w' and vice versa.

A matrix is a linear function which transforms one

vector into another.

ZTV_ZJ-gLWj’VJ_ ZVJ
v
— T Yigw T giw

Dk ng/iW{ . /Zk ngk

vk Thj =
Z ’ Zi gilWi/ J Z g/

k

3 vectors,

A%

3 vectors,

A%

3 vectors,

A%

gv,w> =g

Let 04j = I(k =). if k =j then 1 and 0 otherwise
Skj = 0k — Tyj Subtracts transform Tj; while keeping
everything else.

Let 04j = I(k =). if k =j then 1 and 0 otherwise
Skj = 0k — Tyj Subtracts transform Tj; while keeping
everything else.

) 2 Vi
ZSI(JVJ_VI(gkz g

g Vk

J

WI/<W/ AN

ij — /J 7 — W/TW /

] YA g w
Hessian.

is an estimate of the inverse

W;(vvjl W/W/T . . f- .
Fij = S~ glwl = gTw7 15 aN estimate o the inverse
Hessian.
L L O
Hyj = owdw; — Ow;

W;(vvjl W/W/T . . f- .
Fij = S~ glwl = gTw7 15 aN estimate o the inverse
Hessian.
L L O
Hyj = owdw; — Ow;

So, Hw' ~ g’

WLWJ/ ww'T - . .
Fij = S~ giwl = gTws IS AN estimate of the inverse
Hessian.
0L Osxk
Hyj = owdw; — Ow;
So, Hw' ~ g’

So an inverse should satisfy Fg’ ~ w/'.

The BFGS direction

ij — Z” S;kD,'/S/j + ij
Or in recursive matrix form:
Dt =St Dist 4 Ft

The BFGS direction

ij — Z” S;kD,'/S/j + ij
Or in recursive matrix form:
Dt =St Dist 4 Ft
Unwinding, we get:
Dt = St'st-17 §1Tpogig? gt
15t s2TF1g2 gty gtTFRt-1gt 4t

The BFGS direction

ij — Z” S;kD,'/S/j + ij
Or in recursive matrix form:
Dt — StTDt—lst + Ft
Unwinding, we get:
Dt = St'st-17 §1Tpogig? gt
15t s2TF1g2 gty gtTFRt-1gt 4t
LBFGS is the low rank approximation.
[t =5t gt=mIpogt-m gt
qstT gtemilT promgt-m+il gt 4
+StTFt-1gt 4 Ft

What is D°?

How do you make it fast?

How do you start?

What if loss goes up?

How do you regularize?

: i :
What is D%? —J— is a reasonable choice.

8Wj6Wj

How do you make it fast?

How do you start?

What if loss goes up?

How do you regularize?

: i :
What is D%? —J— is a reasonable choice.

8Wj6Wj
How do you make it fast? All operations decompose
into dense vector products.
How do you start?

What if loss goes up?

How do you regularize?

: i :
What is D%? —J— is a reasonable choice.

dw; 0w

How do you make it fast? Al operations decompose
into dense vector products.

How do you start? Seed w with an online pass first.
Initially, step size may be crazy. Make a second pass
computing the second derivative in the chosen
direction.

What if loss goes up?

How do you regularize?

: i :
What is D%? —J— is a reasonable choice.

dw; 0w

How do you make it fast? Al operations decompose
into dense vector products.

How do you start? Seed w with an online pass first.
Initially, step size may be crazy. Make a second pass
computing the second derivative in the chosen
direction.

What if loss goes up? Backstep along previous
direction.

How do you regularize?

What is D°? aékL is a reasonable choice.

ow;0w;
How do you make it fast? Al operations decompose
into dense vector products.
How do you start? Seed w with an online pass first.
Initially, step size may be crazy. Make a second pass
computing the second derivative in the chosen
direction.
What if loss goes up? Backstep along previous
direction.
How do you regularize? Regularized loss has the

form: L'(§,y) = L(§,y) + §>_; w?. Imposing
regularization is a once-per-pass dense operation.

Curvature at solution

2 I I I
1.5 _
1t]
0.5 _
0 | _Loss around solufion |
0 0.5 1 1.5 2

X
S PL
Compute and store: r; = T
On resumption, regularize by > ri(w; — 0;)? where

o; is the old weight value.

Why LBFGS?

Theorem: If L is quadratic and an exact line search
was done for the step size, a variant satisfies

etﬁﬁ

for some C.

Why LBFGS?

Theorem: If L is quadratic and an exact line search
was done for the step size, a variant satisfies

etﬁﬁ

for some C.
Of course, it's rarely quadratic and you never perform
exact line search.

What happens here?

Absolute Value
1 T T

o | —

0.6 -

04 4

02 r -

What happens here?

Absolute Value

1 T T
X-1
0.8 i
0.6 i
x
T04rf .
0.2 i
0 | |
0 0.5 1 1.5 2

X
What happens to a true Newton step here?

References

[L] Nocedal, J., “Updating quasi-Newton matrices
with limited storage”’, Math. of Comp., 35, 773-782.
[B] Broyden, C., “The convergence of a class of
double-rank minimization algorithms”, Journal of the
Inst. of Math. and lts Applications, 6:76-90.

[F] Fletcher, R., "A New Approach to Variable Metric
Algorithms”, Computer Journal 13 (3):317-322.

[G] Goldfarb, D., “A Family of Variable Metric
Updates Derived by Variational Means”, Math. of
Comp. 24 (109):23-26.

[S] Shanno, D. “Conditioning of quasi-Newton
methods for function minimization”, Math. of Comp.
24(111):647-656.

More References

Incremental LBFGS Olivier Chapelle

