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Features in Practice: Engineered Features

Hand crafted features, built up iteratively over time, each new
feature fixing a discovered problem.
In essence, boosting where humans function as the weak learner.
© +Good understanding of what's happening.
@ +Never fail to learn the obvious.
© +Small RAM usage.
@ -Slow at test time. Intuitive features for humans can be hard

© -Low Capacity. A poor fit for large datasets. (Boosted)
Decision trees are a good compensation on smaller datasets.

O -High persontime.



Features in Practice: Learned Features

Use a nonlinear/nonconvex possibly deep learning algorithm.

@ +Good results in Speech & Vision.

@ +Fast at test time.

© +High capacity. Useful on large datasets.
@ -Slow training. Days to weeks are common.
@ -Wizardry may be required.



Features in Practice: Count Features

An example: for each (word, ad) pair keep track of empirical
expectation of click E[c|(word, ad)].

© +High capacity.

@ +Fast learning. Counting is easy on map-reduce architectures.

© +fast test time. Lookup some numbers, then compute an easy
prediction.

Q -High RAM usage. Irrelevant features take RAM.

@ -Correlation effects lost. Adding explicit conjunction features
takes even more RAM.



Features in Practice: sparse words

Generate a feature for every word, ngram, skipgram, pair of (ad
word, query word), etc... and use high dimensional representation.

@ +High capacity.

@ +Correlation effects nailed.

© +fast test time. Lookup some numbers, then compute an easy
prediction.

@ -Slow learning Linear faster than decision tree, but parallel is
tricky.

© -High RAM usage



Features in Practice: sparse words

Generate a feature for every word, ngram, skipgram, pair of (ad
word, query word), etc... and use high dimensional representation.
@ +High capacity.
@ +Correlation effects nailed.

© +fast test time. Lookup some numbers, then compute an easy
prediction. This lecture.

@ -Slow learning Linear faster than decision tree, but parallel is
tricky. This lecture 4+ Allreduce lecture.

@ -High RAM usage This lecture.



What is hashing?

Hash function: string — {0,1}?
A hash function maps any string into a range seemingly at random.
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What is hashing?

Hash function: string — {0,1}?
A hash function maps any string into a range seemingly at random.

Hash table = Hash function + Array< Pair<string, int> > of
length {0,1}°

Perfect hash = overfit decision tree mapping n fixed (and known in
advance) strings to integers {1, n}.



How does feature address parameter?

© Hash Table (aka Dictionary): Store hash function + Every
string + Index.
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© Hash function: Store Hash function.
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How does feature address parameter?

© Hash Table (aka Dictionary): Store hash function + Every
string + Index.

@ Perfect Hash (+Bloom Filter): Store Custom Hash function
(+ bit array).

© Hash function: Store Hash function.

RAM

ts
Dictionary PH Hash

More weights is better!



Objection: Collisions!

Valid sometimes: particularly with low dimensional hand engineered
features.



Objection: Collisions!

Valid sometimes: particularly with low dimensional hand engineered
features.

Theorem: If a feature is duplicated O(log n) times when there are
O(n) features, at least one version of the feature is uncollided when
hashing with log(nlog n) bits.

Proof: Similar to Bloom filter proof.



Example 1: CCAT RCV1

1 | tuesday year million short compan vehicl line stat financ commit
exchang plan corp subsid credit issu debt pay gold bureau prelimin
refin billion telephon time draw

-1 | econom stock rate month year invest week produc report
govern pric index million shar end reserv foreign research inflat gdp
growth export consum output annual industr cent exchang project
trad fisc servic base compar prev money bank debt balanc gold daily
import agricultur ago estimat ton prelimin deficit currenc nation



Example 1: CCAT RCV1

1 | tuesday year million short compan vehicl line stat financ commit
exchang plan corp subsid credit issu debt pay gold bureau prelimin
refin billion telephon time draw

-1 | econom stock rate month year invest week produc report
govern pric index million shar end reserv foreign research inflat gdp
growth export consum output annual industr cent exchang project
trad fisc servic base compar prev money bank debt balanc gold daily
import agricultur ago estimat ton prelimin deficit currenc nation

Run:

vw -b 24 --loss function logistic --ngram 2 --skips 4 -c
rcvl.train.raw.txt --binary

to see progressive validation loss 4.5%: about 0.6% better than
linear on base features.
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Objection: Incomprehensible!

Use —audit to decode. Or, keep your own dictionary on the side if

desirable.
vw-varinfo rcvl.test.raw.txt.gz = perl script in VW distribution for

automatically decoding and inspecting results.



Use of Hash: Feature Pairing

Once you accept a hash function, certain operations become very
easy.

-q df pairs every feature in namespaces beginning with d with every
feature in namespaces beginning with f.

But how?



Use of Hash: Feature Pairing

Once you accept a hash function, certain operations become very
easy.
-q df pairs every feature in namespaces beginning with d with every

feature in namespaces beginning with f.
But how?

Feature = (index,weight)

pair_weight = d_weight * f weight

pair_index = (d_index * magic + f_index) & mask
This is done inline for speed.



Use of Hash: Ngrams

2gram = a feature for every pair of adjacent words.
3gram = a feature for every triple od adjacent words, etc...
ngram = ...

Features computed in the same fashion as for -q
(More clever solution = rolling hash, not yet implemented.)

Computed by the parser on the fly (since #features/example only
grows linearly).



Learning Reductions

In many applications, you must have multiple predictors. Hashing
allows all these to be mapped into the same array using a different
offsets saving gobs of RAM and programming headaches.

—o0aa, —ect, —csoaa, and others.



Example 2: Mass Personalized Spam Filtering

Q@ 3.2 %100 labeled emails.
Q 433167 users.
© ~ 40 10° unique tokens.

How do we construct a spam filter which is personalized, yet uses
global information?



Example 2: Mass Personalized Spam Filtering

Q@ 3.2 %100 labeled emails.
Q 433167 users.
© ~ 40 10° unique tokens.

How do we construct a spam filter which is personalized, yet uses
global information?

Bad answer: Construct a global filter + 433167 personalized filters
using a conventional hashmap to specify features. This might
require 433167 * 40 x 10% x 4 ~ 70Terabytes of RAM.



Using Hashing

Use hashing to predict according to: (w, ¢(x))
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(in VW: specify the userid as a feature and use -q)



Results
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226 parameters = 64M parameters = 256MB of RAM.
An x270K savings in RAM requirements.




Features sometimes collide, which is scary, but then you love

it

Generate a feature for every word, ngram, skipgram, pair of (ad
word, query word), etc... and use high dimensional representation.

@ +High capacity.

@ +Correlation effects nailed.

© +Fast test time. Compute an easy prediction.

Q +Fast Learning (with Online + parallel techniques. See talks.)

@ +/-Variable RAM usage. Highly problem dependent but fully
controlled.

Another cool observation: Online learning + Hashing = learning
algorithm with fully controlled memory footprint = Robustness.
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