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The data problem

Traditional high performance computing is FLoating Operations
Per Second. http://top500.0rg/lists/2012/11/

Titan http://www.olcf.ornl.gov/titan/: 17.6PFlops, 8.2MW
Flops first, network second, data is irrelevant.

Primary use = simulations.
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The data problem

Traditional high performance computing is FLoating Operations
Per Second. http://top500.0rg/lists/2012/11/

Titan http://www.olcf.ornl.gov/titan/: 17.6PFlops, 8.2MW
Flops first, network second, data is irrelevant.

Primary use = simulations.

Data is different.

= the need to store information. With large amounts of data,
errors should be assumed. Use replication to zero out the chance
of error.

= the need for quick access. No single machine can handle all
data requests. Use locality to minimize bandwidth.


http://top500.org/lists/2012/11/
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System for datacentric computing.

Distributed File System + Map Reduce + Advanced
components

© 0

Java’s first serious use as an OS
Open Source clone of GFS 4+ Map Reduce system.
Yahoo!'s bulk data processing system.

©00O0

The craze at Strata (= data business conference). Nearly
every company is interoperating with, extending, and/or using
Hadoop.



The NYU Hadoop cluster

~92 machines

8 cores @ 2Ghz to 2.5Ghz / machine

16GB RAM / machine

1Gb/s network card

~100TB storage (in Hadoop).

A low end Hadoop cluster, of most use as a shared datarich
environment.
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The NYU Hadoop cluster

~92 machines

8 cores @ 2Ghz to 2.5Ghz / machine

16GB RAM / machine

1Gb/s network card

~100TB storage (in Hadoop).

A low end Hadoop cluster, of most use as a shared datarich
environment.

Access directions for NYU students:

ssh <netid>@hpc.nyu.edu

ssh dumbo.es.its.nyu.edu

Take 10 minutes to setup ssh tunneling:
https://wikis.nyu.edu/display/NYUHPC/SCP+through+SSH+
Tunneling

For nonNYU students, you can experiment with Hadoop easily
using AWS.
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Hadoop Distributed File System (HDFS)

Half of Hadoop is HDFS. It's the better half.
All data is stored 3 times =

@ robust to failures. How many random failures required to lose
info?

@ 1/3 storage.
© You don't “backup” a Hadoop cluster.
@ Multiple sources for any one piece of data.
Files are stored in 64MB chunks ( “shards").
@ Sequential reads are fast. 100MB/s disk requires 0.64s to
read a chunk but only .01 s to start reading it.
@ Not made for random reads.
© Not for small files.
No support for file modification.

= HDFS is in it's own namespace.
= Need new comands.



HDFS ops

Execute:

echo alias hfs= ’hadoop fs ’ >> .bashrc
source .bashrc

Common commands:

hfs See available commands.

hfs -help more command details.

hfs -1s [<path>] List files

hfs -cp <src> <dst> Copy stuff

hfs -mkdir <path> Create path

hfs -rm <path> remove a file

hfs -chmod <path> Modify permissions.
hfs -chown <path> Modify owner.

00000000



HDFS ops

Execute:
echo alias hfs= ’hadoop fs ’ >> .bashrc
source .bashrc
Common commands:
hfs See available commands.
hfs -help more command details.
hfs -1s [<path>] List files
hfs -cp <src> <dst> Copy stuff
hfs -mkdir <path> Create path
hfs -rm <path> remove a file
hfs -chmod <path> Modify permissions.
hfs -chown <path> Modify owner.
Remote access commands:
@ hfs -cat <src> Cat contents to stdout.
@ hfs -copyFromLocal <localsrc> <dst> Copy stuff
© hfs -copyToLocal <src> <localdst> Copy stuff
File system is browsable. For NYU: http://babar:50070/
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Hadoop Map-Reduce

An example of “Bulk Synchronous Parallel” data processing.
Map (Programming language ideal): A function f : A — B.

Map (Hadoop ideal): A function f : A* — B*

Map (Real implementation): Any program consuming A* and
outputting B*.

In between Map and Reduce is sort(B*) which partitions elements
across multiple reducers.

Reduce (Programming language ideal): A function g : BxB — B.
Reduce (Hadoop ideal): A function g : B* — C.

Reduce (Real Implementation): Any program consuming B* and
outputing C.

A, B, C are often (but not always) line oriented.
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Hadoop Streaming

Hadoop streaming = use any program written in any language for
mapreduce operations.

Execute:

echo "export HAS=/usr/lib/hadoop/contrib/streaming
export HSJ=hadoop-streaming-1.0.3.16. jar

alias hjs= ’hadoop jar $(HAS)/$(HSJ) ’" >> .bashrc
source .bashrc



Hadoop Streaming

Hadoop streaming = use any program written in any language for
mapreduce operations.

Execute:

echo "export HAS=/usr/lib/hadoop/contrib/streaming
export HSJ=hadoop-streaming-1.0.3.16. jar

alias hjs= ’hadoop jar $(HAS)/$(HSJ) ’" >> .bashrc
source .bashrc

Get the first example from every mapped chunk in rcvl.

echo ‘‘cat > temp; head -n 1 temp’’ > header

hjs -input /user/jl15386/rcvl.train.txt -output
headresults -mapper header -reducer cat -file header
hfs -cat headresults/part-00000 | wc -1 = number of
mappers



Guess what it does

echo ‘‘cut -d > > -f 1 | grep 1’’ > cutter

echo wc -1 > counter

hjs -input /user/jl5386/rcvl.train.txt -output
countres -mapper cutter -reducer counter -file cutter
—-file counter

hfs -cat countres/part-00000



Guess what it does

echo grep 326: > grepper

echo wc -1 > counter

hjs -input /user/jl5386/rcvl.train.txt -output fcount
-mapper grepper -reducer counter -file grepper -file
counter

hfs -cat fcount/part-00000



Guess what it does

echo ‘‘cut -d > > -f 1 | sort -u’’ > cutsort

echo sort -u > sorter

hjs -input /user/jl5386/rcvl.train.txt -output labels
-mapper cutsort -reducer sorter -file cutsort -file
sorter

hfs -cat labels/part-00000



Hadoop job control

Watch what is happening with job tracker URL (given on job
launch).

hadoop job -list

hadoop job -kill <id>



Abusing Hadoop Streaming

Hadoop streaming makes Hadoop into a general purpose job
submission system.

hjs -Dmapred.task.timeout=600000000

-Dmapred. job.map.memory.mb=3000 -input <yourdata>
-output <finaloutput> -mapper cat -reducer
<yourprogram> -file <yourprogram>



Abusing Hadoop Streaming

Hadoop streaming makes Hadoop into a general purpose job
submission system.
hjs -Dmapred.task.timeout=600000000
-Dmapred. job.map.memory.mb=3000 -input <yourdata>
-output <finaloutput> -mapper cat -reducer
<yourprogram> -file <yourprogram>
Why Hadoop for job control?

@ map can be handy for selecting a subset or different data for

features or examples.

@ much better bandwidth limits.



Parallel Learning for Parameter Search

Hadoop streaming makes Hadoop into a general purpose job
submission system.
for a in 0.1 0.3 1 3 10; do

echo ./vw -1 $a > job_$a

hjs -Dmapred.task.timeout=600000000

—Dmapred. job.map.memory.mb=3000 -input <yourdata>
-output output_$a -mapper cat -reducer job_$a -file
job_$a -file vw

done



Parallel Learning for Speed

The next lecture.



More Hadoop things

PIG(Y!) is an SQL—MapReduce compiler
Zookeeper(Y!) is a system for sharing small amounts of info.

Hive(Facebook): Much faster data query and exploration. ...
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In general, MapReduce is an example of bulk synchronous parallel
computation—there are many other papers.
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