LBFGS

John Langford, Large Scale Machine Learning Class,
February 5

(post presentation version)



We are still doing Linear Learning

Features: a vector x € R”

Label: y € R

Goal: Learn w € R” such that y,(x) = >, wjx; is
close to y.



But, this time in a batch fashion

Initialize w
Repeatedly:

Q Let y,(x) =D wix;

Q letgi=> —aL(yéVVE,T)’y)

© Compute update direction d(g)
@ Update weights w; < w; + di(g)



The BFGS Update

d(g) = Dg for some Direction matrix D
What is D7



The BFGS Update

d(g) = Dg for some Direction matrix D
What is D7

D is defined purely in terms of two empirical
observations:

I

& = 8new — &prev
/

W = Wnew — Wprev



> igiwl = g/TW’ should be positive for convex

functions.
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direction w’ and vice versa.
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.
Ty = 5’( = £+~ Transforms direction g’ to
dlrectlon w' and vice versa.

A matrix is a linear function which transforms one

vector into another.
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3 vectors,

A%

gv,w> =g



Let 04j = I(k = ). if k =j then 1 and 0 otherwise
Skj = 0k — Tyj Subtracts transform Tj; while keeping
everything else.
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Hessian.

is an estimate of the inverse
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WLWJ/ ww'T - . .
Fij = S~ giwl = gTws IS AN estimate of the inverse
Hessian.
0L Osxk
Hyj = owdw; — Ow;
So, Hw' ~ g’

So an inverse should satisfy Fg’ ~ w/'.



The BFGS direction
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The BFGS direction

ij — Z” S;kD,'/S/j + ij
Or in recursive matrix form:
Dt — StTDt—lst + Ft
Unwinding, we get:
Dt = St'st-17 §1Tpogig? gt
15t s2TF1g2 gty gtTFRt-1gt 4t
LBFGS is the low rank approximation.
[t =5t gt=mIpogt-m gt
qstT gtemilT promgt-m+il gt 4
+StTFt-1gt 4 Ft



What is D°?

How do you make it fast?

How do you start?

What if loss goes up?

How do you regularize?
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How do you make it fast? Al operations decompose
into dense vector products.

How do you start? Seed w with an online pass first.
Initially, step size may be crazy. Make a second pass
computing the second derivative in the chosen
direction.
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What is D°? aékL is a reasonable choice.

ow;0w;
How do you make it fast? Al operations decompose
into dense vector products.
How do you start? Seed w with an online pass first.
Initially, step size may be crazy. Make a second pass
computing the second derivative in the chosen
direction.
What if loss goes up? Backstep along previous
direction.
How do you regularize? Regularized loss has the

form: L'(§,y) = L(§,y) + §>_; w?. Imposing
regularization is a once-per-pass dense operation.







Curvature at solution
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Compute and store: r; = T
On resumption, regularize by > ri(w; — 0;)? where

o; is the old weight value.



Why LBFGS?

Theorem: If L is quadratic and an exact line search
was done for the step size, a variant satisfies
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for some C.



Why LBFGS?

Theorem: If L is quadratic and an exact line search
was done for the step size, a variant satisfies

etﬁﬁ

for some C.
Of course, it's rarely quadratic and you never perform
exact line search.



What happens here?
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What happens here?

Absolute Value
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What happens to a true Newton step here?



References

[L] Nocedal, J., “Updating quasi-Newton matrices
with limited storage”’, Math. of Comp., 35, 773-782.
[B] Broyden, C., “The convergence of a class of
double-rank minimization algorithms”, Journal of the
Inst. of Math. and lts Applications, 6:76-90.

[F] Fletcher, R., "A New Approach to Variable Metric
Algorithms”, Computer Journal 13 (3):317-322.

[G] Goldfarb, D., “A Family of Variable Metric
Updates Derived by Variational Means”, Math. of
Comp. 24 (109):23-26.

[S] Shanno, D. “Conditioning of quasi-Newton
methods for function minimization”, Math. of Comp.
24(111):647-656.



More References

Incremental LBFGS Olivier Chapelle



