
Using Exploration

John Langford @ Microsoft Research (with help from many)

Large Scale Learning Class, April 9, 2013

(Post Presentation Version)

Examples of Interactive Learning

Repeatedly:

1 A user comes to Microsoft (with history of previous visits, IP
address, data related to an account)

2 Microsoft chooses information to present (urls, ads, news stories)

3 The user reacts to the presented information (clicks on something,
clicks, comes back and clicks again,...)

Microsoft wants to interactively choose content and use the observed

feedback to improve future content choices.

Another Example: Clinical Decision Making

Repeatedly:

1 A patient comes to a doctor with
symptoms, medical history, test results

2 The doctor chooses a treatment

3 The patient responds to it

The doctor wants a policy for choosing
targeted treatments for individual patients.

The

Contextual

Bandit Setting

For t = 1, . . . ,T :

1 The world produces some context x ∈ X

2 The learner chooses an action a ∈ A

3 The world reacts with reward ra ∈ [0, 1]

Goal:

Learn a good policy for choosing actions.

given context.

What does learning mean?

Examples of Π:

Context-free policies prescribing the same treatment to all.

A machine learning system (e.g., all linear predictors)

A discrete set based on domain-speci�c hunches or hypotheses

The

Contextual

Bandit Setting

For t = 1, . . . ,T :

1 The world produces some context x ∈ X

2 The learner chooses an action a ∈ A

3 The world reacts with reward ra ∈ [0, 1]

Goal: Learn a good policy for choosing actions.

given context.

What does learning mean?

Examples of Π:

Context-free policies prescribing the same treatment to all.

A machine learning system (e.g., all linear predictors)

A discrete set based on domain-speci�c hunches or hypotheses

The

Contextual

Bandit Setting

For t = 1, . . . ,T :

1 The world produces some context x ∈ X

2 The learner chooses an action a ∈ A

3 The world reacts with reward ra ∈ [0, 1]

Goal: Learn a good policy for choosing actions.

given context.

What does learning mean?
Competing with the set of actions A.

Regret = max
a′∈A

averaget(ra′ − ra)

Examples of Π:

Context-free policies prescribing the same treatment to all.

A machine learning system (e.g., all linear predictors)

A discrete set based on domain-speci�c hunches or hypotheses

The Contextual Bandit Setting

For t = 1, . . . ,T :

1 The world produces some context x ∈ X

2 The learner chooses an action a ∈ A

3 The world reacts with reward ra ∈ [0, 1]

Goal: Learn a good policy for choosing actions given context.

What does learning mean?
Competing a set of policies Π = {π : X → A}:

Regret = max
π∈Π

averaget(rπ(x) − ra)

Examples of Π:

Context-free policies prescribing the same treatment to all.

A machine learning system (e.g., all linear predictors)

A discrete set based on domain-speci�c hunches or hypotheses

The Contextual Bandit Setting

For t = 1, . . . ,T :

1 The world produces some context x ∈ X

2 The learner chooses an action a ∈ A

3 The world reacts with reward ra ∈ [0, 1]

Goal: Learn a good policy for choosing actions given context.

What does learning mean?
Competing a set of policies Π = {π : X → A}:

Regret = max
π∈Π

averaget(rπ(x) − ra)

Examples of Π:

Context-free policies prescribing the same treatment to all.

A machine learning system (e.g., all linear predictors)

A discrete set based on domain-speci�c hunches or hypotheses

Basic Observation #1

This is not a supervised learning problem:

We don't know the reward of actions not taken�loss function
is unknown even at training time.

Exploration is required to succeed (but still simpler than
reinforcement learning � we know which action is responsible
for each reward)

Basic Observation #2

This is not a bandit problem:

In the bandit setting, there is no x , and the goal is to compete
with the set of constant actions. Too weak in practice.

Generalization across x is required to succeed.

Many bandit algorithms can not be e�ectively applied.

The Evaluation Problem

Let π : X → A be a policy mapping features to actions. How do we
evaluate it?

Method 1: Deploy algorithm in the world.

Very Expensive!

The Evaluation Problem

Let π : X → A be a policy mapping features to actions. How do we
evaluate it?

Method 1: Deploy algorithm in the world.

Very Expensive!

Method 2: The �Direct Method�

Let π : X → A be a policy mapping features to actions. How do we
evaluate it?

One answer: Build a reward predictor r̂(x , a) from past data and
evaluate on set of samples x .

Value(π) = Average (r̂(x , π(x)))

This can mislead badly. What if π(x) always chooses actions which
r̂(x , a) was not trained on? See Leon's Ad example in last lecture.

Method 2: The �Direct Method�

Let π : X → A be a policy mapping features to actions. How do we
evaluate it?

One answer: Build a reward predictor r̂(x , a) from past data and
evaluate on set of samples x .

Value(π) = Average (r̂(x , π(x)))

This can mislead badly. What if π(x) always chooses actions which
r̂(x , a) was not trained on? See Leon's Ad example in last lecture.

Method 2: The �Direct Method�

Let π : X → A be a policy mapping features to actions. How do we
evaluate it?

One answer: Build a reward predictor r̂(x , a) from past data and
evaluate on set of samples x .

Value(π) = Average (r̂(x , π(x)))

This can mislead badly. What if π(x) always chooses actions which
r̂(x , a) was not trained on? See Leon's Ad example in last lecture.

Method 3: The Importance Weighting Trick

Let π : X → A be a policy mapping features to actions. How do we
evaluate it?

One answer: Collect T exploration samples of the form

(x , a, ra, pa),

where
x = context
a = action
ra = reward for action
pa = probability of action a
then evaluate:

Value(π) = Average

(
ra 1(π(x) = a)

pa

)

Method 3: The Importance Weighting Trick

Let π : X → A be a policy mapping features to actions. How do we
evaluate it?

One answer: Collect T exploration samples of the form

(x , a, ra, pa),

where
x = context
a = action
ra = reward for action
pa = probability of action a
then evaluate:

Value(π) = Average

(
ra 1(π(x) = a)

pa

)

The Importance Weighting Trick

Theorem

For all policies π, for all IID data distributions D, Value(π) is an
unbiased estimate of the expected reward of π:

E(x ,~r)∼D
[
rπ(x)

]
= E[Value(π)]

with deviations bounded by

O

(
1√

T minx pπ(x)

)

Proof: [Part 1] Ea∼p

[
ra1(π(x)=a)

pa

]
=
∑

a pa
ra1(π(x)=a)

pa
= rπ(x)

What if you don't know probabilities?

Suppose p was:

1 misrecorded �We randomized some actions, but then the
Business Logic did something else.�

2 not recorded �We randomized some scores which had an
unclear impact on actions�.

3 nonexistent �On Tuesday we did A and on Wednesday B�.

Protip Leon: If you control the random process log the PRNG seed.

Learn predictor p̂(a|x) on (x , a)∗ data.

De�ne new estimator: V̂ (π) = Êx ,a,ra

[
raI (h(x)=a)
max{τ,p̂(a|x)}

]
where τ =

small number.

Theorem: For all IID D, for all policies π with p(a|x) > τ

|Value(π)− EV̂ (π)| ≤
√
reg(p̂)

τ

where reg(p̂) = Ex(p(a|x)− p̂(a|x))2 = squared loss regret.

What if you don't know probabilities?

Suppose p was:

1 misrecorded �We randomized some actions, but then the
Business Logic did something else.�

2 not recorded �We randomized some scores which had an
unclear impact on actions�.

3 nonexistent �On Tuesday we did A and on Wednesday B�.

Protip Leon: If you control the random process log the PRNG seed.
Learn predictor p̂(a|x) on (x , a)∗ data.

De�ne new estimator: V̂ (π) = Êx ,a,ra

[
raI (h(x)=a)
max{τ,p̂(a|x)}

]
where τ =

small number.

Theorem: For all IID D, for all policies π with p(a|x) > τ

|Value(π)− EV̂ (π)| ≤
√
reg(p̂)

τ

where reg(p̂) = Ex(p(a|x)− p̂(a|x))2 = squared loss regret.

What if you don't know probabilities?

Suppose p was:

1 misrecorded �We randomized some actions, but then the
Business Logic did something else.�

2 not recorded �We randomized some scores which had an
unclear impact on actions�.

3 nonexistent �On Tuesday we did A and on Wednesday B�.

Protip Leon: If you control the random process log the PRNG seed.
Learn predictor p̂(a|x) on (x , a)∗ data.

De�ne new estimator: V̂ (π) = Êx ,a,ra

[
raI (h(x)=a)
max{τ,p̂(a|x)}

]
where τ =

small number.

Theorem: For all IID D, for all policies π with p(a|x) > τ

|Value(π)− EV̂ (π)| ≤
√
reg(p̂)

τ

where reg(p̂) = Ex(p(a|x)− p̂(a|x))2 = squared loss regret.

Can we do better?

Suppose we have a (possibly bad) reward estimator r̂(a, x). How
can we use it?

Value'(π) = Average

(
(ra − r̂(a, x))1(π(x) = a)

pa
+ r̂(π(x), x)

)

Let ∆(a, x) = r̂(a, x)− E~r |x ra = reward deviation
Let δ(a, x) = 1− pa

p̂a
= probability deviation

Theorem

For all policies π and all (x ,~r):

|Value'(π)− E~r |x [rπ(x)]| ≤ |∆(π(x), x)δ(π(x), x)|

The deviations multiply, so deviations < 1 means we win!

Can we do better?

Suppose we have a (possibly bad) reward estimator r̂(a, x). How
can we use it?

Value'(π) = Average

(
(ra − r̂(a, x))1(π(x) = a)

pa
+ r̂(π(x), x)

)

Let ∆(a, x) = r̂(a, x)− E~r |x ra = reward deviation
Let δ(a, x) = 1− pa

p̂a
= probability deviation

Theorem

For all policies π and all (x ,~r):

|Value'(π)− E~r |x [rπ(x)]| ≤ |∆(π(x), x)δ(π(x), x)|

The deviations multiply, so deviations < 1 means we win!

Can we do better?

Suppose we have a (possibly bad) reward estimator r̂(a, x). How
can we use it?

Value'(π) = Average

(
(ra − r̂(a, x))1(π(x) = a)

pa
+ r̂(π(x), x)

)

Let ∆(a, x) = r̂(a, x)− E~r |x ra = reward deviation
Let δ(a, x) = 1− pa

p̂a
= probability deviation

Theorem

For all policies π and all (x ,~r):

|Value'(π)− E~r |x [rπ(x)]| ≤ |∆(π(x), x)δ(π(x), x)|

The deviations multiply, so deviations < 1 means we win!

How do you test things?

Contextual Bandit datasets tend to be highly proprietary. What can
you do?

1 Pick classi�cation dataset.
2 Generate (x , a, r , p) quads via uniform random exploration of

actions

Apply transform to RCV1 dataset.
wget http://hunch.net/~jl/VW_raw.tar.gz
wget http://hunch.net/~jl/cbify.cc
Output format is:
action:cost:probability | features
Example:
1:1:0.5 | tuesday year million short compan vehicl line stat �nanc
commit exchang plan corp subsid credit issu debt pay gold bureau
prelimin re�n billion telephon time draw basic relat �le spokesm reut
secur acquir form prospect period interview regist toront resourc
barrick ontario qualif bln prospectus convertibl vinc borg arequip
...

http://hunch.net/~jl/VW_raw.tar.gz
http://hunch.net/~jl/cbify.cc

How do you test things?

Contextual Bandit datasets tend to be highly proprietary. What can
you do?

1 Pick classi�cation dataset.
2 Generate (x , a, r , p) quads via uniform random exploration of

actions

Apply transform to RCV1 dataset.
wget http://hunch.net/~jl/VW_raw.tar.gz
wget http://hunch.net/~jl/cbify.cc
Output format is:
action:cost:probability | features
Example:
1:1:0.5 | tuesday year million short compan vehicl line stat �nanc
commit exchang plan corp subsid credit issu debt pay gold bureau
prelimin re�n billion telephon time draw basic relat �le spokesm reut
secur acquir form prospect period interview regist toront resourc
barrick ontario qualif bln prospectus convertibl vinc borg arequip
...

http://hunch.net/~jl/VW_raw.tar.gz
http://hunch.net/~jl/cbify.cc

How do you test things?

Contextual Bandit datasets tend to be highly proprietary. What can
you do?

1 Pick classi�cation dataset.
2 Generate (x , a, r , p) quads via uniform random exploration of

actions

Apply transform to RCV1 dataset.
wget http://hunch.net/~jl/VW_raw.tar.gz
wget http://hunch.net/~jl/cbify.cc
Output format is:
action:cost:probability | features
Example:
1:1:0.5 | tuesday year million short compan vehicl line stat �nanc
commit exchang plan corp subsid credit issu debt pay gold bureau
prelimin re�n billion telephon time draw basic relat �le spokesm reut
secur acquir form prospect period interview regist toront resourc
barrick ontario qualif bln prospectus convertibl vinc borg arequip
...

http://hunch.net/~jl/VW_raw.tar.gz
http://hunch.net/~jl/cbify.cc

How do you train?

1 Learn r̂(a, x).
2 Compute for each x the double-robust estimate for each
a′ ∈ {1, ...,K}:

(r − r̂(a, x))I (a′ = a)

p(a|x)
+ r̂(a′, x)

3 Learn π using a cost-sensitive classi�er.

vw �cb 2 �cb_type dr rcv1.train.txt.gz -c �ngram 2 �skips 4 -b 24
-l 0.25
Progressive 0/1 loss: 0.04582
vw �cb 2 �cb_type ips rcv1.train.txt.gz -c �ngram 2 �skips 4 -b 24
-l 0.125
Progressive 0/1 loss: 0.05065
vw �cb 2 �cb_type dm rcv1.train.txt.gz -c �ngram 2 �skips 4 -b 24
-l 0.125
Progressive 0/1 loss: 0.04679

How do you train?

1 Learn r̂(a, x).
2 Compute for each x the double-robust estimate for each
a′ ∈ {1, ...,K}:

(r − r̂(a, x))I (a′ = a)

p(a|x)
+ r̂(a′, x)

3 Learn π using a cost-sensitive classi�er.

vw �cb 2 �cb_type dr rcv1.train.txt.gz -c �ngram 2 �skips 4 -b 24
-l 0.25
Progressive 0/1 loss: 0.04582
vw �cb 2 �cb_type ips rcv1.train.txt.gz -c �ngram 2 �skips 4 -b 24
-l 0.125
Progressive 0/1 loss: 0.05065
vw �cb 2 �cb_type dm rcv1.train.txt.gz -c �ngram 2 �skips 4 -b 24
-l 0.125
Progressive 0/1 loss: 0.04679

Experimental Results

IPS = r̂(a, x) = 0
DR = r̂(a, x) = wa · x
Filter Tree = Cost Sensitive Multiclass classi�er
O�set Tree = Earlier method for CB learning with same
representation

 0.2

 0.4

 0.6

 0.8

ec
ol

i

gl
as

s

le
tte

r

op
td

ig
its

pa
ge

-b
lo

ck
s

pe
nd

ig
its

sa
tim

ag
e

ve
hi

cl
e

ye
as

t

C
la

ss
ifi

ca
tio

n
E

rr
or

IPS (Filter Tree)
DR (Filter Tree)

Offset Tree

Summary of methods

1 Deployment. Aka A/B testing. Gold standard for
measurement and cost.

2 Direct Method. Often used by people who don't know what
they are doing. Some value when used in conjunction with
careful exploration.

3 Inverse probability. Unbiased, but possibly high variance.

4 Inverse propensity score. For when you don't know or don't
trust recorded probabilities. Debugging tool that gives hints,
but caution is in order.

5 Double robust. Best known o�ine method. Unbiased +
reduced variance.

Bibliography: Exploration

Inverse An old technique, not sure where it was �rst used.

Nonrand J. Langford, A. Strehl, and J. Wortman Exploration
Scavenging ICML 2008.

O�set A. Beygelzimer and J. Langford, The O�set Tree for Learning
with Partial Labels KDD 2009.

Implicit A. Strehl, J. Langford, S. Kakade, and L. Li Learning from
Logged Implicit Exploration Data NIPS 2010.

DRobust M. Dudik, J. Langford and L. Li, Doubly Robust Policy
Evaluation and Learning, ICML 2011.

