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Applying for a fellowship in 1997

Interviewer: So, what do you want to do?
John: I’d like to solve AI.
I: How?
J: I want to use parallel learning algorithms to create fantastic
learning machines!

I: You fool! The only thing parallel machines are good for is
computational windtunnels!
The worst part: he had a point.
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Terascale Linear Learning ACDL11

Given 2.1 Terafeatures of data, how can you learn a good linear
predictor fw (x) =

∑
i wixi?

17B Examples
16M parameters
1K nodes
How long does it take?

70 minutes = 500M features/second: faster than the IO
bandwidth of a single machine⇒ faster than all possible single
machine linear learning algorithms.
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1 Easily pipelined so no latency concerns.

2 Bandwidth ≤ 6n.

3 No need to rewrite code!
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An Example Algorithm: Weight averaging

n = AllReduce(1)
While (pass number < max)

1 While (examples left)
1 Do online update.

2 AllReduce(weights)

3 For each weight w ← w/n

Other algorithms implemented:

1 Nonuniform averaging for online learning

2 Conjugate Gradient

3 LBFGS
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What is Hadoop AllReduce?

1

Data
Program

“Map” job moves program to data.

2 Delayed initialization: Most failures are disk failures. First
read (and cache) all data, before initializing allreduce. Failures
autorestart on different node with identical data.

3 Speculative execution: In a busy cluster, one node is often
slow. Hadoop can speculatively start additional mappers. We
use the first to finish reading all data once.

The net effect: Reliable execution out to perhaps 10K node-hours.
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Approach Used

1 Optimize hard so few data passes required.
1 Normalized, adaptive, safe, online gradient descent.

2 L-BFGS = batch algorithm that approximates inverse hessian.
3 Use (1) to warmstart (2).

2 Use map-only Hadoop for process control and error recovery.

3 Use AllReduce to sync state.

4 Always save input examples in a cachefile to speed later
passes.

5 Use hashing trick to reduce input complexity.

In Vowpal Wabbit. Allreduce is a separate easily linked library.
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