
Indexing and Machine Learning

John Langford @ Microsoft Research

NYU Large Scale Learning Class, April 23



A Scenario

You have 1010 webpages and want to return the best result in
100ms.

How do you do it?



Method 1: Linear Scan

“Best” is defined by some (learned) quality score s(q, r) where q is
the query and r is the result.
Linear scan computes arg maxr s(q, r) in linear time.

Need perhaps 1013(?) cores. Luckily, there are other approaches.
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Method 2: Inverted index

Inverted index = lookup table of documents containing a word.
[variants]

XThe

Dog

Ate

23, 89, 426, 3080, 21212

45, 79, 426, 2408, 21212, 23256

XIt

Document IDTerms

“Stop words” are unindexed (index too large).



Inverted Index Ops

What is efficient?

Set queries.

Use same sort over documents ⇒ intersection of sets.

Union is inherently slower but possible by excluding sufficient stop
words.

Problem remaining: s(q, r) isn’t a simple boolean of sets.
Induced Machine Learning Problem: How do you
reformat/canonicalize queries so they pull up the right results?
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Method 3: Weighted AND (WAND)

A generalization of an inverted index.

WAND =
∑

i wi Ii ≥ θ where wi > 0, θ > 0 and Ii = 1 if a term is
present and 0 otherwise.

A WAND query can be evaluated efficiently by a clever algorithm
using upper bounds and monotonicity.

The ML perspective: Closer to a learned rule, but still quite
limited.



Method 4: Locality Sensitive Hashing

Precompute b random vectors z1, ..., zb
Represent each item with a vector x .
Compute a b-bit hash for each item where bit i satisfies
hi (x) = I (x · zi > 0).

[Variants]

Store x in a lookup table indexed by h(x).

When a query q comes in compute hash and lookup matching x in
table.

[Variants]

Theorem: For sufficiently large h the closest match is returned
with high probability (over the random projection).

[Variants]

Induced Machine Learning Problem: How do you map query and
answer into the same space?
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Method 5: Predictive Indexing

For every word/key i construct a sorted list where the list is sorted
according to E [s(q, r)|i ∈ q] or P(r best|i ∈ q].

To query, do a breadth first traversal over lists associated with
each i ∈ q doing a full evaluation. When time runs out, return the
best result seen.

The ML perspective: scoring directly drives datastructure (good!).
Still imperfect—you would prefer the learning algorithm directly
learns how to return results efficiently.
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Predictive Indexing for an Ad problem
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Halted TA = ordering by per-feature score in a linear predictor.
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Averaged over many datasets with same random projections used
for each.



State of Indexing

Computational efficiency is key here—this is a primary hardware
cost.

1 New algorithms can make a big $ difference.

2 Efficient implementations win! FPGAs are tempting.

3 The transition from indexing to scoring is often messy.

4 Data-dependent datastructures are a key improvement.

5 ML often operates as an indexing enhancer.

What is an algorithmically clean and coherent way to learn to
index and score simultaneously?
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