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We are still doing Linear Learning

Features: a vector x ∈ Rn

Label: y ∈ R
Goal: Learn w ∈ Rn such that ŷw(x) =

∑
i wixi is

close to y .



But, this time in a batch fashion

Initialize w

Repeatedly:
1 Let ŷw(x) =

∑
i wixi

2 Let gi =
∑

(x ,y)
∂L(ŷw (x),y)

∂wi

3 Compute update direction d(g)
4 Update weights wi ← wi + di(g)



The BFGS Update

d(g) = Dg for some Direction matrix D

What is D?

D is de�ned purely in terms of two empirical
observations:
g ′ = gnew − gprev
w ′ = wnew − wprev
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Assertion 1∑
i g
′
iw
′
i = g

′>w ′ should be positive for convex
functions.

-0.5

 0

 0.5

 1

 1.5

 2

-1.5 -1 -0.5  0  0.5

c
o
n
v
e
x
 f
u
n
c
ti
o
n

parameter

Change in weight*gradient

convex function
a gradient

another gradient



Assertion 2

Tkj =
g ′
kw

′
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i g
′
i w

′
i
= g ′w ′>

g
′>w ′ Transforms direction g ′ to

direction w ′ and vice versa.

A matrix is a linear function which transforms one
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Assertion 3

Let δkj = I (k = j). if k = j then 1 and 0 otherwise
Skj = δkj − Tkj Subtracts transform Tkj while keeping
everything else.

∑
j
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∑
j vjw

′
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′
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Assertion 4

Fkj =
w ′

kw
′
j∑

i g
′
i w

′
i
= w ′w ′>

g ′>w ′ is an estimate of the inverse

Hessian.

Hkj =
∂2L

∂wk∂wj
= ∂gk

∂wj

So, Hw ′ ' g ′.
So an inverse should satisfy Fg ′ ' w ′.
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The BFGS direction

Dkj ←
∑

il SikDilSlj + Fkj

Or in recursive matrix form:
D t = S t>D t−1S t + F t

Unwinding, we get:

D t = S t>S t−1>...S1>D0S1S2...S t

+S t>...S2>F 1S2...S t + ...+ S t>F t−1S t + F t

LBFGS is the low rank approximation.
Lt = S t>...S t−m>D0S t−m...S t

+S t>...S t−m+1>F t−mS t−m+1...S t + ...
+S t>F t−1S t + F t
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Questions

What is D0?

δjk
∂2L

∂wj∂wj

is a reasonable choice.

How do you make it fast?

All operations decompose
into dense vector products.

How do you start?

Seed w with an online pass �rst.
Initially, step size may be crazy. Make a second pass
computing the second derivative in the chosen
direction.

What if loss goes up?

Backstep along previous
direction.

How do you regularize?

Regularized loss has the
form: L′(ŷ , y) = L(ŷ , y) + c

2

∑
i w

2

i . Imposing
regularization is a once-per-pass dense operation.
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How do you restart with new data?
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Compute and store: ri =
∂2L

∂wi∂wi

On resumption, regularize by
∑

i ri(wi − oi)
2 where

oi is the old weight value.
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Why LBFGS?

Theorem: If L is quadratic and an exact line search
was done for the step size, a variant satis�es

et ≤
C

22t

for some C .

Of course, it's rarely quadratic and you never perform
exact line search.
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What happens here?
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