
LBFGS

John Langford, Large Scale Machine Learning Class,
February 5

(post presentation version)

We are still doing Linear Learning

Features: a vector x ∈ Rn

Label: y ∈ R
Goal: Learn w ∈ Rn such that ŷw(x) =

∑
i wixi is

close to y .

But, this time in a batch fashion

Initialize w

Repeatedly:
1 Let ŷw(x) =

∑
i wixi

2 Let gi =
∑

(x ,y)
∂L(ŷw (x),y)

∂wi

3 Compute update direction d(g)
4 Update weights wi ← wi + di(g)

The BFGS Update

d(g) = Dg for some Direction matrix D

What is D?

D is de�ned purely in terms of two empirical
observations:
g ′ = gnew − gprev
w ′ = wnew − wprev

The BFGS Update

d(g) = Dg for some Direction matrix D

What is D?
D is de�ned purely in terms of two empirical
observations:
g ′ = gnew − gprev
w ′ = wnew − wprev

Assertion 1∑
i g
′
iw
′
i = g

′>w ′ should be positive for convex
functions.

-0.5

 0

 0.5

 1

 1.5

 2

-1.5 -1 -0.5 0 0.5

c
o
n
v
e
x
 f
u
n
c
ti
o
n

parameter

Change in weight*gradient

convex function
a gradient

another gradient

Assertion 2

Tkj =
g ′
kw

′
j∑

i g
′
i w

′
i
= g ′w ′>

g
′>w ′ Transforms direction g ′ to

direction w ′ and vice versa.

A matrix is a linear function which transforms one
vector into another.∑

j

Tkjvj =

∑
j g
′
kw
′
j vj∑

i g
′
iw
′
i

= g ′k

∑
j vjw

′
j∑

i g
′
iw
′
i∑

k

vkTkj =

∑
k vkg

′
kw
′
j∑

i g
′
iw
′
i

= w ′j

∑
k g
′
kvk∑

i g
′
iw
′
i

Assertion 2

Tkj =
g ′
kw

′
j∑

i g
′
i w

′
i
= g ′w ′>

g
′>w ′ Transforms direction g ′ to

direction w ′ and vice versa.
A matrix is a linear function which transforms one
vector into another.∑

j

Tkjvj =

∑
j g
′
kw
′
j vj∑

i g
′
iw
′
i

= g ′k

∑
j vjw

′
j∑

i g
′
iw
′
i∑

k

vkTkj =

∑
k vkg

′
kw
′
j∑

i g
′
iw
′
i

= w ′j

∑
k g
′
kvk∑

i g
′
iw
′
i

3 vectors, v ,w , g

w

g

v

3 vectors, v ,w , g

w

g

v

<v,w>

3 vectors, v ,w , g

w

g

v

<v,w>

g<v,w>

Assertion 3

Let δkj = I (k = j). if k = j then 1 and 0 otherwise
Skj = δkj − Tkj Subtracts transform Tkj while keeping
everything else.

∑
j

Skjvj = vk − g ′k

∑
j vjw

′
j∑

i g
′
iw
′
i∑

j

vkSkj = vk − w ′j

∑
k g
′
kvk∑

i g
′
iw
′
i

Assertion 3

Let δkj = I (k = j). if k = j then 1 and 0 otherwise
Skj = δkj − Tkj Subtracts transform Tkj while keeping
everything else.∑

j

Skjvj = vk − g ′k

∑
j vjw

′
j∑

i g
′
iw
′
i∑

j

vkSkj = vk − w ′j

∑
k g
′
kvk∑

i g
′
iw
′
i

Assertion 4

Fkj =
w ′

kw
′
j∑

i g
′
i w

′
i
= w ′w ′>

g ′>w ′ is an estimate of the inverse

Hessian.

Hkj =
∂2L

∂wk∂wj
= ∂gk

∂wj

So, Hw ′ ' g ′.
So an inverse should satisfy Fg ′ ' w ′.

Assertion 4

Fkj =
w ′

kw
′
j∑

i g
′
i w

′
i
= w ′w ′>

g ′>w ′ is an estimate of the inverse

Hessian.
Hkj =

∂2L
∂wk∂wj

= ∂gk
∂wj

So, Hw ′ ' g ′.
So an inverse should satisfy Fg ′ ' w ′.

Assertion 4

Fkj =
w ′

kw
′
j∑

i g
′
i w

′
i
= w ′w ′>

g ′>w ′ is an estimate of the inverse

Hessian.
Hkj =

∂2L
∂wk∂wj

= ∂gk
∂wj

So, Hw ′ ' g ′.

So an inverse should satisfy Fg ′ ' w ′.

Assertion 4

Fkj =
w ′

kw
′
j∑

i g
′
i w

′
i
= w ′w ′>

g ′>w ′ is an estimate of the inverse

Hessian.
Hkj =

∂2L
∂wk∂wj

= ∂gk
∂wj

So, Hw ′ ' g ′.
So an inverse should satisfy Fg ′ ' w ′.

The BFGS direction

Dkj ←
∑

il SikDilSlj + Fkj

Or in recursive matrix form:
D t = S t>D t−1S t + F t

Unwinding, we get:

D t = S t>S t−1>...S1>D0S1S2...S t

+S t>...S2>F 1S2...S t + ...+ S t>F t−1S t + F t

LBFGS is the low rank approximation.
Lt = S t>...S t−m>D0S t−m...S t

+S t>...S t−m+1>F t−mS t−m+1...S t + ...
+S t>F t−1S t + F t

The BFGS direction

Dkj ←
∑

il SikDilSlj + Fkj

Or in recursive matrix form:
D t = S t>D t−1S t + F t

Unwinding, we get:

D t = S t>S t−1>...S1>D0S1S2...S t

+S t>...S2>F 1S2...S t + ...+ S t>F t−1S t + F t

LBFGS is the low rank approximation.
Lt = S t>...S t−m>D0S t−m...S t

+S t>...S t−m+1>F t−mS t−m+1...S t + ...
+S t>F t−1S t + F t

The BFGS direction

Dkj ←
∑

il SikDilSlj + Fkj

Or in recursive matrix form:
D t = S t>D t−1S t + F t

Unwinding, we get:

D t = S t>S t−1>...S1>D0S1S2...S t

+S t>...S2>F 1S2...S t + ...+ S t>F t−1S t + F t

LBFGS is the low rank approximation.
Lt = S t>...S t−m>D0S t−m...S t

+S t>...S t−m+1>F t−mS t−m+1...S t + ...
+S t>F t−1S t + F t

Questions

What is D0?

δjk
∂2L

∂wj∂wj

is a reasonable choice.

How do you make it fast?

All operations decompose
into dense vector products.

How do you start?

Seed w with an online pass �rst.
Initially, step size may be crazy. Make a second pass
computing the second derivative in the chosen
direction.

What if loss goes up?

Backstep along previous
direction.

How do you regularize?

Regularized loss has the
form: L′(ŷ , y) = L(ŷ , y) + c

2

∑
i w

2

i . Imposing
regularization is a once-per-pass dense operation.

Questions

What is D0?
δjk
∂2L

∂wj∂wj

is a reasonable choice.

How do you make it fast?

All operations decompose
into dense vector products.

How do you start?

Seed w with an online pass �rst.
Initially, step size may be crazy. Make a second pass
computing the second derivative in the chosen
direction.

What if loss goes up?

Backstep along previous
direction.

How do you regularize?

Regularized loss has the
form: L′(ŷ , y) = L(ŷ , y) + c

2

∑
i w

2

i . Imposing
regularization is a once-per-pass dense operation.

Questions

What is D0?
δjk
∂2L

∂wj∂wj

is a reasonable choice.

How do you make it fast? All operations decompose
into dense vector products.
How do you start?

Seed w with an online pass �rst.
Initially, step size may be crazy. Make a second pass
computing the second derivative in the chosen
direction.

What if loss goes up?

Backstep along previous
direction.

How do you regularize?

Regularized loss has the
form: L′(ŷ , y) = L(ŷ , y) + c

2

∑
i w

2

i . Imposing
regularization is a once-per-pass dense operation.

Questions

What is D0?
δjk
∂2L

∂wj∂wj

is a reasonable choice.

How do you make it fast? All operations decompose
into dense vector products.
How do you start? Seed w with an online pass �rst.
Initially, step size may be crazy. Make a second pass
computing the second derivative in the chosen
direction.
What if loss goes up?

Backstep along previous
direction.

How do you regularize?

Regularized loss has the
form: L′(ŷ , y) = L(ŷ , y) + c

2

∑
i w

2

i . Imposing
regularization is a once-per-pass dense operation.

Questions

What is D0?
δjk
∂2L

∂wj∂wj

is a reasonable choice.

How do you make it fast? All operations decompose
into dense vector products.
How do you start? Seed w with an online pass �rst.
Initially, step size may be crazy. Make a second pass
computing the second derivative in the chosen
direction.
What if loss goes up? Backstep along previous
direction.
How do you regularize?

Regularized loss has the
form: L′(ŷ , y) = L(ŷ , y) + c

2

∑
i w

2

i . Imposing
regularization is a once-per-pass dense operation.

Questions

What is D0?
δjk
∂2L

∂wj∂wj

is a reasonable choice.

How do you make it fast? All operations decompose
into dense vector products.
How do you start? Seed w with an online pass �rst.
Initially, step size may be crazy. Make a second pass
computing the second derivative in the chosen
direction.
What if loss goes up? Backstep along previous
direction.
How do you regularize? Regularized loss has the
form: L′(ŷ , y) = L(ŷ , y) + c

2

∑
i w

2

i . Imposing
regularization is a once-per-pass dense operation.

How do you restart with new data?

 0

 0.5

 1

 1.5

 2

 0 0.5 1 1.5 2

f(
x
)

x

Curvature at solution

Loss around solution

Compute and store: ri =
∂2L

∂wi∂wi

On resumption, regularize by
∑

i ri(wi − oi)
2 where

oi is the old weight value.

How do you restart with new data?

 0

 0.5

 1

 1.5

 2

 0 0.5 1 1.5 2

f(
x
)

x

Curvature at solution

Loss around solution

Compute and store: ri =
∂2L

∂wi∂wi

On resumption, regularize by
∑

i ri(wi − oi)
2 where

oi is the old weight value.

Why LBFGS?

Theorem: If L is quadratic and an exact line search
was done for the step size, a variant satis�es

et ≤
C

22t

for some C .

Of course, it's rarely quadratic and you never perform
exact line search.

Why LBFGS?

Theorem: If L is quadratic and an exact line search
was done for the step size, a variant satis�es

et ≤
C

22t

for some C .
Of course, it's rarely quadratic and you never perform
exact line search.

What happens here?

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

f(
x
)

x

Absolute Value

|x-1|

What happens to a true Newton step here?

What happens here?

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

f(
x
)

x

Absolute Value

|x-1|

What happens to a true Newton step here?

References

[L] Nocedal, J., �Updating quasi-Newton matrices
with limited storage�, Math. of Comp., 35, 773-782.
[B] Broyden, C., �The convergence of a class of
double-rank minimization algorithms�, Journal of the
Inst. of Math. and Its Applications, 6:76-90.
[F] Fletcher, R., �A New Approach to Variable Metric
Algorithms�, Computer Journal 13 (3):317-322.
[G] Goldfarb, D., �A Family of Variable Metric
Updates Derived by Variational Means�, Math. of
Comp. 24 (109):23-26.
[S] Shanno, D. �Conditioning of quasi-Newton
methods for function minimization�, Math. of Comp.
24(111):647-656.

More References

Incremental LBFGS Olivier Chapelle

