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To follow along:
git clone
git://github.com/JohnLangford/vowpal_wabbit.git
wget http://hunch.net/~jl/rcv1.tar.gz
(Post presentation updated version)

http://hunch.net/~jl/rcv1.tar.gz


Linear Learning

Features: a vector x ∈ Rn

Label: y ∈ R
Goal: Learn w ∈ Rn such that ŷw(x) =

∑
i wixi is

close to y .



Linear Learning

Features: a vector x ∈ Rn

Label: y ∈ {−1, 1}
Goal: Learn w ∈ Rn such that ŷw(x) =

∑
i wixi is

close to y .



Online Linear Learning

Start with ∀i : wi = 0
Repeatedly:

1 Get features x ∈ Rn.
2 Make linear prediction ŷw(x) =

∑
i wixi .

3 Observe label y ∈ [0, 1].
4 Update weights so ŷw(x) is closer to y .

Example: wi ← wi + η(y − ŷ)xi .
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An Example: The RCV1 dataset

Pick whether a document is in category CCAT or not.
Dataset size:
781K examples
60M nonzero features
1.1G bytes
Format: label | sparse features ...

1 | 13:3.9656971e-02 24:3.4781646e-02 ...
which corresponds to:
1 | tuesday year ...
command: time vw �sgd rcv1.train.txt -c
takes 1-3 seconds on my laptop.
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Reasons for Online Learning

1 Fast convergence to a good predictor
2 It's RAM e�cient. You need store only one

example in RAM rather than all of them. ⇒
Entirely new scales of data are possible.

3 Online Learning algorithm = Online
Optimization Algorithm. Online Learning
Algorithms ⇒ the ability to solve entirely new
categories of applications.

4 Online Learning = ability to deal with drifting
distributions.



De�ning updates

1 De�ne a loss function L(ŷw(x), y).

2 Update according to wi ← wi − η ∂L(ŷw (x),y)∂wi
.

Here η is the learning rate.
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Know your loss function semantics

1 What is a typical price for a house?

quantile: minimizer = median

2 What is the expected return on a stock?

squared: minimizer = expectation

3 What is the probability of a click on an ad?

logistic: minimizer = probability

4 Is the digit a 1?

hinge: closest 0/1 approximation

5 What do you really care about?

often 0/1
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The proof for quantile regression

Consider conditional probability distribution D(y |x).
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The proof for quantile regression

Discretize it into equal mass bins.
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The proof for quantile regression

Where is absolute value minimized?
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The proof for quantile regression

note that minimizer = discrete median and take the
limit as bin mass goes to 0.



rcv1 with di�erent loss functions

All the common loss functions are sound for binary
classi�cation, so which is best is an empirical choice.
vw �sgd rcv1.train.txt -c �loss_function

hinge

vw �sgd rcv1.train.txt -c �loss_function

logistic

vw �sgd rcv1.train.txt -c �loss_function

quantile



How do you know when you succeed?

Standard answer: train on train set, test on test set.
But can we do better?

Progressive Validation

On timestep t let lt = L(ŷwt
(xt), yt).

Report loss L = Et lt .

PV analysis

Let D be a distribution over x , y . Let
l̄t = E(x ,y)∼DL(ŷwt

(x), y)
Theorem: For all probability distributions D(x , y), for
all online learning algorithms, with probability 1− δ:

∣∣L− Et l̄t
∣∣ ≤√ ln 2/δ

2T
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Part II, advanced updates

1 Importance weight invariance
2 Adaptive updates
3 Normalized updates



Learning with importance weights

A common scenario: you need to do classi�cation but
one choice is more expensive than the other.
An example: In spam detection, predicting nonspam
as spam is worse than spam as nonspam.

Let's say an example is I times more important than
a typical example.
How do you modify the update to use I?

The baseline approach: wi ← wi − ηI ∂L(ŷw (x),y)∂wi
.
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Dealing with the importance weights

wi ← wi − ηI ∂L(ŷw (x),y)∂wi
performs poorly.
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Dealing with the importance weights

A better approach: wi ← wi − η ∂L(ŷw (x),y)∂wi
I times
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Dealing with the importance weights

An even better approach: wi ← wi − s(ηI )∂L(ŷw (x),y)∂wi
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Robust results for unweighted problems
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rcv1 with an invariant update

vw rcv1.train.txt -c �binary �invariant

Performs slightly worse with the default learning rate,
but much more robust to learning rate choice.



Adaptive Learning

Learning rates must decay to converge, but how?

Common answer: ηt = 1/t0.5 or ηt = 1/t.

Better answer: t, let git = ∂L(ŷw (xt),yt)
∂wi

.

New update rule: wi ← wit − η git√∑t

t′=1
g2

it′

Common features stabilize quickly. Rare features can
have large updates.
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Adaptive Learning example

vw rcv1.train.txt -c �binary �adaptive

Slightly worse. Adding in �invariant -l 1 helps.



Dimensional Correction

git for squared loss = 2(ŷw(x)− y)xi so update is

wi ← wi − Cxi

The same form occurs for all linear updates.

Intrinsic problems! Doubling xi implies halving wi to
get the same prediction.
⇒ Update rule has mixed units!
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A standard solution: Gaussian sphering

For each feature xi compute:
empirical mean µi = Etxit
empirical standard deviation σi =

√
Et(xit − µi)2

Let x ′i ←
xi−µi
σi

.

Problems:
1 Lose online.
2 RCV1 becomes a factor of 500 larger.
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A scale-free update

NG(learning_rate η)

1 Initially wi = 0, si = 0, N = 0
2 For each timestep t observe example (x , y)

1 For each i , if |xi | > si

1 wi ← wi s
2

i

|xi |2
2 si ← |xi |

2 ŷ =
∑

i
wixi

3 N ← N +
∑

i

x2
i

s2
i

4 For each i ,

1 wi ← wi − η
√

t
N

1

s2
i

∂L(ŷ ,y)
∂wi



A scale-free update

NG(learning_rate η)

1 Initially wi = 0, si = 0, N = 0
2 For each timestep t observe example (x , y)

1 For each i , if |xi | > si

1 Renormalize wi for new scale
2 Adjust Scale

2 ŷ =
∑

i
wixi

3 Adjust global scale
4 For each i ,

1 wi ← wi − η
√

t
N

1

s2
i

∂L(ŷ ,y)
∂wi



In combination

An adaptive, scale-free, importance invariant update
rule.
vw rcv1.train.txt -c �binary



References

[RCV1 example] Leon Bottou, Stochastic Gradient
Descent, 2007.
[VW] Vowpal Wabbit project,
http://hunch.net/~vw, 2007-2012.
[Quantile Regression] Roger Koenker, Quantile
Regression, Econometric Society Monograph Series,
Cambridge University Press, 2005.
[Classi�cation Consistency] Ambuj Tewari and Peter
L. Bartlett. On the consistency of multiclass
classi�cation methods. COLT, 2005.

http://hunch.net/~vw


References

[Progressive Validation I] Avrim Blum, Adam Kalai,
and John Langford Beating the Holdout: Bounds for
KFold and Progressive Cross-Validation. COLT99.
[Progressive Validation II] N. Cesa-Bianchi, A.
Conconi, and C. Gentile On the generalization ability
of on-line learning algorithms IEEE Transactions on
Information Theory, 50(9):2050-2057, 2004.
[Importance Aware Updates] Nikos Karampatziakis
and John Langford, Importance Weight Aware
Gradient Updates UAI 2010.
[Online Convex Programming] Martin Zinkevich,
Online convex programming and generalized
in�nitesimal gradient ascent, ICML 2003.



References

[Adaptive Updates I] John Duchi, Elad Hazan, and
Yoram Singer, Adaptive Subgradient Methods for
Online Learning and Stochastic Optimization, COLT
2010 & JMLR 2011.
[Adaptive Updates II] H. Brendan McMahan,
Matthew Streeter, Adaptive Bound Optimization for
Online Convex Optimization, COLT 2010.
[Scale invariant updates] Forthcoming.


