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A Scenario

You have 1010 webpages and want to return the best result in
100ms.

How do you do it?



Method 1: Indexing algorithms

1 Inverted Index

2 Weighted And (WAND)

3 Locality Sensitive Hashing

4 Predictive Indexing and other Data-driven variations of the
above

See previous lecture on indexing.



Method 2: Logarithmic time prediction

Typical time to choose one of k things with ML algorithms: O(k).

Minimum possible time to choose one of k things: O(log k).

Should we make algorithms which run in O(log k) time?

How can we make algorithms which run in O(log k) time?
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Why logarithmic time prediction?

Hypothesis: Indexing + scoring on top candidates is unsound.
Evidence:

1 If you apply a learned quality predictor to all results (on a
small subset of queries) you get different results.

2 Machine Learning (well) is hard. Indexing (well) is hard.
Getting the two to work together (well) is hard. Maybe a
master algorithm can do both better?

3 Common story line for an ML paper: We figured out how to
do end-to-end learning, and it worked better.



How do we do logarithmic time prediction?

Approach 1: Build a decision tree with O(log k) depth.

Difficulties:

1 Decision trees are slow to train and much data is required.

2 Decision trees alone tend to provide poor performance.

Solution: Use map-reduce with 1000 nodes to train a decision
forest.

It works! And beats an index+score approach. See WWW 2013
paper.
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How do we do logarithmic time prediction?

Approach 2: Reuse existing algorithms multiple times in a
log-depth structure.

Existing algorithms solve:

Binary Classification

Given training data {(x1, y1), . . . , (xn, yn)}, produce a
classifier h : X → {0, 1}.
Unknown underlying distribution D over X × {0, 1}.
Find h with small 0-1 loss:

`0/1(h,D) = Pr(x ,y)∼D [h(x) 6= y ]

Years of research and development of algorithms for solving this
problem. Can we reuse it?
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Learning Reductions

Goal: minimize ` on D

Algorithm for optimizing `0/1

Transform D into DR

Transform h with small `0/1(h,DR) into Rh with small `(Rh,D).

h

such that if h does well on (DR , `0,1), Rh is guaranteed to do well
on (D, `).
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Let’s begin with . . .

Multi-class classification

Distribution D over X × Y , where Y = {1, . . . , k}.
Find a classifier h : X → Y minimizing the multi-class loss on D

`k(h,D) = Pr(x ,y)∼D [h(x) 6= y ]



Caution: Trees go wrong

3 choices: P(1 | x) = P(2 | x) = 0.275, P(3 | x) = 0.45.

1 2 3

Label 1 or 2

Probability 0.55
Probability 0.45

.

Optimal classifier picks 1 or 2, but choice 3 is best.



The Filter Tree (Single-Elimination Tournament)

1 2 3 4 5 6

1 vs 2 3 vs 4 5 vs 6 7

{winner of 1 vs 2} vs {winner of 3 vs 4} {winner of 5 vs 6}
vs 7

.

Each non-leaf predicts the best of a pair of winners from the
previous round

To predict on x : follow the chain of predictions from root to leaf,
output the leaf.
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Training on example (x, 3)

1 2 3 4 5 6

f1,2 f3,4 f5,6
7

f{1,2},{3,4} f{5,6},7

.

(x, left)

(x, right)
conditioned on f3,4(x) = left

(x, left)
conditioned on f3,4(x) = left, f{1,2},{3,4}(x) = right
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Training

Important to form the right training sets: Classifiers from the
first level are used to filter the distribution of examples
reaching the second level, etc.

Can be composed with either batch or online base learners.



What about with costs?

Cost-sensitive multi-class classification

Distribution D over X × [0, 1]k , where a vector in [0, 1]k specifies
the cost of each of the k choices.

Find a classifier h : X → {1, . . . , k} minimizing the expected cost

cost(h,D) = E(x ,c)∼D [ch(x)].



Generalization to the Cost-sensitive Case

To train a non-leaf node on example (x , c1, . . . , ck):

�
�
�
�
�
�

Q
Q

Q
Q

Q
Q

a bt
Let y =

{
left if ca ≤ cb

right otherwise

Train on (x , y) with importance weight |ca − cb|.

Distribution induced at the node

Draw a cost-sensitive example from D, create an importance
weighted sample as above.



Analysis

Binary regret:
reg0/1(h,D) = Pr(x ,y)∼D(h(x) 6= y)−minh′ Pr(x ,y)∼D(h′(x) 6= y)
Cost-sensitive regret:
regCS(h,D) = E(x ,y)∼D [ch(x)]−minh′ E(x ,y)∼D [ch′(x)]

Theorem

For all cost-sensitive problems and classifiers at the nodes, the
resulting cost-sensitive regret is bounded by average binary regret,
times the expected sum of importance weights over the nodes.

regCS(hFT ,D) ≤ A(reg0/1(h,DFT ))EDFT

∑
nodes n

in

Alternative bound replaces the sum of importance weights with
k/2.



The multiclass case

For all multiclass problems and binary classifiers at the nodes, the
resulting multiclass regret ≤ average binary regret, times dlog ke.

Proof: For any example, there is at most one node per level with
induced weight 1. Thus tree depth bounds the sum of weights.

Can we make it more robust?

Using multiple independent single elimination tournaments is
of no help since it doesn’t affect the average regret of an
adversary controlling the binary classifiers.

. . . But we can have e = O(log k) single elimination
tournaments in O(log k) rounds, with no player playing twice
in the same round.
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e-elimination tournament

Once an example loses, it
moves to the next
tournament. Once an
example has lost e times, it is
eliminated and no longer
influences training.

The e winners from the first
phase compete in the final
single elimination
tournament. To win in round
i , each player must defeat its
opponent 2i−1 times.

2 3 4 5 6 7 8

Final W
inner

1

e = 3



Summary of Multiclass results

Filter Tree Error Correcting Tournament

MC Computation log k O(log k)

MC Regret ratio log k 5.5

CS Train k O(k log k)

CS Test log k O(log k)

CS Regret ratio min{k2 ,
∑

n in} ??



Contextual Bandit Learning in Logarithmic time

Contextual Bandit Classification

Distribution D over X × [0, 1]k , where a vector in [0, 1]k specifies
the cost of each of the k choices.

Find a classifier h : X → {1, . . . , k} minimizing the expected cost

cost(h,D) = E(x ,c)∼D [ch(x)].

given only observations (x , a, ca, pa)∗.



The Offset Tree for k = 2, p = 0.5

Suppose k = 2 for the moment and let a ∈ {−1, 1}. Create binary
importance weighted samples according to:(

x , sign

(
a

(
1

2
− ca

))
,

∣∣∣∣12 − ca

∣∣∣∣)

x = side information
sign

(
a
(
1
2 − ca

))
= label∣∣1

2 − ca
∣∣ = importance weight



Denoising Binary Importance Weighting

Theorem

For all Contextual Bandit distributions D with k = 2, for all binary
classifiers b:

policy regret ≤ reg0/1(b,DOT ).

The induced problem is often noisy. This trick reduces the
maximum noise, giving a factor of 2 improvement in the upper
bound.

1
2 = minimax value of the median reward. Plugging in the actual
median is always better.



Denoising for k > 2 arms

1 2 3 4 5 6 7

1 vs 2 3 vs 4 5 vs 6

winner of 1 vs 2 vs winner of 3 vs 4 7 vs winner of 5 vs 6

winners vs winners

Use the same construction at each node. Internal nodes only get
an example if all leaf-wards nodes agree with the label (Filtering
trick).



Denoising with k arms

DOT = Induced Binary classification problem
b = the classifier which predicts based on both x and the choice of
binary problem according to DOT .

Theorem

For all k-choice D, binary classifiers b:

policy regret ≤ (k − 1) reg0/1(b,DOT ).



A Comparison of Approaches

Algorithm Policy Regret Bound

Argmax
√

2k reg0/1(s,DAR)

Importance Weighted 4k reg0/1(b,DIW )

Offset Tree (k − 1) reg0/1(b,DOT )

How do you expect things to work, experimentally?
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Compare with Double Robust approaches empirically
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Double Robust is exponentially slower, but often a bit better.



The last problem

A dataset:

1 40 ∗ 106 (ad,webpage) pairs (+ 10 ∗ 106 pairs in test set)

2 ∼ 107 unique webpages

3 ∼ 106 unique ads

4 ∼ 106 unique features.

A problem:
Predict: Pr(ad|webpage) for a given (ad, webpage) pair.

Conditional Probability Estimation

Distribution D over X × Y , where Y = {1, . . . , k}.
Find a Probability estimator h : Y ×X → [0, 1] minimizing squared
loss

`(h,D) = E(x ,y)∼D [(h(y |x)− y)2]
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One approach: A Conditional Probability Tree

1 2 3 4 5 6 7 8

0.4 0.6

0 1

0.80.2

A

G

CB

E FD

Every node predicts P(ad is to the right|page).
Number of nodes to evaluate: log2 |ads|.

P̂(ad 4|page) = (1− A(page))B(page)E(page)

= 0.4 ∗ 1 ∗ 0.8 = 0.32



But is the prediction too unstable to work?

Basic fact: minimizer of squared loss = correct probability.
Theorem: For any distribution P, Any regressors Q, and any pair
(x , y),

(PQ(y |x)− P(y |x))2

≤ depth2Ei∈Path(Qi (righti (y)|page)− Pi (righti (y)|page))2

= depth2(average binary regret)

A similar statement for one-against-all approaches replaces depth2

with |ads|2. This is much worse, although it often is not realized in
practice.



Proof

Let qi = Qi (righti (y)|x) and pi = Pi (righti (y)|x).
|PQ(y |x)− P(y |x)| ≤∏i max{qi , pi} −

∏
i min{qi , pi}

Using geometry,
∏

i max{qi , pi},
∏

i min{qi , pi} = hypercube
volumes.
Small hypercube + slabs ≥ big hypercube.∏

i

max{qi , pi} −
∏
i

min{qi , pi} ≤
∑
i

|qi − pi |
∏
j 6=i

max{qj , pj}

≤
∑
i

|qi − pi |

... then apply Jensen’s inequality.



The hypercube arbument in 2-d
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How do we assign labels to leaves?

Random left/right decisions: 0.7742± 0.0006 (Uniform over
∼ 8.32 ads)
Surprisingly good, but surely we can do better than random?
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A better than random approach

When a new label is encountered, starting at the root and descend,
send the label right if:

(1− α) (2Qi (page)− 1) + α log2
|ads left|+ 1

|ads right|+ 1
> 0

Theorem: For all α ∈ [0.5, 1], for all binary regressors,

depth ≤ 3 +
log2 |ads|

log2

(
1 + 2

α−1
α

)
Proof: Requires a bit of work because of discretization effects.



RAM problems

How do you store and use 106 binary regressors each with ∼ 106

features?

We don’t have 4 ∗ 1012 bytes of RAM!

Hashing
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Conditional Probability Tree on Ad dataset

1 Training time ∼ 1 hour on a single machine.

2 RAM usage ∼ 100MB.

3 Squared loss 0.7632± 0.0006 (equivalent to uniform random
over 7.91 ads).



Conditional Probability Tree on RCV1

(Full) RCV1 has:

1 103 classes

2 780K examples

3 ∼ 216 features

aka: small enough to do the wrong thing

Conditional Probability Tree One Against All

Computation 108s 2300s

Squared Loss 0.56± 0.012 0.55± 0.012
Losing a small amount of prediction performance for a significant
gain.
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Choose your baseline

1 Relative to O(k) ML techniques, giant improvements in
computation + sometimes better/sometimes worse
performance.

2 Relative to index+rank approaches, perhaps a significant
improvement in performance.

This area is immature: there are plausibly several theses to write.
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