(Mis)Use of Hadoop

John Langford

NYU Large Scale Learning Class, February 19, 2013

(Post presentation version)

The data problem

Traditional high performance computing is FLoating Operations
Per Second. http://top500.0rg/lists/2012/11/

Titan http://www.olcf.ornl.gov/titan/: 17.6PFlops, 8.2MW
Flops first, network second, data is irrelevant.

Primary use = simulations.

http://top500.org/lists/2012/11/
http://www.olcf.ornl.gov/titan/

The data problem

Traditional high performance computing is FLoating Operations
Per Second. http://top500.0rg/lists/2012/11/

Titan http://www.olcf.ornl.gov/titan/: 17.6PFlops, 8.2MW
Flops first, network second, data is irrelevant.

Primary use = simulations.

Data is different.

= the need to store information. With large amounts of data,
errors should be assumed. Use replication to zero out the chance
of error.

= the need for quick access. No single machine can handle all
data requests. Use locality to minimize bandwidth.

http://top500.org/lists/2012/11/
http://www.olcf.ornl.gov/titan/

@ System for datacentric computing.

@ System for datacentric computing.

@ Distributed File System + Map Reduce + Advanced
components

@ System for datacentric computing.

@ Distributed File System + Map Reduce + Advanced
components

© Java’'s first serious use as an OS

@ System for datacentric computing.

@ Distributed File System + Map Reduce + Advanced
components

© Java’'s first serious use as an OS

@ Open Source clone of GFS 4+ Map Reduce system.

@ System for datacentric computing.

@ Distributed File System + Map Reduce + Advanced
components

© Java’s first serious use as an OS
@ Open Source clone of GFS + Map Reduce system.
© Yahoo!'s bulk data processing system.

System for datacentric computing.

Distributed File System + Map Reduce + Advanced
components

© 0

Java’s first serious use as an OS
Open Source clone of GFS 4+ Map Reduce system.
Yahoo!'s bulk data processing system.

©00O0

The craze at Strata (= data business conference). Nearly
every company is interoperating with, extending, and/or using
Hadoop.

The NYU Hadoop cluster

~92 machines

8 cores @ 2Ghz to 2.5Ghz / machine

16GB RAM / machine

1Gb/s network card

~100TB storage (in Hadoop).

A low end Hadoop cluster, of most use as a shared datarich
environment.

https://wikis.nyu.edu/display/NYUHPC/SCP+through+SSH+Tunneling
https://wikis.nyu.edu/display/NYUHPC/SCP+through+SSH+Tunneling

The NYU Hadoop cluster

~92 machines

8 cores @ 2Ghz to 2.5Ghz / machine

16GB RAM / machine

1Gb/s network card

~100TB storage (in Hadoop).

A low end Hadoop cluster, of most use as a shared datarich
environment.

Access directions for NYU students:

ssh <netid>@hpc.nyu.edu

ssh dumbo.es.its.nyu.edu

Take 10 minutes to setup ssh tunneling:
https://wikis.nyu.edu/display/NYUHPC/SCP+through+SSH+
Tunneling

https://wikis.nyu.edu/display/NYUHPC/SCP+through+SSH+Tunneling
https://wikis.nyu.edu/display/NYUHPC/SCP+through+SSH+Tunneling

The NYU Hadoop cluster

~92 machines

8 cores @ 2Ghz to 2.5Ghz / machine

16GB RAM / machine

1Gb/s network card

~100TB storage (in Hadoop).

A low end Hadoop cluster, of most use as a shared datarich
environment.

Access directions for NYU students:

ssh <netid>@hpc.nyu.edu

ssh dumbo.es.its.nyu.edu

Take 10 minutes to setup ssh tunneling:
https://wikis.nyu.edu/display/NYUHPC/SCP+through+SSH+
Tunneling

For nonNYU students, you can experiment with Hadoop easily
using AWS.

https://wikis.nyu.edu/display/NYUHPC/SCP+through+SSH+Tunneling
https://wikis.nyu.edu/display/NYUHPC/SCP+through+SSH+Tunneling

Hadoop Distributed File System (HDFS)

Half of Hadoop is HDFS. It's the better half.

Hadoop Distributed File System (HDFS)

Half of Hadoop is HDFS. It's the better half.
All data is stored 3 times =

@ robust to failures. How many random failures required to lose
info?

@ 1/3 storage.
© You don't “backup” a Hadoop cluster.

@ Multiple sources for any one piece of data.

Hadoop Distributed File System (HDFS)

Half of Hadoop is HDFS. It's the better half.
All data is stored 3 times =

@ robust to failures. How many random failures required to lose
info?

@ 1/3 storage.
© You don't “backup” a Hadoop cluster.
@ Multiple sources for any one piece of data.
Files are stored in 64MB chunks (“shards").
@ Sequential reads are fast. 100MB/s disk requires 0.64s to
read a chunk but only .01 s to start reading it.
@ Not made for random reads.
© Not for small files.

Hadoop Distributed File System (HDFS)

Half of Hadoop is HDFS. It's the better half.
All data is stored 3 times =

@ robust to failures. How many random failures required to lose
info?

@ 1/3 storage.
© You don't “backup” a Hadoop cluster.
@ Multiple sources for any one piece of data.
Files are stored in 64MB chunks (“shards").
@ Sequential reads are fast. 100MB/s disk requires 0.64s to
read a chunk but only .01 s to start reading it.
@ Not made for random reads.
© Not for small files.
No support for file modification.

= HDFS is in it's own namespace.
= Need new comands.

HDFS ops

Execute:

echo alias hfs= ’hadoop fs ’ >> .bashrc
source .bashrc

Common commands:

hfs See available commands.

hfs -help more command details.

hfs -1s [<path>] List files

hfs -cp <src> <dst> Copy stuff

hfs -mkdir <path> Create path

hfs -rm <path> remove a file

hfs -chmod <path> Modify permissions.
hfs -chown <path> Modify owner.

00000000

HDFS ops

Execute:
echo alias hfs= ’hadoop fs ’ >> .bashrc
source .bashrc
Common commands:
hfs See available commands.
hfs -help more command details.
hfs -1s [<path>] List files
hfs -cp <src> <dst> Copy stuff
hfs -mkdir <path> Create path
hfs -rm <path> remove a file
hfs -chmod <path> Modify permissions.
hfs -chown <path> Modify owner.
Remote access commands:
@ hfs -cat <src> Cat contents to stdout.
@ hfs -copyFromLocal <localsrc> <dst> Copy stuff
© hfs -copyToLocal <src> <localdst> Copy stuff
File system is browsable. For NYU: http://babar:50070/

00000000

Hadoop Map-Reduce

An example of “Bulk Synchronous Parallel” data processing.
Map (Programming language ideal): A function f : A — B.

Reduce (Programming language ideal): A function g : BxB — B.

Hadoop Map-Reduce

An example of “Bulk Synchronous Parallel” data processing.
Map (Programming language ideal): A function f : A — B.
Map (Hadoop ideal): A function f : A* — B*

In between Map and Reduce is sort(B*) which partitions elements
across multiple reducers.

Reduce (Programming language ideal): A function g : BxB — B.
Reduce (Hadoop ideal): A function g : B* — C.

A, B, C are often (but not always) line oriented.

Hadoop Map-Reduce

An example of “Bulk Synchronous Parallel” data processing.
Map (Programming language ideal): A function f : A — B.

Map (Hadoop ideal): A function f : A* — B*

Map (Real implementation): Any program consuming A* and
outputting B*.

In between Map and Reduce is sort(B*) which partitions elements
across multiple reducers.

Reduce (Programming language ideal): A function g : BxB — B.
Reduce (Hadoop ideal): A function g : B* — C.

Reduce (Real Implementation): Any program consuming B* and
outputing C.

A, B, C are often (but not always) line oriented.

HDFS HDFS HDFS HDFS

HDFS HDEFS

Hadoop Streaming

Hadoop streaming = use any program written in any language for
mapreduce operations.

Execute:

echo "export HAS=/usr/lib/hadoop/contrib/streaming
export HSJ=hadoop-streaming-1.0.3.16. jar

alias hjs= ’hadoop jar $(HAS)/$(HSJ) ’" >> .bashrc
source .bashrc

Hadoop Streaming

Hadoop streaming = use any program written in any language for
mapreduce operations.

Execute:

echo "export HAS=/usr/lib/hadoop/contrib/streaming
export HSJ=hadoop-streaming-1.0.3.16. jar

alias hjs= ’hadoop jar $(HAS)/$(HSJ) ’" >> .bashrc
source .bashrc

Get the first example from every mapped chunk in rcvl.

echo ‘‘cat > temp; head -n 1 temp’’ > header

hjs -input /user/jl15386/rcvl.train.txt -output
headresults -mapper header -reducer cat -file header
hfs -cat headresults/part-00000 | wc -1 = number of
mappers

Guess what it does

echo ‘‘cut -d > > -f 1 | grep 1’’ > cutter

echo wc -1 > counter

hjs -input /user/jl5386/rcvl.train.txt -output
countres -mapper cutter -reducer counter -file cutter
—-file counter

hfs -cat countres/part-00000

Guess what it does

echo grep 326: > grepper

echo wc -1 > counter

hjs -input /user/jl5386/rcvl.train.txt -output fcount
-mapper grepper -reducer counter -file grepper -file
counter

hfs -cat fcount/part-00000

Guess what it does

echo ‘‘cut -d > > -f 1 | sort -u’’ > cutsort

echo sort -u > sorter

hjs -input /user/jl5386/rcvl.train.txt -output labels
-mapper cutsort -reducer sorter -file cutsort -file
sorter

hfs -cat labels/part-00000

Hadoop job control

Watch what is happening with job tracker URL (given on job
launch).

hadoop job -list

hadoop job -kill <id>

Abusing Hadoop Streaming

Hadoop streaming makes Hadoop into a general purpose job
submission system.

hjs -Dmapred.task.timeout=600000000

-Dmapred. job.map.memory.mb=3000 -input <yourdata>
-output <finaloutput> -mapper cat -reducer
<yourprogram> -file <yourprogram>

Abusing Hadoop Streaming

Hadoop streaming makes Hadoop into a general purpose job
submission system.
hjs -Dmapred.task.timeout=600000000
-Dmapred. job.map.memory.mb=3000 -input <yourdata>
-output <finaloutput> -mapper cat -reducer
<yourprogram> -file <yourprogram>
Why Hadoop for job control?

@ map can be handy for selecting a subset or different data for

features or examples.

@ much better bandwidth limits.

Parallel Learning for Parameter Search

Hadoop streaming makes Hadoop into a general purpose job
submission system.
for a in 0.1 0.3 1 3 10; do

echo ./vw -1 $a > job_$a

hjs -Dmapred.task.timeout=600000000

—Dmapred. job.map.memory.mb=3000 -input <yourdata>
-output output_$a -mapper cat -reducer job_$a -file
job_$a -file vw

done

Parallel Learning for Speed

The next lecture.

More Hadoop things

PIG(Y!) is an SQL—MapReduce compiler
Zookeeper(Y!) is a system for sharing small amounts of info.

Hive(Facebook): Much faster data query and exploration. ...

References

[Hadoop Tutorial]
http://developer.yahoo.com/hadoop/tutorial/

[GFS] Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung, “The
Google file system”, SOSP '03.

[MapReduce] Jeffrey Dean, Sanjay Ghemawat MapReduce:
simplified data processing on large clusters, Communications of the
ACM, Volume 51 Issue 1, January 2008, Pages 107-113.

In general, MapReduce is an example of bulk synchronous parallel
computation—there are many other papers.

http://developer.yahoo.com/hadoop/tutorial/

