
Reduction in
Reinforcement Learning

Policy Search by Dynamic Programming

Drew Bagnell
dbagnell@ri.cmu.edu

http://www.cs.cmu.edu/~dbagnell

Carnegie Mellon Robotics Institute

Joint work with Sham Kakade, Andrew Ng, and Jeff Schneider

Policy Search by Dynamic Programming – p.1/33

Outline

Introduction to Stochastic Control Problem

POMDPs and Memoryless Policies

Policy Search by Dynamic Programming

Exact (Discrete) PSDP

PSDP using Classification

PSDP using Regression

Refinements and Conclusions

Policy Search by Dynamic Programming – p.2/33

Stochastic Control Problem

Elements of the control problem
Space of paths Ξ (system trajectories)
A sequence of controls < at >t∈{0,..,T}

A sequence of observations < ot >t∈{0,..,T}

A controller, π that maps < ot > to a
distribution over at

A probability distribution over paths Pπ(ξ)

A reinforcement function R(ξ)

Policy Search by Dynamic Programming – p.3/33

Stochastic Control Problem

Goal: Optimize the expectation

Jπ =
∑

Ξ

Pπ(ξ)R(ξ)

Special cases: MDPs, POMDPs, state-space
systems

Reinforcement Learning: Stochastic control
with unknown model

Policy Search by Dynamic Programming – p.4/33

Markov Decision Process

Formal states that render past and future
independent

Rpath(ξ) = 1

T

∑
t R(st)

R(s0) R(s1) R(s2)

s0 s1 s2 · · ·

a0 a1 a2

Policy Search by Dynamic Programming – p.5/33

MDP Solution Techniques

Standard solution techniques leverage dynamic
programming and the Bellman equations

Bellman equations relate the values starting from one
state with that from starting from other states

Optimal solutions are memoryless mappings from
states to controls

Algorithms scale polynomially in the number of states,
exponentially in state variables

Approximate value function techniques can give very
impressive results [Tesauro95]

Policy Search by Dynamic Programming – p.6/33

Outline

Introduction to Stochastic Control Problem

POMDPs and Memoryless Policies

Policy Search by Dynamic Programming

Exact (Discrete) PSDP

PSDP using Regression

PSDP using Classification

Refinements and Conclusions

Policy Search by Dynamic Programming – p.7/33

Partial Observability

Natural extension is to make ot a random
variable

R(s0) R(s1) R(s2)

s0 s1 s2 · · ·

o0 o1 o2

a0 a1 a2

Policy Search by Dynamic Programming – p.8/33

POMDPs

Elegant structural properties to optimal controllers

POMDPs under total reward become belief-state
MDPs [Littman96]

Belief state scales exponentially in number of states
(and it’s continuous!)

With rare exceptions (Linear-Quadratic Gaussian)
POMDPs are overwhelmingly intractable [Stengel86]

Policy-search has become a preferred approach to
solving large MDPs and POMDPs

Policy Search by Dynamic Programming – p.9/33

Finding memoryless policies

Consider the problem of finding a policy that
maps observations to controls

In contrast to MDPs, it is NP-hard to find the
best such policy in a POMDP

There may exist no satisficing deterministic
stationary policy

Policy Search by Dynamic Programming – p.10/33

Typical approaches

Ignore it– run an MDP learning algorithm
May perform arbitrarily badly

Learn a stochastic policy that maps
observations to distributions

Use gradient method to optimize
Sample complexity may be exponential
Local minima abound

Policy Search by Dynamic Programming – p.11/33

Outline

Introduction to Stochastic Control Problem

POMDPs and Memoryless Policies

Policy Search by Dynamic Programming

Exact (Discrete) PSDP

PSDP using Classification

PSDP using Regression

Refinements and Conclusions

Policy Search by Dynamic Programming – p.12/33

Rethinking Dynamic Programming

Bellman’s original Principle of Optimality

“An optimal policy has the property that whatever the initial state and optimal first
decision may be, the remaining decisions constitute an optimal policy with regard to the

state resulting from the first decision”

is a statement about policies

Recourse to functional (Bellman) equations is
neither necessary, nor always helpful

Policy Search by Dynamic Programming – p.13/33

Rethinking Dynamic Programming

Instead, perhaps we can have out cake and
eat it too

We can conceive of a generalized principle of
optimality:

An optimal π ∈ Π has the property that whatever the initial state and optimal first
decision may be, the remaining decisions should be optimal with respect to the

observations and the optimal distribution over states.

Suppose instead of backing up
value-functions, we backed up policies

Policy Search by Dynamic Programming – p.14/33

Policy Search by DP

Algorithm 1 (PSDP) Given T , µt, and Π:

for t = T − 1, T − 2, . . . , 0

Set πt = arg maxπ′∈ΠEs∼µt
[Vπ′,πt+1...,πT−1

(s)]

At each step, we only have to think about the best mapping from O to A

The distribution µ makes previous decisions irrelevant

And the future decisions are already made (optimally)

Policy Search by Dynamic Programming – p.15/33

Policy Search by DP

Algorithm 1 (PSDP) Given T , µt, and Π:

for t = T − 1, T − 2, . . . , 0

Set πt = arg maxπ′∈ΠEs∼µt
[Vπ′,πt+1...,πT−1

(s)]

At each step, we only have to think about the best mapping from O to A

The distribution µ makes previous decisions irrelevant

And the future decisions are already made (optimally)

Policy Search by Dynamic Programming – p.15/33

Policy Search by DP

Algorithm 1 (PSDP) Given T , µt, and Π:

for t = T − 1, T − 2, . . . , 0

Set πt = arg maxπ′∈ΠEs∼µt
[Vπ′,πt+1...,πT−1

(s)]

At each step, we only have to think about the best mapping from O to A

The distribution µ makes previous decisions irrelevant

And the future decisions are already made (optimally)

Policy Search by Dynamic Programming – p.15/33

Policy Search by DP

Algorithm 1 (PSDP) Given T , µt, and Π:

for t = T − 1, T − 2, . . . , 0

Set πt = arg maxπ′∈ΠEs∼µt
[Vπ′,πt+1...,πT−1

(s)]

At each step, we only have to think about the best mapping from O to A

The distribution µ makes previous decisions irrelevant

And the future decisions are already made (optimally)

Policy Search by Dynamic Programming – p.15/33

How well can we do?

Intuitively, we’d like that PSDP returns a policy that competes favorably with all policies
whose future state distributions are close to µ Define variation distance as

dvar(µ, µ′) ≡
1

T

T−1
X

t=0

X

s∈S

|µt(s)− µ′t(s)|

Theorem 0 (Performance Guarantee) Let π = (π0, . . . , πT−1) be a non-stationary
policy returned by an ε-approximate version of PSDP in which, on each step, the policy
πt found comes within ε of maximizing the value. I.e.,

Es∼µt
[Vπt,πt+1...,πT−1

(s)] ≥ maxπ′∈ΠEs∼µt
[Vπ′,πt+1...,πT−1

(s)]− ε . (0)

Then for all πref ∈ ΠT we have that

Vπ(s0) ≥ Vπref
(s0)− Tε− Tdvar(µ, µπref

) .

Policy Search by Dynamic Programming – p.16/33

Outline

Introduction to Stochastic Control Problem

POMDPs and Memoryless Policies

Policy Search by Dynamic Programming

Exact (Discrete) PSDP

PSDP using Classification

PSDP using Regression

Refinements and Conclusions

Policy Search by Dynamic Programming – p.17/33

Exact PSDP

Under exact PSDP (discrete observations), the policy
update is as follows:

πt(o) = arg maxaEs∼µt
[p(o|s)Va,πt+1...,πT−1

(s)] (0)

Proposition 0 (PSDP complexity) For any POMDP, exact
PSDP (ε = 0) runs in time polynomial in the size of the
state and observation spaces and in the horizon time T .

Intuitively, distribution u specifies how to trade-off different

state-action pairs that share an observation.

Policy Search by Dynamic Programming – p.18/33

Mazes

(a) Hallway (b) McCallum’s Maze (c) Sutton
µ uniform µ iterated Optimal SD Optimal

Hallway 21 21 ∞ 18

McCallum 55 48 ∞ 39

Sutton 412 412 416 ≥ 408

Policy Search by Dynamic Programming – p.19/33

Memoryless policy classes

Four natural classes:stationary deterministic (SD),
stationary stochastic (SS), non-stationary deterministic
(ND) and non-stationary stochastic (NS)

Proposition 1 (Policy ordering) For any POMDP,

opt(SD) ≤ opt(SS) ≤ opt(ND) = opt(NS)

Unfortunately NP-hard to find optimal policies

PSDP offers well-founded, tractable alternative to
search heuristics

Policy Search by Dynamic Programming – p.20/33

Memoryless policy classes

Four natural classes:stationary deterministic (SD),
stationary stochastic (SS), non-stationary deterministic
(ND) and non-stationary stochastic (NS)

Proposition 1 (Policy ordering) For any POMDP,

opt(SD) ≤ opt(SS) ≤ opt(ND) = opt(NS)

Unfortunately NP-hard to find optimal policies

PSDP offers well-founded, tractable alternative to
search heuristics

Policy Search by Dynamic Programming – p.20/33

Memoryless policy classes

Four natural classes:stationary deterministic (SD),
stationary stochastic (SS), non-stationary deterministic
(ND) and non-stationary stochastic (NS)

Proposition 1 (Policy ordering) For any POMDP,

opt(SD) ≤ opt(SS) ≤ opt(ND) = opt(NS)

Unfortunately NP-hard to find optimal policies

PSDP offers well-founded, tractable alternative to
search heuristics

Policy Search by Dynamic Programming – p.20/33

Outline

Introduction to Stochastic Control Problem

POMDPs and Memoryless Policies

Policy Search by Dynamic Programming

Exact (Discrete) PSDP

PSDP using Classification

PSDP using Regression

Refinements and Conclusions

Policy Search by Dynamic Programming – p.21/33

Weighted classification

Consider discrete (two!) action POMDPs

Suppose the maximization arg maxπ′∈ΠEs∼µt
[Vπ′,πt+1...,πT−1

(s)] can be
closely approximated by a linear policy

This algorithm turns the maximization into a classification problem:

Algorithm 1 (Linear maximization) Given m1 and m2:

for i = 1 to m1

Sample s(i) ∼ µt.

Use m2 Monte Carlo samples to estimate Va1,πt+1,...,πT−1
(s(i)) and

Va2,πt+1,...,πT−1
(s(i)). Call the resulting estimates q1 and q2.

Let y(i) = 1{q1 > q2}, and w(i) = |q1 − q2|.

Find θ = arg minθ

Pm1
i=1 w(i)1{1{θT φ(s(i)) ≥ 0} 6= y(i)}.

Output πθ .

Policy Search by Dynamic Programming – p.22/33

Weighted classification

The weighted 0-1 loss problem is NP-hard, but approximable [Amaldi98]

Can take variational approach and pick convex bound on loss

Logistic regression −`(θ) = −
P

i w(i) log p(y(i)|s(i), θ) where
p(y = 1|s, θ) = 1/(1 + exp(−θT s))

Applied to double cart-pole

Policy Search by Dynamic Programming – p.23/33

Outline

Introduction to Stochastic Control Problem

POMDPs and Memoryless Policies

Policy Search by Dynamic Programming

Exact (Discrete) PSDP

PSDP using Classification

PSDP using Regression

Refinements and Conclusions

Policy Search by Dynamic Programming – p.24/33

l1 Regression

PSDP can also be efficiently implemented if we can efficiently find action-value
function Ṽa,πt+1...,πT−1

(s), i.e., if at each timestep

ε ≥ Es∼µt
[maxa∈A|Ṽa,πt+1...,πT−1

(s)− Va,πt+1...,πT−1
(s)|] .

Policy acts greedily with respect to V

Easy to check that we differ from optimal PSDP solution by 2Tε

Policy Search by Dynamic Programming – p.25/33

l1 Regression

PSDP can also be efficiently implemented if we can efficiently find action-value
function Ṽa,πt+1...,πT−1

(s), i.e., if at each timestep

ε ≥ Es∼µt
[maxa∈A|Ṽa,πt+1...,πT−1

(s)− Va,πt+1...,πT−1
(s)|] .

Policy acts greedily with respect to V

Easy to check that we differ from optimal PSDP solution by 2Tε

Important: Error here is in terms of average over state-space not worst-case

Value-iteration algorithms amplify errors by pushing more probability through
where errors are

PSDP doesn’t; rollouts keep it honest

Policy Search by Dynamic Programming – p.26/33

Brachiating robot

PSDP is in spirit related to DDP [Atkeson02]

Trajectories in DDP serve as the analog of µ

Central difference is value function backups instead of
policy backups

Use their planar biped walking robot simulator

Robot has a 5-d (essentially) state-space, control is
hip-torque

Policy Search by Dynamic Programming – p.27/33

Brachiating robot

PSDP is in spirit related to DDP [Atkeson02]

Policy Search by Dynamic Programming – p.28/33

Advantages of PSDP

Able to handle partial observability, discontinuous cost functions

Removed state-variables as input to regression one-by-one

Succeeds with just one-bit: which foot is down (nearly open-loop)

Policy Search by Dynamic Programming – p.29/33

Advantages of PSDP

Able to handle partial observability, discontinuous cost functions

Removed state-variables as input to regression one-by-one

Succeeds with just one-bit: which foot is down (nearly open-loop)

0 2 4 6 8 10 12 14 16 18 20
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

time (s)

co
nt

ro
l t

or
qu

e

0 2 4 6 8 10 12 14 16 18 20
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

time (s)

an
gl

e
(ra

d)

(Left) Control signal from open-loop learned controller.
(Right) Resulting angle of one leg.

Policy Search by Dynamic Programming – p.30/33

Outline

Introduction to Stochastic Control Problem

POMDPs and Memoryless Policies

Policy Search by Dynamic Programming

Exact (Discrete) PSDP

PSDP using Classification

PSDP using Regression

Refinements and Conclusions

Policy Search by Dynamic Programming – p.31/33

Iterative µ Refinement

Natural outer-loop to algorithm

After backwards sweep computing policy

apply forward sweep computing resulting µ(x, t)

Improves result in a number of cases– sometimes
dramatically

For ε = 0 it follows that performance never decreases

Seeking a local maximum in the policy space

Completes analogy with DDP technique

Policy Search by Dynamic Programming – p.32/33

Future and Related Work

Clearly closely related to MDP policy search technique
of [Fern03] [Lagoudakis03] [Langford03] [Kakade03]

Next steps include more serious problems

As well as problems with approximate filters/belief
states

Policy Search by Dynamic Programming – p.33/33

	Outline
	Stochastic Control Problem
	Stochastic Control Problem
	Markov Decision Process
	MDP Solution Techniques
	Outline
	Partial Observability
	POMDPs
	Finding memoryless policies
	Typical approaches
	Outline
	Rethinking Dynamic Programming
	Rethinking Dynamic Programming
	Policy Search by DP
	How well can we do?
	Outline
	Exact PSDP
	Mazes
	Memoryless policy classes
	Outline
	Weighted classification
	Weighted classification
	Outline
	l_1 Regression
	l_1 Regression
	Brachiating robot
	Brachiating robot
	Advantages of PSDP
	Advantages of PSDP
	Outline
	Iterative $mu $ Refinement
	Future and Related Work

