Machine Learning Coms-4771

Machine Learning Theory
The Winnow Algorithm

Lecture 7

Based on Avrim Blum’s notes (see the link at the web page)
Recap

SPAM Example: Each email = a boolean vector indicating which phrases appear and which don’t (in some predetermined set of n phrases). Email $x = (x_1, \ldots, x_n) \in \{0, 1\}^n$.

<table>
<thead>
<tr>
<th>100% free</th>
<th>earn $</th>
<th>double your income</th>
<th>weight loss</th>
<th>\ldots</th>
<th>requested</th>
<th>$f(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>x_4</td>
<td>x_5</td>
<td>\ldots</td>
<td>x_n</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
</tr>
</tbody>
</table>

Target function/concept: A monotone disjunction $f(x) = a$ boolean function of the form $\bigvee_{i \in S} x_i$ for some subset $S \subseteq \{1, \ldots, n\}$. (SPAM if at least one of the phrases in S is present).

Mistake Bound Model: View learning as a sequence of trials

- The learner gets an unlabeled example x,
- predicts its classification,
- learns whether or not it made a mistake.

Goal: minimize the number of mistakes

Mistake Bound Definition: Algorithm A learns a class of functions C with mistake bound M if A makes at most M mistakes on any sequence of examples consistent with some $f \in C$.

Simple algorithm for learning a disjunction

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>our prediction of $f(x)$</th>
<th>$f(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 ($x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5 \lor x_6$)</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1 ($x_2 \lor x_3 \lor x_4 \lor x_5 \lor x_6$)</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1 ($x_2 \lor x_3 \lor x_4 \lor x_5 \lor x_6$)</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1 ($x_2 \lor x_3 \lor x_4 \lor x_5$)</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0 ($x_2 \lor x_3$)</td>
<td>0</td>
</tr>
</tbody>
</table>

(mistakes in red; the target is $x_2 \lor x_3$)

- Algorithm: list all features and cross off bad ones on negative examples.
- Makes at most n mistakes.
- Problem: n can be very large! What if the target function is an OR on a small subset of r relevant features?
- Today: Winnow algorithm which gives us a mistake bound of $O(r \log n)$.
The Winnow Algorithm (for OR functions)

- Initialize the weights \(w_1 = w_2 = \ldots = w_n = 1 \) on the \(n \) variables.
- Given an example \(x = (x_1, \ldots, x_n) \), output 1 if
 \[
 \sum_{i=1}^{n} w_i x_i \geq n,
 \]
 otherwise output 0.
- If the algorithm makes a mistake:
 - (on positive) If it predicts 0 when \(f(x) = 1 \), then for each \(x_i \) equal to 1, double the value of \(w_i \).
 - (on negative) If it predicts 1 when \(f(x) = 0 \), then for each \(x_i \) equal to 1, cut the value of \(w_i \) in half.
Winnow in Action

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>prediction of $f(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w_1 = 1$</td>
<td>$w_2 = 1$</td>
<td>$w_3 = 1$</td>
<td>$w_4 = 1$</td>
<td>$w_5 = 1$</td>
<td>$w_6 = 1$</td>
<td>0 ($\sum_i x_i w_i = 1 \geq 6?$)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0 ($\sum_i x_i w_i = 4 \geq 6?$)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>double w_i for $x_i = 1$</td>
</tr>
<tr>
<td>$w_1 = 1$</td>
<td>$w_2 = 2$</td>
<td>$w_3 = 1$</td>
<td>$w_4 = 2$</td>
<td>$w_5 = 2$</td>
<td>$w_6 = 2$</td>
<td>0 ($2 \geq 6?$)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1 ($6 \geq 6?$)</td>
</tr>
<tr>
<td>$w_1 = 1$</td>
<td>$w_2 = 2$</td>
<td>$w_3 = 1$</td>
<td>$w_4 = 1$</td>
<td>$w_5 = 1$</td>
<td>$w_6 = 1$</td>
<td>halve w_i for $x_i = 1$</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0 ($2 \geq 6?$)</td>
</tr>
</tbody>
</table>

(mistakes in red; the target $f(x) = x_2 \lor x_3$, $n = 6$, $r = 2$)

Algorithm repeated:

- On x, predict $1(\sum_i w_i x_i \geq n)$.

- (mistake on positive) If it predicts 0 when $f(x) = 1$, then for each x_i equal to 1, double the value of w_i.

- (mistake on negative) If it predicts 1 when $f(x) = 0$, then for each x_i equal to 1, cut the value of w_i in half.
Theorem The Winnow learns the class of disjunctions with mistake bound of $2 + 3r \lceil \log n \rceil$ when the target concept f is an OR of r variables.

Proof

- **(mistakes on positive examples)** Any mistake on a positive doubles the weight of at least one of the variables in f. And a mistake on a negative cannot halve any of the relevant weights. Since we can’t make a mistake on a positive when at least one of the weights is $\geq n$, we can make at most $r \lceil \log n \rceil$ mistakes on positive examples.

- **(mistakes on negative examples)** Initially $W = \sum_i w_i = n$. Each mistake on a positive increases W by at most n (since we had $W \leq n$ and predicted 0 instead of 1). Each mistake on a negative, decreases W by at least $n/2$. Letting m_n and m_p be the number of mistakes on negatives and positives respectively,

 $$n + n \cdot m_p - \frac{n}{2} m_n > 0,$$

 since W always remains positive. Simplifying, $m_n < 2m_p + 2$.

- **Total number of mistakes** $3r \lceil \log n \rceil + 2$.

What if the examples are not completely consistent with a disjunction?

- A positive example satisfying none of relevant variables can cause W to increase by at most n (resulting in at most 2 additional mistakes on negatives to bring it back down; indeed, each time we predict 1 on a 0, we decrease the irrelevant weight in W by at least $n/2$).

- A negative example satisfying t relevant variables can cause t relevant weights to be halved (resulting in at most t more mistakes on positives to fix, in turn causing up to $2t$ mistakes on negatives).

- Mistake bound goes up by at most $O(\#\text{attribute errors})$.
Winnow is more general: It can learn the class of linear threshold functions \(f(x) = 1 \) if \(\sum_i a_i x_i \geq b \) for non-negative integers \(a_1, \ldots, a_n, b \).

An \(r \)-OR corresponds to the case when \(b = 1 \) and \(a_i = 1 \) for the \(r \) relevant variables and 0 for others.

Encodes other important functions as well. Read Littlestone's paper linked at the web page.
Think of N experts giving advice to you. (Expert = someone with an opinion, not necessarily someone who knows anything.) There doesn’t have to be a perfect expert.

Want to do nearly as well as the best expert in hindsight.

Can view each expert as a different $f \in C$.

Example: We want to predict the stock market.

<table>
<thead>
<tr>
<th>Expert 1</th>
<th>Expert 2</th>
<th>Expert 3</th>
<th>...</th>
<th>Expert N</th>
<th>truth</th>
</tr>
</thead>
<tbody>
<tr>
<td>down</td>
<td>up</td>
<td>up</td>
<td>...</td>
<td>down</td>
<td>up</td>
</tr>
<tr>
<td>up</td>
<td>up</td>
<td>up</td>
<td>...</td>
<td>down</td>
<td>down</td>
</tr>
<tr>
<td>down</td>
<td>down</td>
<td>up</td>
<td>...</td>
<td>down</td>
<td>...</td>
</tr>
</tbody>
</table>

If one expert is perfect, can get at most $\log N$ mistakes with halving algorithm. What if none is perfect? Can we do nearly as well as the best one in hindsight?
Simple Strategy: Iterated Halving

- Run halving, but restart every time we’ve crossed off all experts.
- Makes at most \((\log N)(m + 1)\) mistakes, where \(m\) is the number of mistakes made by the best expert in hindsight.
- Seems wasteful. We keep forgetting everything we’ve learned. Can we do better?
Weighted Majority Algorithm

Making a mistake shouldn't disqualify an expert. Instead of crossing off, just lower the expert’s weight.

Algorithm:

- Start with all experts having weight 1: $w_1 = w_2 = \ldots = w_N = 1$
- Predict based on weighted majority vote: Output 1 if
 \[
 \sum_{i : x_i = 1} w_i \geq \sum_{i : x_i = 0} w_i,
 \]
 otherwise output 0.
- Penalize mistakes by cutting weight in half. If expert i made a mistake, set $w_i \leftarrow w_i/2$; otherwise, keep the weight unchanged.
Weighted Majority Algorithm: Analysis

Theorem: The number of mistakes M made by the Weighted Majority is never more than $2.41(m + \log N)$, where m is the number of mistakes made by the best expert so far.

Proof: $W = \sum_i w_i =$ total weight, initially $W = N$. After each mistake, at least half of the total weight of experts predicts incorrectly, so W goes down by at least a factor of $1/4$. After the algorithm makes M mistakes, we have

$$W \leq N(3/4)^M.$$

If the best expert has made m mistakes, its weight is $1/2^m$ and so

$$W \geq 1/2^m.$$

Combining gives $1/2^m \leq N(3/4)^M$. Solving for M:

$$M \leq \frac{1}{\log(4/3)}(m + \log N) \leq 2.41(m + \log N).$$
2.41(m + log N) is not so good if the best expert makes a mistake 20% of the time. Can we do better? Yes.

Instead of taking majority vote, use weights as probabilities. So if 70% of the weight predicts “yes”, and 30% predicts “no”, pick 70:30. Intuition: smooth out the worst case.