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Multi-armed Bandit Problems
The Setting:

I K arms (or actions)

I Each time t, each arm i pays off a bounded real-valued reward
xi (t), say in [0, 1].

I Each time t, the learner chooses a single arm it ∈ {1, . . . ,K} and
receives reward xit (t). The goal is to maximize the return.

1 K︷ ︸︸ ︷

. . .

The simplest instance of the exploration-exploitation problem



Bandits for targeting content

I Choose the best content to display to the next visitor of your website

I Content options = slot machines

I Reward = user’s response (e.g., click on a ad)

I A simplifying assumption: no context (no visitor profiles). In
practice, we want to solve contextual bandit problems.



I Stochastic bandits: Each arm i is associated with some
unknown probability distribution with expectation µi . Rewards
are drawn iid.
The largest expected reward: µ∗ = maxi∈{1,...,K} E[xi ]
Regret after T plays:

µ∗T −
T∑

t=1

E[xit (t)]

expectation is over the draws of rewards and the randomness in player’s strategy

I Adversarial (nonstochastic) bandits: No assumption is made
about the reward sequence (other than it’s bounded). Regret
after T plays:

max
i

T∑
t=1

xi (t)−
T∑

t=1

E[xit (t)]

expectation is only over the randomness in the player’s strategy



Stochastic Bandits: Upper Confidence Bounds Strategy

UCB

I Play each arm once

I At any time t > K (deterministically) play machine it maximizing

x̄j(t) +

√
2 ln t

Tj,t
,

over j ∈ {1, . . . ,K} where

I x̄j is the average reward obtained from machine j
I Tj,t is the number of times j has been played so far



UCB

Intuition:
The second term

√
2 ln t/Tj,t is the the size of the one-sided

(1− 1/t)-condifence interval for the average reward (using
Chernoff-Hoeffding bounds).

Theorem
(Auer, Cesa-Bianchi, Fisher) At time T , the regret of the UCB policy is
at most

8K

∆∗ ln T + 5K ,

where ∆∗ = µ∗ −maxi :µi<µ∗ µi (the gap between the best expected
reward and the expected reward of the runner up).



Stochastic Bandits: ε-greedy

Randomized policy: εt-greedy
Parameter: schedule ε1, ε2, . . ., where 0 ≤ εt ≤ 1.
At each time t

I (exploit) with probability 1− εt , play the arm it with the highest
current average return

I (explore) with probability ε, play a random arm

Is there a schedule of εt which guarantees logarithmic regret? Constant ε

causes linear regret. Fix: let ε go to 0 as our estimates of the expected

rewards become more accurate.



Theorem
(Auer, Cesa-Bianchi, Fisher) If εt = 12/(d2t) where 0 < d ≤ ∆∗, then
the instantaneous regret (i.e., probability of choosing a suboptimal arm)
at any time t of ε-greedy is at most

O(
K

dt
).

The regret of ε-greedy at time T (summing over the steps) is thus at
most

O(
∆∗

d
K log T )

(using
∑T

t=1
1
t ≈ lnT + γ where γ ≈ 0.5772 is the Euler constant).



Practical performance (from Auer, Cesa-Bianchi and Fisher):

I Tuning the UCB: replace
√

2 ln t/Ti,t with√
ln t

Ti,t
min{1/4,Vi,t},

where Vi,t is an upper confidence bound for the variance of arm i .
(The factor 1/4 is an upper bound on the variance of any [0, 1]
bounded variable.) Performs significantly better in practice.

I ε-greedy is quite sensitive to bad parameter tuning and large
differences in response rates. Otherwise an optimally tuned ε-greedy
performs very well.

I UCB tuned performs comparably to a well-tuned ε-greedy and is not
very sensitive to large differences in response rates.



Nonstochastic Bandits: Recap

I No assumptions are made about the generation of rewards.

I Modeled by an arbitrary sequence of reward vectors
x1(t), . . . , xK (t), where xi (t) ∈ [0, 1] is the reward obtained if action
i is chosen at time t.

I At step t, the player chooses arm it and receives xit .

I Regret after T plays (with respect to the best single action):

max
j

T∑
t=1

xj(t)︸ ︷︷ ︸
Gmax=reward of the best action in hindsight

−
T∑

t=1

E[xit (t)]︸ ︷︷ ︸
expected reward of the player



Exp3 Algorithm (Auer, Cesa-Bianchi, Freund, and
Schapire)

I Initialization: wi (1) = 1 for i ∈ {1, . . . ,K}

I Set γ = min{1,
√

K ln K
(e−1)g }, where g ≥ Gmax.

I For each t = 1, 2, . . .

I Set
pi (t) = (1− γ)

wi∑K
j=1 wj(t)

+
γ

K

I Draw it randomly according to p1(t), . . . , pK (t).
I Receive reward xit (t) ∈ [0, 1]
I For j = 1, . . . ,K set the estimated rewards and update the

weights:

x̂j(t) =

{
xj(t)/pj(t) if j = it

0 otherwise

wj(t + 1) = wj(t) exp(γx̂j(t)/K )



Exp3 Algorithm (Auer, Cesa-Bianchi, Freund, and
Schapire)

Theorem: For any T > 0 and for any sequence of rewards, regret of the
player is bounded by

2
√

e − 1
√

gK ln K ≤ 2.63
√

TK ln K

Observation: Setting x̂it to xit (t)/pit (t) guarantees that the expectations
are equal to the actual rewards for each action:

E[x̂j | i1, . . . , it−1] = pj(t)xj(t)/pj(t) = xj(t),

where the expectation is with respect to the random choice of it at time t

(given the choices in the previous rounds). So dividing by pit compensates

for the reward of actions with small probability of being drawn.



Proof: Let Wt =
∑

j wj(t). We have

Wt+1

Wt
=

K∑
i=1

wi (t)exp(γx̂i (t)/K)︷ ︸︸ ︷
wi (t + 1)

Wt
=

K∑
i=1

pi (t)− (γ/K )

1− γ
exp(γx̂i (t)/K )

≤
K∑

i=1

pi (t)− (γ/K )

1− γ
(1 +

γ

k
x̂i (t) + (e − 2)

γ2

k2
x̂2
i (t))

(using ex ≤ 1 + x + (e − 2)x2 for x ∈ [0, 1])

≤

=1︷ ︸︸ ︷
K∑

i=1

pi (t)− (γ/k)

1− γ
+

K∑
i=1

pi (t)γx̂i (t)

(1− γ)K
+

(e − 2)γ2

(1− γ)K 2

∑
i

pi (t)x̂2
i (t)

≤ 1 +

 γ

(1− γ)K
xit (t)︸ ︷︷ ︸

the only non-zero term

+(e − 2)
(γ/K )2

1− γ

K∑
i=1

x̂i (t)


use approximation 1 + z ≤ ez



Take logs:

ln
WT+1

Wt
≤ γ

(1− γ)K
xit (t) + (e − 2)

(γ/K )2

1− γ

K∑
i=1

x̂i (t)

Summing over t,

ln
WT+1

W1
≤ γ/K

(1− γ)

reward of Exp3︷ ︸︸ ︷
Gexp 3 +

(e − 2)(γ/K )2

1− γ

T∑
t=1

K∑
i=1

x̂i (t)

Now, for any fixed arm j

ln
WT+1

W1
≥ ln

wj(T + 1)

W1
= ln

wj(1)

W1
+ (γ/K )

T∑
t=1

x̂j(t).

Combine with the upper bound,

γ

K

T∑
t=1

x̂j(t)− ln K ≤ γ/K

1− γ
Gexp 3 +

(e − 2)(γ/K )2

1− γ

T∑
t=1

K∑
i=1

x̂i (t)

Solve for Gexp 3:

Gexp 3 ≥ (1− γ)
T∑

t=1

xj(t)− K

γ
ln K · (1− γ)− (e − 2)(γ/K )

T∑
t=1

K∑
i=1

x̂i (t)



Take expectaion of both sides wrt distribution of i1, . . . , iT :

E[Gexp 3] ≥ (1− γ)
T∑

t=1

xj(t)− K

γ
ln K − (e − 2)

γ

K
KGmax.

Since j was chosen arbitrarily, it holds for j = max:

E[Gexp 3] ≥ (1− γ)Gmax −
K

γ
ln K − (e − 2)γGmax

Thus

Gmax − E[Gexp 3] ≤ K ln K

γ
+ (e − 1)γGmax

The value of γ in the algorithm is chosen to minimize the regret.



Comments:

I Don’t need to know T in advance (guess and double)

I Possible to get high probability bounds (with a modified version of
Exp3 that uses upper confidence bounds)

I Stronger notions of regret. Compete with the best in a class of
strategies.

I The difference between
√

T bounds and log T bounds is a bit
misleading. The difference is not due to the adversarial nature of
rewards but in the asymptotic quantification! log T bounds hold for
any fixed set of reward distributions (so ∆∗ is fixed before T , not
after).


