Machine Learning Coms-4771

Multi-Armed Bandit Problems

Lecture 20



Multi-armed Bandit Problems
The Setting:
> K arms (or actions)
» Each time t, each arm i pays off a bounded real-valued reward
x;(t), say in [0, 1].
» Each time t, the learner chooses a single arm iy € {1,..., K} and
receives reward x;(t). The goal is to maximize the return.

02 0.8

0.1 09
0.3 0.7

The simplest instance of the exploration-exploitation problem



Bandits for targeting content

» Choose the best content to display to the next visitor of your website
» Content options = slot machines
» Reward = user's response (e.g., click on a ad)

» A simplifying assumption: no context (no visitor profiles). In
practice, we want to solve contextual bandit problems.



» Stochastic bandits: Each arm / is associated with some
unknown probability distribution with expectation p;. Rewards
are drawn iid.

The largest expected reward: p* = max;eq1,... k} E[xi]
Regret after T plays:

-
W' =Y Elx(t)]
t=1

expectation is over the draws of rewards and the randomness in player's strategy

» Adversarial (nonstochastic) bandits: No assumption is made
about the reward sequence (other than it's bounded). Regret

fter T plays:
arter [ plays -

)
max D" xi(t) = 3 Eli (1)
t=1

i
t=1

expectation is only over the randomness in the player’s strategy



Stochastic Bandits: Upper Confidence Bounds Strategy

uCB

» Play each arm once

> At any time t > K (deterministically) play machine iy maximizing

2Int
x;(t) + ;
’ Tj

it

over j € {1,..., K} where

> X;j is the average reward obtained from machine j
> T; . is the number of times j has been played so far



UCB

Intuition:

The second term /2Int/T; ; is the the size of the one-sided
(1 — 1/t)-condifence interval for the average reward (using
Chernoff-Hoeffding bounds).
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true expected reward upper confidence bound

Theorem
(Auer, Cesa-Bianchi, Fisher) At time T, the regret of the UCB policy is
at most 8K

—InT +5K

A* + ’

where A* = p* — maxi.,, <.~ iti (the gap between the best expected
reward and the expected reward of the runner up).



Stochastic Bandits: e-greedy

Randomized policy: €;-greedy
Parameter: schedule €7, ¢35, ..., where 0 <¢; < 1.
At each time t
> (exploit) with probability 1 — €, play the arm i, with the highest
current average return

» (explore) with probability €, play a random arm

Is there a schedule of €; which guarantees logarithmic regret? Constant e
causes linear regret. Fix: let € go to 0 as our estimates of the expected
rewards become more accurate.



Theorem

(Auer, Cesa-Bianchi, Fisher) If ¢, = 12/(d?t) where 0 < d < A*, then
the instantaneous regret (i.e., probability of choosing a suboptimal arm)
at any time t of e-greedy is at most

K
O(E .

The regret of e-greedy at time T (summing over the steps) is thus at
most

*

A
O(d

Klog T)

(using 2;1 1~ InT + v where y & 0.5772 is the Euler constant).



Practical performance (from Auer, Cesa-Bianchi and Fisher):

» Tuning the UCB: replace \/2Int/T;; with

\/'T”t min{1/4, V.},

it

where V; ; is an upper confidence bound for the variance of arm i.
(The factor 1/4 is an upper bound on the variance of any [0, 1]
bounded variable.) Performs significantly better in practice.

> e-greedy is quite sensitive to bad parameter tuning and large
differences in response rates. Otherwise an optimally tuned e-greedy
performs very well.

» UCB tuned performs comparably to a well-tuned e-greedy and is not
very sensitive to large differences in response rates.



Nonstochastic Bandits: Recap

» No assumptions are made about the generation of rewards.

» Modeled by an arbitrary sequence of reward vectors
x1(t), ..., xk(t), where x;(t) € [0,1] is the reward obtained if action
i is chosen at time t.

> At step t, the player chooses arm i; and receives Xx;,.

> Regret after T plays (with respect to the best single action):

T T
mJaxZXj(t) - Z Elx;,(t)]
t=1 t=1

Gmax=reward of the best action in hindsight expected reward of the player



Exp3 Algorithm (Auer, Cesa-Bianchi, Freund, and
Schapire)

> Initialization: w;(1) =1for i€ {1,...,K}
> Set v = min{1, (5_'”1;;}, where g > Gpax.

» Foreacht=1,2,...

> Set W N
pilt) = (1 =7 e+
> = wi(t) K
» Draw /; randomly according to pi(t),..., pk(t).
» Receive reward x;,(t) € [0, 1]
» For j=1,..., K set the estimated rewards and update the
weights:

! 0 otherwise

%(t) = {Xf(f)/pj(t) =i

wj(t + 1) = w;(t) exp(7%i(t)/ K)



Exp3 Algorithm (Auer, Cesa-Bianchi, Freund, and
Schapire)

Theorem: For any T > 0 and for any sequence of rewards, regret of the
player is bounded by

2ve—1y/gKInK <263vVTKInK

Observation: Setting X;, to x;,(t)/p;,(t) guarantees that the expectations
are equal to the actual rewards for each action:

E% [ 71,y iea] = pi()xi(8)/ pi(2) = x5(2),

where the expectation is with respect to the random choice of i; at time ¢t
(given the choices in the previous rounds). So dividing by p; compensates
for the reward of actions with small probability of being drawn.



Proof: Let Wy =3, w;(t). We have

w;(t)exp(v%i(t)/K)

W _ Z wlt 1) a0 =0/ k)
-7

K 2
< Z pi(t) — ('Z/K)(l + x,(t) + (e — )Zz %(1))

(using € < 1+ x + (e —2)x? for x € [0,1])

i) = (1/K) | = pENE(E) | (e —2)7
S,;ﬁJr; 1k ke i)
N .5 (’Y/K)Q K

<1+ A=K & +( 72,

the only non-zero term

use approximation 1+ z < e



Take logs:

Wr i1 gl (1/K)* &S,

< . — .
In W, _(l—w)KX't(t)_F(e 2) E %i(t)
Summing over t,

reward of Exp3

Wi /K +(e_2)(”/K)2ii%(t)

< Gex
4%} 1—q) % 1—~ — =
Now, for any fixed arm j
-
Wri1 w;(T +1) w;(1) .
In >1In =In + K Xi(t).
Wl Wl W] (7/ ); J( )
Combine with the upper bound,
T T
TN /K (e —2)(v/K)? .
— (1) —InK < —— G — i(t
K;X,() K < 3 Gopat g ;;x()

Solve for Geyp3:



Take expectaion of both sides wrt distribution of iy,. .., iT:
L i
E[Gepsl > (1 =) > x(t) — = In K — (e = 2) - KGrnax.
Since j was chosen arbitrarily, it holds for j = max:

E[Gexp3] > (1 — ) Gmax — g InK — (e — 2)yGmax

Thus Kin K
Gmax - E[Gexp 3] S n

+ (e - 1)7Gmax

The value of v in the algorithm is chosen to minimize the regret.



Comments:
» Don't need to know T in advance (guess and double)

» Possible to get high probability bounds (with a modified version of
Exp3 that uses upper confidence bounds)

» Stronger notions of regret. Compete with the best in a class of
strategies.

> The difference between /T bounds and log T bounds is a bit
misleading. The difference is not due to the adversarial nature of
rewards but in the asymptotic quantification! log T bounds hold for
any fixed set of reward distributions (so A* is fixed before T, not
after).



